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Abstract 
Chronic kidney disease is one of the critical illnesses that affects 
roughly 10% of the people in the world. Early and accurate 
prediction of such disease is required for proper treatment. The use 
of machine learning (ML) for medical diagnosis in healthcare has 
increased. The doctor can identify the disease early with the aid of 
ML algorithms and approaches. This study aims to develop a 
diagnosis approach to recognize chronic kidney disease and assist 
the experts for exploring preventive measures early using extreme 
gradient boosting (XGBoost) model. The XGBoost is used due to 
its ability in-build features to manipulate missing data and its 
regularization capability to handle unbalanced datasets. The 
approach is trained and evaluated on a public dataset consisted of 
24 features for 400 patients taken from the University of California 
Irvine (UCI) repository. The mean and most frequent values are 
used respectively for replacing the missing numerical and 
categorical values. The experimental results using a 10-fold cross-
validation and holdout test techniques with a number of evaluation 
metrics exposed that the XGBoost model of the proposed approach 
achieves a competitive high result compared with the recent work 
on the same dataset. It attained 99.9% of AUC mean for the 10-
fold cross-validation test and 99.6 of accuracy for 60% holdout 
test from the dataset to diagnosis the chronic kidney disease. 
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1. Introduction 

The term "chronic kidney disease" (CKD) describes a 
gradual decline in the construction and functions of people’s 
kidneys, particularly the decline in filtration rates over 
months or years. The endocrine, excretory, and metabolic 
kidneys functions are gradually disappear as a result of 
abnormal biochemical changes that start off the process.  

Renal failure symptoms and signs appear as a result of 
these abnormalities. The most frequent reasons of the 
disease are recorded as diabetes, hypertension, glomerular 
and interstitial diseases, inflammatory disorders, congenital 
conditions, and abnormalities of nonvascular [1]. However, 
the primary cause of the disease still remains unknown in 
many patients.  

The amount of albumin in the urine and the glomerular 
filtration rate (GFR) are used to assess the disease's 
prognosis. Reduced GFR and higher levels of albumin in 
the urine have been linked to be a high risk leads to mortality, 
CVD mortality, advanced acute kidney injury and disease 
[2]. It was believed that atherosclerotic calcification in 
vessels tracked by the formation of cholesterol crystal was 
the cause of a patient's high risk for developing CKD [3].  

If left untreated, chronic kidney disease (CKD) 
progresses over a pathological range of conditions to end 
stage renal failure (ESRF) or end stage renal diseases 
(ESRD) that can cause patients to go into a coma or pass 
away [4]. It can be challenging for the patients or the doctor 
for suspecting kidney involvement when CKD slowly 
develops because it either goes unnoticed or exhibits a 
variety of non-specific indications such as fatigue, weight 
loss, edema, poor appetite, headaches, and muscle cramps. 
In addition, some indications do not appear until greatly 
later, in the third stage or fourth stage of the kidney diseases, 
by which point comorbidity has already developed [5]. 

Hematopoietic abnormalities, immune dysfunction, 
endocrine dysfunction, electrolyte imbalance, and 
neurological symptoms are additional signs of CKD [1]. As 
a result, CKD raises the risk of developing other illnesses 
like the CVD mentioned above, increasing the number of 
deaths and morbidities [6]. Consequently, CKD has grown 
to be a major global burden and is responsible for a sizable 
portion of non-communicable disease-related fatalities 
(NCD). From 1990 to 2010, it rose from being the 27th to 
the 18th most common cause of death worldwide [7].  

In 2013, about one million people passed away due to 
the CKD or conditions linked to it [8]. Over the past ten 
years, the total of new-cases who requiring renal-
replacement therapy has been raised by a global rate equals 
8% annually [9]. According to studies, CKD is more of a 
burden in low- and middle-income countries than in high-
income ones [10], [11]. The authors in [12] indicated that 
CKD creates a high cost load to the systems of healthcare 
in the world. Moreover, the authors in [13] stated that the 
median prevalence of CKD is varied from 23.4% to 35.8% 
in aged 64 years or older. 
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To ensure that a patient receives an effective course of 
treatment from the doctor, the situation necessitates the 
development of a diagnostic method, or, developing a 
screening system, for early and accurate CKD detection 
from data of patients. One of the most effective and notable 
methods in the medical sector to diagnose and predict 
several diseases and their stages is a machine learning (ML) 
methods [14-21]. The datasets of numerous diseases can be 
used to develop ML methods and models. 

