
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

747

Manuscript received September 5, 2022
Manuscript revised September 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.9.98

Flow-based Reconnaissance Attacks Detection in SDN-based
Environment

Abdulmohsen Alsaedi, Adel Alshamrani, and Talal Alharbi
 aalsaedi0063.stu@uj.edu.sa asalshamrani@uj.edu.sa tralharbi@uj.edu.sa
College of Computer Science and Engineering, University of Jeddah, Saudi Arabia

Summary
Software-Defined Networking (SDN) is an optimistic network
architecture that seeks to provide increased flexibility via splitting
forwarding functions (data plane) and network logic (control
plane). This break feeds the logical centralization of controls, an
overview of the global network, scalability, ease of
programmability, and scope for pristine SDN-compliant services.
In recent years, SDN in industry networks has continually grown.
In the meantime, new challenges have appeared in different
categories, such as security, management, and scalability. This
paper will elaborate on the complex security issues existing in
current SDN architecture, especially reconnaissance attacks,
where attackers generate traffic to explore existing services, assets,
and overall network topology. The proposed flow-based detection
solution utilizes, in a slow-rate manner, OpenFlow counters to
detect reconnaissance traffic techniques in the SDN environment.
The results show that the proposed solution can detect
reconnaissance attacks.
 Keywords:
software-defined networking; reconnaissance attack; flow-based.

1. Introduction

Traditional networks have evolved the carriers
between network devices in the digital package structure,
employing traditional networks responsible for routing data
and addressing. Although traditional networks are widely
adopted, they are not easy to manage. Operators must
configure every device in the network separately, which
uses low-level commands to express and design high-level
network policies and the complexity and difficulty of
configuration. The network environment should endure the
faults of the dynamics to fit for changes. Response and
automatic reconfiguration do not exist in current traditional
networks. It is challenging to enforce and implement the
required policies in a traditional network environment [1].
Traditional networks are complicated in that they merge the
control plane and the data plane. The control plane is
responsible for transferring network traffic, and the data
plane is responsible for forwarding traffic. This integration
does not provide flexibility or innovation in the future,
especially with the existing spread of technologies; thus, it
is simply not achievable in practice [2] [3].

Software-defined networking (SDN) separates the control
plane’s vertical integration from routers and the data plane
from switches. Fig. 1 shows the difference between
traditional networking and SDN. This separation of the
control plane and data plane switches the forwarding and
controlling of the network operating system’s logical
controller. This split simplifies policy execution and
network configuration, reconfiguration, and evolution [4].
The SDN networking model gives network programming
increased scalability and provides more networking
capabilities. SDN is present in all areas of networks,
beginning with data centers, the Wide area network (WAN)
and wireless network, and now the 5G network. The
International Data Corporation (IDC) published that the
annual rate of increase worldwide SDN market and
investment growth was 54 percent from 2014 to 2020 [5].

Although SDN is fast-growing, security is critical and
has become an attractive target for attackers, who try to
penetrate the networks in several ways, the foremost step of
which is the reconnaissance attack. This attack aims to
collect and gather information about the targeted
infrastructure network services, resources, network devices,
network topology, and data exfiltration through methods
such as scanning the port, packet sniffers, and sweeping the
ping to exploit and use the information to plan for other
dangerous attacks, such as denial-of-service attacks. The
attacker exploits the network vulnerabilities that he
discovered through reconnaissance attacks. Reconnaissance
attacks are common and threaten networks quietly, which is
difficult to detect. Some works have shown that
reconnaissance attacks are applicable through SDN
environments [6] [7] [8]. There are many methods and
techniques for reconnaissance attacks, including evaluating
the response from target network devices by using port
scanning, user datagram protocol (UDP) ports, internet
control message protocol (ICMP) ping, traceroutes, and
footprinting.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

748

Fig. 1 Traditional networking versus software-defined networking

The data and control plane separators in SDN may

introduce new reconnaissance attacks. However, different
reconnaissance attacks against SDN-based environments
can be categorized based on how the attacker performs the
attack. For example, he/she may measure the packet travel
time to understand the existing network topology or may
send probing packets to identify existing security solutions
such as Network Intrusion Detection Systems (NIDS).

The reconnaissance attacks target scans of various
ports within a short period. Moreover, existing next-
generation firewalls and network intrusion detection
mechanisms can easily detect normal scan mode. However,
advanced reconnaissance attacks scan targets slowly to
bypass suspicion and avoid detection from the SDN
network’s existing security solutions, which means that an
attacker does not send probe packets permanently. Instead,
attackers send probe packets to a host. Therefore, it is more
challenging to detect slow port scans. Since scanning is an
essential phase within a typical attack scenario, it is vital to
detect slow port scans to identify new attacks. This type of
reconnaissance attack aims to gather information about the
deployment of SDN to plan and prepare for another
dangerous attack. Accordingly, the detection of slow port
scans must consider intrusion and insider threat detection.

This paper tackles the challenge of detecting slow port
scans in an SDN network. Reconnaissance attacks do not
cause network damage but continually alert announcers of
attacks that might cause severe damage. Hence, our
outcome contributes to detecting attacks in an early initial
stage during the scanning phase. Reconnaissance attacks are
problems in which attackers exploit vulnerabilities in an
SDN environment. We aim to use SDN features to
counteract reconnaissance attacks. To summarize, our
contributions are as follows:
 We propose a detection approach attack model to detect

slow-rate reconnaissance attacks in SDN environments.
 The detection approach uses OpenFlow features by

analyzing flow entry counter and identifying
suspicious traffic.

 The paper is organized as follows. The background is
covered in Section 2. Section 3 describes the related work.
Section 4 presents the proposed flow-based detection
approach and the experimental setup covered in Section 5.

Results and discussion are explained in Section 6.
Conclusions and future work are discussed in Section 7.

2. Background

2.1 Software-Defined Networking (SDN)

The separation of the control plane and data plane can
be recognized by using a well-defined programming
interface between the SDN control plane (controller) and
data plane (switches). The controller controls the data
plane’s components via an application programming
interface (API). The most typical example of an API is
OpenFlow [9], [10], which consists of one or more tables
containing the rules for handling data packages. Every rule
has a traffic match and implements certain actions, such as
modifying dropping on traffic according to the rules on the
controller application. An OpenFlow switch can inform the
controller; it works like a switch, firewall, router, load
balancer, and traffic shaper [11].

2.2 OpenFlow Counters

Every OpenFlow counter supports a flow table and
flow entry, which helps in counting and measuring the
statistical information, such as byte count, received packets,
and matched packets. Moreover, the time of the flow entry
refers to the duration installed in the SDN switch, and this
must be tracked with double precision. In addition, the
OpenFlow must count every packet employing that flow,
even if the flow entry contains no impact on the packet or if
the packet is eventually dropped or transmitted to the
controller. Counters are the primary component of
OpenFlow statistics and collect different characteristic
attributes of the pipeline [12]. We expanded the OpenFlow
table [10] to include two more columns that cover the units
and description of OpenFlow counters. There are additional
counters in Open vSwitch version 1.6 or later that are
included in Table 1.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

749

Table 1: Detailed explanation of the counters

2.3 Types of Reconnaissance Attacks

The first step for any attack on networks is reconnaissance,
which involves the collection of information about the
network to plan the attack. This may include information
such as the IP addresses of devices, servers, and ports [13].
Reconnaissance attacks can be categorized into the
following:
 Packet Sniffers

A particular device that catches data addressed to other
devices and keeps it for later analysis by spying on
transit traffic between network nodes.

 Scanning the Port
 A sequence of traffic sent by an attacker that attempts
to discover which computer services are related with a
certain prominent port number. There are three types of
scanning [14]. The first scan is horizontal, where a
source host scans numerous hosts on a particular port.
The second is a vertical scan, where a source host scans
a target host with several ports. Finally, a mixed scan is
a mix of horizontal and vertical scans.

 Sweeping the Ping
A scanning technique utilized by attackers to define a
range of IP addresses to map live hosts.

 Queries Regarding Internet Information
 An attacker can exploit DNS queries to discover the
domain owners and IP addresses in that domain.

 Time-based reconnaissance
 These types of reconnaissance attacks target SDN
environments that aim at flow table size, such as time-based
reconnaissance. This attack helps the attacker collect and
gather information about SDN resources. Many works have
addressed how reconnaissance attacks can be conducted in
an SDN environment [15], [16], [17],[18].

3. Related Works

In previous studies of recent years, several studies
contained a definition of threat models reconnaissance
attack on Software Defined Network (SDN), and they
proposed several detection solutions.