 ML methods are widely used to analyse and explore 
the vast datasets and all of their patterns, features, modes, 
etc. [22-28]. Incorporating algorithms into medical 
databases will help professionals make educated decisions 
about illnesses, avoid mistakes, and ensure that the general 
public lives in safety [29]. 

Therefore, this paper aims to develop a diagnosis 
approach to recognize chronic kidney disease and assist the 
experts for exploring preventive measures early using 
extreme gradient boosting (XGBoost) model. 

The reminder of the paper is organized as follows: 
Section 2 gives the literature review. The research methods 
is presented in section 3. Section 4 presents the results and 
discussion. Section 5 summarizes the conclusion and future 
work. 

2. Literature Review 

According to the previous studies, ML models have 
been utilized to perform satisfactorily results in this context. 
Many researchers and data scientists have employed a 
variety of techniques to detect kidney disease from the input 
data of patients. For example, K-star, SVM, and J48 
algorithms were applied to a dataset taken from UCI by 
Engin et al., who then compared their sensitivity, accuracy, 
and other parameters. They found that the J48 model 
attained 99% of accuracy [30].  

Contrarily, Gunarathne et al. [31] tested various 
procedures on the similar dataset and discovered that the 
Multi-class Decision Random Forest model outperformed 
them all with an accuracy rate of 99.1%. However, Nusrat 
et al. [32] used a different strategy when they featured 
datasets, pre-processing the information using some metrics 
such as the area under curve (AUC), root mean squared 
error, and mean absolute error. They applied the Decision 
Tree (DT), Naive Bayes (NB), K-Nearest Neighbour 
(KNN), and Support Vector Machine (SVM) algorithms 
after highlighting the dataset. They found that DT offers the 
best accuracy, ranging from 98% to 99%. 

Moreover, Huseyin et al. [33] did a different study 
where, prior to using the algorithm, they made adjustments 
to the dataset's feature selection. The dataset was therefore 
subjected to the filter, embedded, and wrapper feature 
selection approaches before being subjected to the SVM 

algorithm. Their research indicates that the subset 
evaluation for the filter scheme achieved the best accuracy 
(98.5%). Devika et al. [34] introduced a study to predict 
CKD also concentrated on Nave Bayes (NB), Random 
Forest (RF) K-, and Nearest Neighbor (KNN) algorithms. 
With an accuracy of 99% among these classification models, 
RF outperformed the other models. 

Additionally, Merve et al. [35] improved the accuracy 
using ensemble learning by the AdaBoost model. They used 
the root mean squared error (RMSE), mean absolute error 
(MAE), and area under the curve (AUC) in their work to 
evaluate the ML models' performance. Amanah et al. [36] 
also used the PSO algorithm for optimizing the results, and 
they raised the average of accuracy to 36.20% after 
combining the AdaBoost and PSO feature selection 
algorithms.  

Alternatively, Chittora et al. [37] used some machine 
learning algorithms  like linear support vector machine 
(LSVM), Chi-square automatic interaction detection 
(CHAID), artificial neural network (ANN), decision tree 
(C5.0), K-nearest neighbours (KNN), and random tree and 
six different feature selection methods, with a deep learning 
network achieving a high accuracy result. However, the 
authors did not give any detail about this accuracy result 
with other evaluation metrics like F1-score and did not 
include them in the table of comparison results with other 
ML models.  

Furthermore, a study by Sobrinho et al. [38] examined 
how ML techniques can aid for early CKD detection in 
developing nations. The study's conclusions suggest that the 
J48 decision tree, with its 95.00% accuracy in classification, 
is a noble ML technique for this type of developing in 
screening countries.  

Boosting algorithms were used in the study and attained 
a comparative result of accuracy with the AdaBoost model 
[39]. Therefore, it is clear that ML techniques open doors 
for early detection of CKD so that the patients can receive 
better care.  

Almasoud and Ward introduced a chronic kidney 
disease detection approach using a number of machine 
learning models such as support vector machine (SVM), 
random forest (RF), Logistic regression (LR), and gradient 
boosting (GB) algorithms. They trained and tested these 
models using 10-fold cross-validation. They achieved an 
accuracy of 99% from GB model [40]. 