Neu et al. [19] created a lightweight intrusion
prevention system (LIPS) to enhance the performance of
SDN networks. Port scan attacks, which frequently target
SDN network devices, were detected and mitigated by the
suggested LIPS methodology presented in this paper.
Collection module (CM), detection module (DM), and
prevention module (PM) were the stages in the proposed
LIPS technique. The purpose of CM was to gather data
resources from different network switch devices and then
use that data to analyze and identify port scan attacks
through predetermined criteria. To achieve detection, flow
information was stored in the database. Neu et al.
determined stored flows that included a decreased number
of packets that illustrated port scanning flows. They
collected the selected flows by source, destination IP, and
destination port and obtaining the number of flows with
similar addresses of source and destination. The scan was
classified as horizontal, vertical, or mixed based on packet
counts, source, destination address information, and
destination ports. The source IP was added to a blacklist to
determine if a scan attack was detected. All flows addresses
stored on this list are dropped. As a result of the observed
port scan attacks, the PM module places a set of rules on the
SDN controller to mitigate these attacks.

Adel Alshamrani [20] eliminated reconnaissance
attacks in SDN by proposing an SDN-based solution using
OpenFlow counters, distributed firewall applications, and
security policies. A distributed firewall application is
qualified to track the flow based on pre-defined states that
would observe the connection to critical nodes by malicious
activity. Counters such as the number of received packets
on each flow-matched packet, number of bytes, etc. can be

Uint Description Action

active_count Number of active entries Required

lookup_count Number of packets looked up in table Optional

matched_count Number of packets that hit table Optional

n_packets Number of packets that have matched the entry.
Optional

n_bytes
The total number of bytes from packets that have

matched the entry Optional

duration_secs
The time, in seconds, that the entry has been in the

table. Required

duration_nsec
The time, in nanoseconds, that the entry has been

in the table. Optional

idle_timeout
Number of seconds of inactivity that occurs when the

flow expires. Optional

hard_timeout
Number of seconds, regardless of activity, occurs for

the flow to expire. Optional

idle_age Number of seconds passed without packets. Optional

 rx_packets Number of received packets Required

tx_packets Number of transmitted packets Required

rx_bytes Number of received bytes Optional

tx_bytes Number of transmitted bytes Optional

rx_dropped Number of packets dropped by RX Optional

tx_dropped Number of packets dropped by TX Optional

rx_errors Number of receive errors. Optional

 tx_errors Number of transmit errors. Optional

rx_frame_err Number of frame alignment errors Optional

rx_over_err Number of packets with RX overrun Optional

rx_crc_err Number of CRC errors Optional

collisions Number of collisions Optional

duration_sec Time port has been alive in seconds Required

duration_nsec Time port has been alive in nanoseconds Optional

 tx_bytes Number of transmitted bytes Required

tx_packets Number of transmitted packets Optional

tx_errors Number of packets dropped due to overrun Optional

 duration_sec Time queue has been alive in seconds Required

 duration_nsec Time queue has been alive in nanoseconds Optional

ref_count Number of flows or groups that directly forward

to this group Optional

packet_count Number of packets processed by group Optional

byte_count Number of bytes processed by group Optional

 duration_sec Time group has been alive in seconds Required

 duration_nsec Time group has been alive in nanoseconds Optional

 packet_count Number of packets processed by bucket Optional

 byte_count Number of bytes processed by bucket Optional

 ref_count
Number of flows or groups that directly reference this

meter Optional

packet_in_count Number of packets in input Optional

 byte_in_count Number of bytes in input Optional

duration_sec Time meter has been alive in seconds Required

duration_nsec Time meter has been alive in nanoseconds Optional

packet_band_count Number of packets in band Optional

byte_band_count Number of bytes in band Optional

Counter

Hard Timeout

Idle Timeout

Idle Age

Per Group Bucket: includes the collection of actions to be utilized before forwarding to the port

Per Group: define a group of ports as one entity for forwarding packets.

Per Queue: scheduled packets based on their priority on an output port

Per Port : defines the port where packets enter and leave the OpenFlow pipeline as physical, logical, or reserved ports.

Per Flow Entry: is a component in a flow table operated to correspond and process packets.

Per Flow Table : set of the pipeline that includes flow entries .

Per Meter Band : utilized to describe the behavior of the meters on packets for different coverages of the meter measured rat

Duration (nanoseconds)

Received Packets

Transmitted Packets

Received Bytes

Receive Overrun Errors

Receive CRC Errors

Collisions

Duration (seconds)

Duration (nanoseconds)

Transmit Packets

Transmitted Bytes

Receive Drops

Transmit Drops

Receive Errors

Transmit Errors

Receive Frame Alignment Errors

Per Meter: allow OpenFlow to execute rate‐limiting, simple QoS procedures restraining a group of flows to a selected bandwid

Reference Count (active entries)

Packet Lookups

Packet Matches

Received Packets

Received Bytes

Duration (seconds)

Input Packet Count

Input Byte Count

Duration (seconds)

Duration (nanoseconds)

In Band Packet Count

In Band Byte Count

Byte Count

Duration (seconds)

Duration (nanoseconds)

Packet Count

Byte Count

Flow Count

Transmit Bytes

Transmit Overrun Errors

Duration (seconds)

Duration (nanoseconds)

Reference Count (flow entries)

Packet Count

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

750

employed to determine the purpose behind generating a
flow., for example, a probing packet that is used to infer
whether there is a match for such a flow can be effortlessly
determined by counting the number of bytes and the number
of received packets on the same flow. This application
predicts meager stats from the probing packet compared to
a legitimate flow. The proposed SDN-based solution result
can detect and mitigate this type of attack at an early stage.

Ono et al. [21] developed a port scan detector based on
statistics to locate hosts producing a large number of packet-
ins. Switches are taught to transmit statistics signals to a
controller when abnormal activity is observed. Flow entry
is put on the host’s blacklist in the event of detection. The
detection algorithm differs from their previous work [22].
They used the k-Nearest Neighbor (kNN) algorithm; this
may not be accurate with more complicated data patterns,
but it is helpful for basic time-series data. Thus, they
employed a new detection method named spectral residual
(SR). SR is quick, unsupervised, and does not require
manual labeling. The results verify that the proposed
method can detect port scans with lower overhead when
compared to existing methods.

Patil et al. [23] developed a model to protect SDN
networks against malicious Transmission Control Protocol
(TCP) – synchronize (SYN) attacks. The model involves
sending TCP-FIN packets to validate the legitimacy of the
attacker’s IP address. When an attack is identified, the port
scanner employs generated TCP- Finish (FIN) packets to
verify the suspicious host’s source IP address and port
number. If it is deemed malicious, the flow is blacklisted
and deleted from the flow table.

From our literature review, we believe that flow-based
approaches are still a potential solution for detecting
malicious flows. By reviewing the related works, we found
that the following points are not handled correctly in many
studies. A summary of the research gaps from the above
research articles is presented as follows:
 One metric is used, such as the rate of incoming traffic.

Thus, in peak hours, incoming traffic grows; therefore,
conducting false positives on legitimate traffic flows
traffic increases, thus leading to false positives on
legitimate traffic.

 Statistical strategies require the processing many
mathematical models and extensive network traffic.

 Some studies need time to provide early detection, the
amount of traffic to be processed, and the target
accuracy of the strategy.

 Some studies cannot detect slow scanning.

4. The Proposed Flow-based Detection
Approach

4.1 Attack Detection

This section presents the research methodology. In
addition, we present the steps that will be followed during
the research to achieve the research objectives.

4.1.1 An Approach

Due to the characteristic of a reconnaissance attack, it
might be challenging to detect, mainly when a threat actor
follows a clever technique and crafts special packets to
evade in-place security solutions such as using slow rate
scanning. However, we utilize SDN-based features in the
data and control planes to detect this attack. We utilize the
data plane to capture significant statistics from OpenFlow
counters [10]. These OpenFlow counters in Table. 1 support
flow table and flow entry in counting and measuring the
statistical information such as bytes count, received packets,
matched packets, and the amount of time of the flow entry,
a port, etc. Therefore, our approach considers various
counters to look for suspicious traffic, as shown in Table. 2.
We monitor each connection that belongs to the current
flow or new flow. Algorithm 1 depicts the steps and
procedures that collect statistics from selected counters and
then extract and compare some features of all monitored
connections. For recall, some counters are enabled and
required by default. However, other counters are optional.
In our approach, we use some counters that we believe
would help us in enriching our decision.
The main challenge is to analyze and identify suspicious
traffic in a lot of traffic records. This can be done by
monitoring the user’s behavior and relationship with this
attack. To discover the OpenFlow counters that can use to
identify suspicious traffic, we experimented with
monitoring the behavior of users in the network with normal
traffic and suspicious traffic. We took the challenge by
considering the ability of the attacker to scan and gather the
information of the SDN environment, especially with a slow
rate scan.