In order to improve the outcome of previous studies and 
methods, an effective and accurate approach will be 
developed to detect and recognize CKD early and assist the 
experts for exploring preventive measures and ensuring a 
proper treatment. 
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3. Research Methods 

This section gives an explanation about the research 
methods used in the proposed approach. At first, the section 
describes the Classification and Regression Trees method. 
After that, it explains the Extreme Gradient Boosting 
(XGBoost) method. 

3.1 Classification and Regression Trees 

In 1984, Leo Breiman introduced the Classification and 
Regression Trees (CART) approach. It is a decision tree 
method that uses nonparametric statistics for its task [41]. 
The CART decision tree can be created by repeatedly 
splitting a node into its two-roots. The fundamental 
principle of the CART tree is to select the purest root node 
for the child produced by choosing between all possible 
splitting at each node. For instance, assuming training data 
𝑇 as shown below. 

𝑇 ൌ ሼሺ𝑥 ,𝑦ሻሽ, 1  𝑖  𝑛 
𝐴 ൌ ሾ𝑥ଵ,ଵ…ห 𝑥ଶ,ଵ…ห… |𝑥,ଵ…ሿ ⊂ 𝑅 
𝑥 ൌ ሾ𝑎 ∈ 𝐴ሿ, 1  𝑗  𝑚 
𝑣 ൌ ሾ𝑎 ∈ 𝐴ሿ, 1  𝑖  𝑛 

Where 𝑛 is the total number of cases of chronic kidney 
disease, 𝑚 is the total number of predictors in a dataset, 
𝑥 is the value for each instance, 𝑣 is the total number of 
values of the variables or predictors, and 𝑦 is the actual 
target, or the outcome of the prediction of cases of chronic 
kidney disease. 

For the multiclass classification, CART was constructed 
using training data in order to group training data that had 
the same level or value. In order to create the cleanest data 
partitions possible, the CART formation process involves 
choosing thresholds or splitting rules on features. As a result, 
the observations with same value or level are assembled on 
every branch or division of the resulting tree. For multi-
level classification, resulted CART function is a binary-tree 
graph with a level, which links to the data input, in which, 
every node of the graph has an instance of data related to 
patients’ chronic kidney disease. As a result, the function 𝑓 
in a dataset 𝑥 can be formulated as follows: 

𝑓ሺ𝑥ሻ ൌ 𝑤ሺ௫ሻ,𝑞:𝑅 → ሼ1, 2, … ,𝑇ሽ,𝑤 ∈ 𝑅் 

𝐼௧ ൌ ሼ𝑖|𝑥 ∈ 𝑡ሽ, 1  𝑡  𝑇 

𝑤௧ ൌ
|ሼ𝑖 ∈ 𝐼௧|𝑦 ൌ 1ሽ|

𝐼௧
, 1  𝑡  𝑇 

Where 𝑇 is the number of leaf nodes at 𝑓, 𝑞ሺ𝑥ሻ maps 
dataset instances to one of leaf nodes at 𝑓, 𝐼௧ indexes the 
data that is on node 𝑡 , and 𝑤௧, 1  𝑡  𝑇  is the weight of 
leaf on 𝑓. A node's purity is determined using Gini impurity 
that is represented by: 

𝐺 ൌ 1 െ ሺ𝑝ሻଶ


ୀଵ
 (1) 

Where  𝑖 ൌ 1,2,3, … ,𝑘 , and 𝑘  is a large number of 
levels with probability 𝑝. If the data on the node only has 
one level or if the data on the node has a similar or 
homogeneous level, the value of this root node will be 
minimum. 

3.2 Extreme Gradient Boosting (XGBoost) 

Bagging and boosting are the two main techniques used 
in the ensemble method. Prediction accuracy is increased 
sequentially at a given time using the bagging method, 
which involves building multiple models independently, in 
which the final output of prediction is the average of 
prediction outputs [42]. Creating several models 
sequentially while basing each model's error function on the 
performance of the one before it is known as "boosting." 
The accuracy of the weakest weak hypothesis's basic model, 
which is the smallest, determines how well the boosting 
method works [43].  