4.1.2 System design

An SDN-based network employs the system model
that includes an SDN controller. SDN switches Open
Switch, end-hosts (e.g., hosts), Firewalls/routers. The SDN
application layer implements the proposed detection
mechanism. Moreover, it contains the network component’s
data forwarding and routing functions. Our detecting
solution, as shown in Fig. 2, will be in the application layer
and consists of two parts monitoring user behavior and
detection methodology will monitor the counters, and if

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

751

suspicious traffic is detected, our solution will identify the
attacks according to the sequence described in Fig. 3.

Fig. 2 Proposed detection architecture

As shown in Fig. 3, at the beginning of the sequence,

the controller can reactively and proactively take actions
like adding, updating and deleting flow entries in flow
tables using the OpenFlow switch protocol. For example,
according to configuration, if a flow table does not contain
a match, the OpenFlow switch may pass the packet to the
controller over OpenFlow channels so that the controller
can take appropriate action. In the next stage, our proposed
approach will monitor OpenFlow traffic in the network by
collecting OpenFlow statistics. The traffic becomes normal
if it does not meet our proposed approach conditions. In
comparison, the traffic becomes an attack when the
conditions are fulfilled.

Fig. 3 The sequence of the proposed flow-based detection approach

4.1.3 Selected counters and detection algorithm

We can determine the suspicious traffic in the network
based on scan behavior by selecting the number of packets
that have matched the entry counter, the number of the
destination port, and idle age. We use the source and
destination IP addresses.
 Our proposed detection, as shown in Algorithm 1 one
divided into two stages. The first stage, obtaining all the
flows, collects the information statistics from the switch
every 1 second to avoid delay in detecting scanning in
normal mode and stores incoming information in a temp
filet to apply the algorithm. Neu et al. [19] have set the
number of packets determined to be a port scan when the
number of packets is equal to or less than five, which three
packets represent the handshake of a TCP connection SYN,
SYN/ Acknowledgment (ACK), and ACK, and the event of
re-transmission adds tow tolerance packets. According to
the monitoring and analysis of the attacker's behavior in the
experiment, there is traffic with six packets that was
scanning the server, while at the same time the attacker was
sending normal traffic, and this is the case that we consider
six packets as scan traffic and then the algorithm checks if
the number of packets is between one to six. To improve
detection and accuracy algorithm will check if the idle age
counter is between 1 to 10 seconds, which describes that
there is no traffic in the flow. Therefore, a low stream
without traffic is considered suspicious. The second stage is
to fulfill the condition of scanning more than one
destination port to detect the attacker, even if the attacker
scans on one host, by utilizing the flow number of the
destination port. One port scan is not defined as an attack to

reduce false positives. If the flow meets the first and second
stage’s requirements, the traffic will become attack traffic.

To reduce false positives detection, our solution categorizes
Low, Moderate, and High users’ behavior as shown in Table.
2, representing Normal, Suspicious, and Attack from a
traffic classification perspective. Traffic becomes a normal
or low risk if it does not meet any of the algorithm
conditions, and traffic becomes suspicious if the number of
packets is less than six and the idle age is between 1 to 10.
Moreover, suspicious host machine changes to attack traffic
when the scanning occurs for more than one destination port
in one host.

Algorithm 1 Flow-based Reconnaissance Attacks Detection

Input Collect selected OpenFlow Features (n_packets ,idle_age , tp_dst nw_src ,nw_dst) every 1 seconds.

Output OpenFlow counters initialization to determine the IP source and destinations of reconnaissance traffic

1 If n_packets ≥ 6 AND idle age = 1 to 10

2 Store to temp file as a dataset for monitoring. And if the following port condition is met, the traffic is an attack.

3 If the number of scanned ports (tp_dst) > 1 for 1 (nw_dst) OR scanned 1 port (tp_dst) for many (nw_dst)

 OR the number of scanned ports (tp_dst) > 1 for many (nw_dst)

4 Ignore responses based on the direction or if the detected attacker is a former victim,

 then ignore and take this as a response.

5 Then

6 Add Source IP address nw_Src as an attacker

7 Add Destination IP address nw_dst as victims

8 Set detection time in seconds

8 else

9 Normal SDN Forwarding

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

752

Table 2: Classification of monitoring traffic behavior

Risk Level
Traffic

classification
Description

High Attack

The algorithm condition
is met, the number of
packets is less than six,
the idle age is between 1
to 10, and it meets
horizontal, vertical,
and mixed scans
requirements

Moderate Suspicious

The algorithm condition
is met, the number of
packets is less than six,
and the idle age is
between 1 to 10

Low Normal
The algorithm condition
has not met the
requirements.

5. Experiment

5.1 Experiment Setup

To create a virtual network and experiment with
SDN networks using OpenFlow, we used Mininet [24].
The network contains four hosts, one controller, a
switch, and a server. We use the POX OpenFlow SDN
controller [25] written in Python [26], as shown in
Table. 4, h1 is defined as a server for h2, h3, and h4 to
act as clients and to conduct experiments. We used
Iperf [27] tool to produce traffic to measure the
throughput between the two destinies in one or both
paths.

Fig. 4 Environmental SDN network topology

Moreover, Iperf has server and client functionality that
we will utilize in the experiment and assume Iperf

traffic acts as normal traffic. We used Nmap as a
reconnaissance tool .h4 scans the entire network to
slow suspicious rate traffic. We use scan timing (-T0)
to (-T2) for IDS evasion. It is a polite method to delay
the scan to utilize less bandwidth and target network
resources. We used a script to gather information from
the OpenFlow counters that classify under per flow
entry.

Table 3: Environmental setup

VM Name IP address Type

c0 127.0.0.1 POX Controller

s1 127.0.0.1 OVS Switch

h1 10.0.0.1 Server

h2 10.0.0.2 Normal host

h3 10.0.0.3 Normal host

h4 10.0.0.4 Attacker host

5.2 Attack model and scenarios

 5.2.1Attack model
We have made the following assumptions about the
attack model:
 The attacker plans to discover and collect information

about the deployment of SDN infrastructure.
 The attacker can access compromised machines inside

the network.
 The existing security solutions in the network detect

high-rate reconnaissance attacks and prevent
information gathering.

 The attacker uses slow-rate reconnaissance attacks to
avoid detection by the existing security solutions in the
network.

 The attacker scans the server, such as a web server.
We used to scan ports, one of the reconnaissance
attack types by Nmap time options as shown in Table.
5, to make the attack more challenging to be detected.

Table 4: Reconnaissance attacks setting.

Tool Nmap

Scan Packet rate.
The difference
between the two
packets sent

 (T0) paranoid,300 seconds.

 (T1) sneaky,15 seconds.

 (T2) polite, up to 0.4 seconds.

 (T3) normal, up to 0.1seconds

Experimental
Duration

60 minutes

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

753

Moreover, we used timing (T2 to T0) to slow-rate scan
attacks to avoid detection by the existing security
solutions in the network. Furthermore, we use T3 for
the normal scan. We used Nmap TCP SYN Scan (-sS)
for the port scanning method supported by Nmap and
Versions Scans (-sV) to allow version detection
probes of those ports to determine running services.
The mentioned scan techniques performed using , e.g.,
“Nmap -sS -sV -T1 10.0.0.1-3” “Nmap -sS -sV -T2
10.0.0.1-3” and “Nmap -sS -sV -T3 10.0.0.1-3”
commands That's what makes it mixed scan it scans
more than one port for multiple hosts. The delay
between two consecutive scan packets is 5 minutes in
T0 scan mode is practically impossible, as the
scanning operation of 65536 ports for just one IP
address would take almost 228 days. Moreover, for
proof of concept for our proposed solution, we chose
to scan two devices and select ports, e.g., 8080 and 80.
We use for example “Nmap -sS -sV -p8080,80 -T0
10.0.0.1-2” command. And we consider vertical,
mixed, and horizontal for testing.

5.2.2 Scenarios

To evaluate the accuracy of our detection
algorithm. The algorithm was tested in several
scenarios, according to the case of normal scanning
and gradually slow scanning, up to five minutes
between each packet, as follows:
 (T0) paranoid scanning,300 seconds.
 (T1) sneaky scanning, 15 seconds.
 (T2) polite scanning, up to 0.4 seconds.
 (T3) normal scanning, up to 0.1seconds

6. Results and Discussion

In this subsection, we show the detection results for
various types of timing scanning ports. The program reads
and collects information from the counters every 1 second
and issues a text output file, as shown in Fig. 5, an example
of an output file screenshot.