The gradient boosting approach, which can be used for 
both classification and regression problems, is an 
illustration of a boosting strategy. Since the 1990s, the 
research on the gradient boosting algorithms has been 
conducted in a number of scientific fields. In 1984, Leo 
Breiman was the first to introduce gradient boosting, which 
can be seen as a suitable optimization algorithm [44]. The 
idea behind gradient boosting algorithms lies in their 
expansion, specifically the additional criterion fittings will 
be expanded, where the boosting process consists of 
sequentially minimizing Root Mean Square Error (RMSE) 
[45].  

Extreme Gradient Boosting (XGBoost) is a scalable, 
distributed gradient-boosted decision tree (GBDT) machine 
learning method. It involves creating a gradient boosting 
model with superior performance and processing speed. 
The benefit of processing missing value data with XGBoost 
is that no data is imputed at the start of learning [46]. By 
minimizing the objective function of regularization for each 
tree, the XGBoost method improves the performance of 
each tree created by the CART process as weak learners. 
Algorithm 1 gives split finding of exact greedy algorithm. 

Algorithm 1: Exact Greedy Algorithm for Split Finding 
Input: I: a set of instances in the current node, m: feature  

dimension 
𝑔 ← 0 //gain 
𝐺 ← ∑ 𝑔∈ூ , and 𝐻 ← ∑ ℎ∈ூ  
𝑓𝑜𝑟 𝑘 ൌ 1 𝑡𝑜 𝑚: 
  𝐺 ← 0, 𝐻 ← 0 
  𝑓𝑜𝑟 𝑘 𝑖𝑛 𝑠𝑜𝑟𝑡𝑒𝑑 𝑑𝑜: 
     𝐺 ← 𝐺  𝑔, 𝐻 ← 𝐻  ℎ 
     𝐺ோ ← 𝐺 െ 𝐺, 𝐻ோ ← 𝐻 െ 𝐻 

     𝑠𝑐𝑜𝑟𝑒 ← max ቂ𝑠𝑐𝑜𝑟𝑒,
ீಽ
మ

ுಽାఒ


ீೃ
మ

ுೃାఒ
െ

ሺீಽାீೃሻమ

ுಽାுೃାఒ
ቃ  

   𝑒𝑛𝑑 
𝑒𝑛𝑑 
Output: Split with max score   
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Fig. 1: Flowchart of proposed methodology for chronic kidney disease detection. 

 

Because the XGBoost method incorporates the sparsity 
awareness concept for each tree, it has a moral aptitude for 
prediction. Particularly, in case of classification, in which 
each tree's sparsity awareness method is constructed out of 
fundamental calculation that target to speed-up computing 
process [47]. 

3. Proposed Approach 

This section explains the proposed approach. It aims to 
build an effective and robust classification model to detect 
the CKD from not-CKD through the input features of 
patients. The research approach consists of three main 
stages given in Figure 2 and described in the following 
subsections. The data input to the approach is the CKD 
dataset and the output is a classification result that can be 
CKD or not-CKD. The dataset used in this approach was 
compiled in 2015 over a two-month period from CKD 
patients at Apollo Hospital in India. It is publically available 
for researchers and can be found in the Chronic Kidney 
Disease dataset in the University of California, Irvine (UCI) 
data repository [48]. There are 400 observations or records 
in this dataset, and they have missing and noisy values. 
From the 400 records, 150 records of patients without CKD 
and 250 records with CKD are included in the dataset. As a 
result, 62.5% of each class have CKD, compared to 37.5% 

who do not have. These observations span a range of ages, 
from 2 to 90. The CKD dataset contains 24 features, 
including 11 numerical and 13 categorical features, as 
shown in Table I. The 25th feature denotes the classification 
or state of CKD. 

 
Fig. 2: Flowchart of proposed approach for chronic kidney disease 

detection. 

Dataset 𝐷ሺ𝑥,𝑦ሻ 

𝑓ଵሺ𝑥 ,𝜃ଵሻ 𝑓ଶሺ𝑥 ,𝜃ଶሻ 𝑓ሺ𝑥 ,𝜃ሻ 

… 

… 

 𝑓ሺ𝑥 ,𝜃ሻ


ୀଵ
 

Final Result 

Residual Error Residual Error

Tree 1 
Tree 2 

Tree k 

Model Building and Training Stage 

Model Testing Stage 

Load CKD dataset 

Classification Result (CKD or not-CKD) 

Data Pre-processing Stage 
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Table 5: A description of the CKD dataset attributes. 