Fig. 5 Screenshot showing the results file after detecting the attacker with

his targets, and the time of detection is in seconds.

6.1 Paranoid scanning (T0)

The proposed application is Detected in the case
of a very slow scan that sends a packet every five
minutes within 10.3167 minutes in the case of mixed
scans. Vertical scans were detected within 15.1667
minutes. Horizontal scans were detected within
10.2833 minutes. It is normal for this detection delay
because scanning is slow.

6.2 Sneaky scanning (T1)

In the case of mixed scans, the detection
application was able to detect the source of the scan in
T1 mode within 47 seconds. Vertical scans were
detected within 63 seconds. While Horizontal scans
were detected within 46 seconds ,it is close to the time
that was detected in the case of mixed scans .

6.3 Polite scanning (T2)

When testing the scan in T2 mode, the results are
shown that 18 seconds was enough to detect the
attacker in the mixed mode, which is a note that the
faster the port scan, the less the detection time. 17
seconds through vertical scans moreover 16 seconds
for horizontal scans. Almost all results are of the same
duration in the case of polite scanning.

6.4 Normal scanning (T3)

We tested the detection application in a normal
scan that was able within 16 seconds to detect the
source of all types of port scans .
As shown in Fig. 6, due to slow traffic, vertical
scanning took a little longer to detect the attacker in
T0 and T1 modes. While there was not much
difference in the detection times between all types of
scans in T2 and T3.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

754

Fig. 6 The time it took for the proposed solution to detect the attacker in
several Nmap scanning modes (T3-T0).

From the previous explanation of the results, our
proposed approach proved with high accuracy to
identify the attacker and the victims in the several
types of scanning. We made a comparison with related
works in several respects, as you can see in Table 5.

Table 5: Comparison with related works in terms of slow scanning

Proposed framework Slow Scanning SDN features

Lightweight IPS [19} No Openflow
statistics

Spectral Residual [21] No Packet-In
Messages

Our proposed approach Yes Openflow
statistics

7. Conclusion and future work

Reconnaissance attacks seek information about the
targeted infrastructure network services, resources, and
network devices to plan for further dangerous attacks. SDN
splits the control plane’s vertical integration from routers
and the data plane from switches. The data and control plan
separators in SDN introduce reconnaissance attacks. One
type of reconnaissance attack is port scanning which
discovers the SDN environment. To detect a reconnaissance
attack, we monitored the attacking traffic behavior using
SDN features and then used it in the detection stage. Unlike
other solutions, our proposed can detect slow rate scans. We
experimented with testing our real-time proposed solution
by using a realistic virtual network. The results show that
the proposed solution can detect reconnaissance attacks.

In future work, we plan to develop our work with the
other SDN controllers and extend the benefit of OpenFlow
counters for detecting reconnaissance attacks.

References
[1] Benson, T., Akella, A., & Maltz, D. A. (2009, April).

Unraveling the Complexity of Network Management. In
NSDI (pp. 335-348).

[2] Raghavan, B., Casado, M., Koponen, T., Ratnasamy, S.,
Ghodsi, A., & Shenker, S. (2012, October). Software-defined
internet architecture: decoupling architecture from
infrastructure. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks (pp. 43-48)

[3] Ghodsi, A., Shenker, S., Koponen, T., Singla, A., Raghavan,
B., & Wilcox, J. (2011, November). Intelligent design
enables architectural evolution. In Proceedings of the 10th
ACM Workshop on Hot Topics in Networks (pp. 1-6).

[4] Kim, H., & Feamster, N. (2013). Improving network
management with software defined networking. IEEE
Communications Magazine, 51(2), 114-119

[5] Antonella Corno, Taking control of the programmable
network. .2017. [Online]. Available:
https://www.sdxcentral.com/articles/contributed/taking-
control-programmable-network/2017/02/

[6] Seungwon Shin and Guofei Gu. Attacking software-defined
networks: A first feasibility study. In Proceedings of the
second ACM SIGCOMM workshop on Hot topics in
software defined networking, pages 165-166. ACM, 2013.