Attributes- (Meaning) Value 

age- (The age)  Numerical 
bp- (The blood pressure) Numerical 
al- (The albumin) Numerical (0,1,2,3,4,5) 
su- (Sugar)  Numerical (0,1,2,3,4,5) 

pcc- (Pus cells clumps)  
Categorical (Not-Present, 

Present) 
pc- (Pus cell) Categorical (Abnormal, Normal) 
rbc-  (Red blood cells)  Categorical (Abnormal, Normal) 

ba- (Bacteria)  
Categorical (Not-Present, 

Present) 
bu- (Blood Urea) Numerical Values in mgs/dl 
bgr- (Blood Glucose 
Random)  

Numerical Values in mgs/dl 

sc- (Serum creatinine) Numerical 
hemo- (Hemoglobin)  Numerical Values in gms 
pot- (Potassium) Numerical Values in mEq/L 
sod- (Sodium) Numerical Values in mEq/L 
pcv- (Packed Cell Volume) Numerical 
rc- (Red blood cell count) Numerical 
wc- (White blood cell count) Numerical 
htn- (Hypertension) Categorical (No, Yes) 
cad- (Coronary Artery 
Disease)  

Categorical (No, Yes) 

dm- (Diabetes Mellitus) Categorical (No, Yes) 
appet- (Appetite) Categorical (Poor, Good) 
ane- (Anemia) Categorical (No, Yes) 
pe- (Pedal Edema) Categorical (No, Yes) 
class- (Classification) Categorical (CKD, not-CKD) 

3.1 Data Pre-processing Stage 

Data preprocessing is a technique that may be used to 
transform unclean data into a clean dataset. It is the basic 
step to train every machine learning classifier algorithm. 
This method completes tasks like handling missing values, 
converting it to binary data, and standardizing the dataset. 
Rescaling is used to scale the dataset when the set of 
attributes had scales that varied. The mean and most 
frequent values are used respectively for replacing the 
missing numerical and categorical values. The categorical 
values have been transformed into zero and one using the 
binary transformation. Every attribute's value is regarded as 
either one for values above the threshold or zero for values 
below the threshold. Each attribute must have a mean of 
zero and a standard deviation of one according to the 
standardized method. 

3.2 Model Building and Training Stage 

This subsection gives an explanation about model 
building and training phase. The official XGBoost Python 
library is used to build the model and initialized its 
parameters with their default values. After that, the built 
model is trained using two techniques. The first technique 

is holdout in which the dataset is divided into 40% for 
training and 60% for testing. The second technique is a 10-
fold cross-validation in which the dataset is divided into 10 
parts. Every part is used for testing and the other nine parts 
are used for training the model. The output of this phase is 
a trained XGBoost that can be ready for testing and 
deployment. 

3.3 Model Testing Stage 

In this stage, the model trained on 40% of the dataset 
using holdout technique will be tested on the remaining 
60% of the dataset. Also, the model trained using a 10-fold 
cross-validation technique will be tested on a different 
subset from 10 subsets divided from the dataset for 10 times. 
The classification results of holdout and 10-fold cross-
validation techniques are used to evaluate the proposed 
approach. 

4. Results and Discussion 

This section demonstrates the evaluation results of 
proposed approach to show its performance to detect the 
CKD from input data features. The results of holdout 
technique will be given first; then, the results of 10-fold 
cross-validation technique. The experiments are 
implemented using a Python programming language. A set 
of evaluation measures such as recall, precision, accuracy, 
and F-score are calculated from the classification results. 
These measures are obtained using the equations listed 
below: 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
𝑇𝑃

ሺ𝑇𝑃  𝐹𝑁ሻ
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

ሺ𝑇𝑃  𝐹𝑃ሻ
 (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
ሺ𝑇𝑃  𝑇𝑁ሻ

ሺ𝑇𝑃  𝐹𝑃  𝑇𝑁  𝐹𝑁ሻ
 (4) 

𝐹1-𝑠𝑐𝑜𝑟𝑒 ൌ 2 ∗ ൬
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

൰ (5) 

 
, where TP, FP, FN, and TN are the true positive, false 
positive, false negative, and true negative cases, 
respectively.  