[7] Heng Cui, Ghassan 0 Karame, Felix Klaedtke, and Roberto
Bifulco. On the fingerprinting of software-defined networks.
IEEE Transactions on Information Forensics and Security,
11(10):2160-2173, 2016.

[8] John Sonchack, Anurag Dubey, Adam J Aviv, Jonathan M
Smith, and Eric Keller. Timing-based reconnaissance and
defense in software-defined networks. In Proceedings of the
32nd Annual Conference on Computer Security Applications,
pages 89-100. ACM, 2016.

[9] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.,
Peterson, L., Rexford, J., ... & Turner, J. (2008). OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2), 69-74.

[10] Specification, Open Flow Switch. “Open Networking
Foundation ONF.” Technical Specification (2015).

[11] Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C.
E., Azodolmolky, S., & Uhlig, S. (2014). Software-defined
networking: A comprehensive survey. Proceedings of the
IEEE, 103(1), 14-76.

[12] McKeown, N. (2015). OpenFlow switch specification
version 1.5. 1, Open Networking Foundation, Palo Alto, CA.
USA, Tech. Rep. TS-025.

[13] Uma, M., and Ganapathi Padmavathi. “A Survey on Various
Cyber Attacks and their Classification.” Int. J. Netw. Secur.
15.5 (2013): 390-396.

[14] Sperotto, Anna, et al. "An overview of IP flow-based
intrusion detection." IEEE communications surveys &
tutorials 12.3 (2010): 343-356.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

755

[15] Seungwon Shin and Guofei Gu. Attacking software-defined
networks: A first feasibility study. In ProCeedings of the
seCond ACM SIGCOMM inserted new security policy, at the
time 0.7 second all the workshop on Hot topiCs in software
defined networking, pages 165- traffic now are permitted
following PDSP.166. ACM, 2013

[16] Heng Cui, Ghassan O Karame, Felix Klaedtke, and Roberto
Bifulco. On the fingerprinting of software-defined networks.
IEEE TransaCtions on Information ForensiCs and SeCurity,
11(10):2160—2173, 2016.

[17] John Sonchack, Anurag Dubey, Adam J Aviv, Jonathan M
Smith, and Eric Keller. Timing-based reconnaissance and
defense in software-defined networks. In ProCeedings of the
32nd Annual ConferenCe on Computer SeCurity
AppliCations, pages 89-100. ACM, 2016.

[18] Yong Li and Min Chen. Software-defined network function
virtualiza-tion: A survey. IEEE ACCess, 3:2542-2553, 2015.

[19] Neu, Charles V., et al. "Lightweight IPS for port scan in
OpenFlow SDN networks." NOMS 2018-2018 IEEE/IFIP
Network Operations and Management Symposium. IEEE,
2018.

[20] Alshamrani, Adel. “Reconnaissance attack in sdn based
environments.” 2020 27th International Conference on

Telecommunications (ICT). IEEE, 2020..

[21] Ono, Daichi, et al. "A proposal of port scan detection method

based on Packet‐In Messages in OpenFlow networks and its

evaluation." International Journal of Network Management
31.6 (2021): e2174.

[22] Ono, Daichi, et al. "A design of port scan detection method
based on the characteristics of packet-in messages in
openflow networks." 2020 21st Asia-Pacific Network
Operations and Management Symposium (APNOMS). IEEE,
2020

[23] Patil, Jitendra, et al. "Port scanning based model to detect
Malicious TCP traffic and mitigate its impact in SDN." 2021
2nd International Conference on Secure Cyber Computing
and Communications (ICSCCC). IEEE, 2021.

[24] Lantz, Bob, Brandon Heller, and Nick McKeown. “A
network in a laptop: rapid prototyping for software-defined
networks.” In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, p. 19. ACM, 2010.

[25] Fernandez, Marcial. “Evaluating OpenFlow controller
paradigms.” In ICN 2013, The Twelfth International
Conference on Networks, pp. 151-157. 2013

[26] G. F. Lyo, Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scanning
Paperback, Nmap.org, Jan. 2009

[27] Sanner, Michel F. “Python: a programming language for
software integration and development.” J Mol Graph Model
17.1 (1999): 57-61.

[28] IPERF, Networking with iperf .[Online]. Available:
http://openmaniak.com/iperf.php. Accessed December 29,
2013.