The classification confusion matrix is used to get the 
number of true and false positive and negative classified 
inputs. The results of other evaluation measures are also 
computed from the confusion matrix and compared with the 
results of current related work developed for CKD detection 
on the same dataset. The mean and standard deviation of 
area under curve (AUC) measure is employed to evaluate 
the classification results of the 10-fold cross-validation 
technique. 
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The number of training and test instances for holdout 
technique is shown in Figure 3. It can be seen that the 
number of instances in the training set for CKD and Not-
CKD is imbalanced. That means the model should be able 
to be effective and robust against imbalanced class problem. 

 
Fig. 3: The number of training and test instances for holdout technique. 

 
After applying the trained XGBoost model on test set, 

the number of instances that are correctly classified is 
presented in Figure 4. 

 
Fig. 4: Confusion matrix for test classification using XGBoost model. 

 
From the confusion matrix output in Figure 4, Table 2 

exhibits the evaluation results of the other measures. It 
illustrates that the model’s accuracy attains 99.6% and 
0.996 for weighted average recall, precision, and F1-score 
measures. Also, we can see that the model achieves 1.000 
of recall for classifying the CKD test instances and 1.000 
for classifying the Not-CKD test instances. 

 

Table 2: Results of evaluation measures for XGBoost model 

Class Name Recall Precision F-score Accuracy 
CKD 1.000 0.989 0.995 

99.6% Not-CKD  0.993 1.000 0.997 
Weighted Avg. 0.996 0.996 0.996 

 
To certify the achieved performance of the proposed 

approach, the average mean and average standard deviation 
of the 10-fold test examples are computed in Table 3. It can 
be shown that the model reaches 99.902% of average mean 
AUC and 0.00710 of average standard deviation AUC. The 
high value of the average mean AUC confirms that the 

model has a high performance to differentiate between the 
negative and positive classes. 

 
Table 3: Results of mean AUC measure for test examples using a 10-

fold cross-validation technique 

Fold Number Test-AUC-mean Test-AUC-std 

1 99.155% 0.02956 
2 99.903% 0.01958 
3 99.966% 0.01417 
4 99.995% 0.00414 
5 99.999% 0.00207 
6 99.999% 0.00150 
7 100.000% 0.00000 
8 100.000% 0.00000 
9 100.000% 0.00000 

10 100.000% 0.00000 
Average  99.902% 0.00710 

 

For more analysis, the obtained accuracy result is 
compared with the current related studies. Figure 5 shows a 
comparative analysis of the proposed approach against the 
performance of related work methods.   

 
Fig. 5. Accuracy results of XGBoost model compared to the other models 

in the recent related work. 

 

From the comparison in Figure 5, we can see that the 
proposed approach using XGBoost model achieves a high 
accuracy result (99.6%) compared with the classification 
models in the recent related work. The XGBoost works well 
due to its ability in-build features to manipulate missing 
data and its regularization capability to handle unbalanced 
datasets. 
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5. Conclusion and Future Work 

Detecting chronic kidney disease (CKD) from patients’ 
data using classification algorithms has become a 
significant task for aiding the doctors to identify the disease 
early and ensure that patients receive an effective course of 
treatment. In this paper, a diagnosis approach for detecting 
CKD using extreme gradient boosting (XGBoost) model is 
developed to assist the experts for exploring preventive 
measures early. The approach is trained and evaluated on a 
public dataset acquired from the UCI repository. The 
dataset consisted of 24 features for 400 patients. The mean 
and most frequent values are used respectively for replacing 
the missing values. The experimental results are conducted 
using a 10-fold cross-validation and holdout test techniques. 
Also, a number of evaluation measures are used for 
obtaining the performance results. The results exposed that 
the XGBoost model of the proposed approach achieves a 
competitive high result compared with the recent related 
work on the same dataset. It attained 99.9% of AUC mean 
for the 10-fold cross-validation test and 99.6 of accuracy for 
60% holdout test from the dataset to diagnosis the CKD 
effectively. In a future work, a large size dataset will be 
collected to provide the applicability of deep learning 
models for CKD detection. Also, they will be compared 
with this research approach in terms of accuracy and F1-
score.   
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