
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

1

Manuscript received October 5, 2022
Manuscript revised October 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.10.1

Centroid and Nearest Neighbor based Class Imbalance
Reduction with Relevant Feature Selection using Ant
Colony Optimization for Software Defect Prediction

Kiran Kumar B.1, Jayadev Gyani,*, Bhavani Y.3, Ganesh Reddy P.4, Nagasai Anjani Kumar T5
bkk.it@kitsw.ac.in, je.gyani@mu.edu.sa, yerram.bh@gmail.com, B18IT009@kitsw.ac.in, B18IT037@kitsw.ac.in

1,3,4,5Department of Information Technology,
Kakatiya Institute of Technology & Science, Warangal, INDIA

1https://orcid.org/0000-0002-5326-6289
2Department of CS, College of Computer and Information Sciences,

Majmaah University, AlMajmaah, 11952, Saudi Arabia
 *Corresponding author: je.gyani@mu.edu.sa

Abstract
Nowadays software defect prediction (SDP) is most active
research going on in software engineering. Early detection of
defects lowers the cost of the software and also improves
reliability. Machine learning techniques are widely used to create
SDP models based on programming measures. The majority of
defect prediction models in the literature have problems with
class imbalance and high dimensionality. In this paper, we
proposed Centroid and Nearest Neighbor based Class Imbalance
Reduction (CNNCIR) technique that considers dataset
distribution characteristics to generate symmetry between
defective and non-defective records in imbalanced datasets. The
proposed approach is compared with SMOTE (Synthetic
Minority Oversampling Technique). The high-dimensionality
problem is addressed using Ant Colony Optimization (ACO)
technique by choosing relevant features. We used nine different
classifiers to analyze six open-source software defect datasets
from the PROMISE repository and seven performance measures
are used to evaluate them. The results of the proposed CNNCIR
method with ACO based feature selection reveals that it
outperforms SMOTE in the majority of cases.
Keywords:
Ant Colony Optimization; Class imbalance; Feature selection;
Oversampling

1. Introduction

Software Defect Prediction (SDP) is the most
significant activity in the testing phase of the software
development process. SDP identifies modules that are
prone to failure and must be tested thoroughly. Although
the SDP is most successful during testing, predicting
which modules will fail is not always easy. The number
of defects in a software module is proportional to the
quality of the software. As a result, defect prediction is
crucial in determining software quality. Though testing is
required to re- duce the number of defects, the drawback
is it requires more number of human resources in terms of
time. In the early stages of testing, accurate identification

of defective modules can help reduce overall testing time.
Statistical methods have been phased out in favor of
classification models, which divide the modules into two
categories: defective and non-defective. After the model
has been trained, it is tested on unknown modules and its
performance is evaluated using performance measures. As
a result of class imbalance problem, the machine learning
model gets biased towards the majority class resulting in
misleading accuracy. An imbalanced dataset contains
fewer samples from one class than from other class. The
former class is referred as minority class, and the other
class is called as the majority class. The classification
algorithm cannot make accurate prediction when the
dataset is imbalanced due to lack of enough knowledge
about minority class. The balanced datasets with equal
number of defective and non-defective records is required
to get accurate results. An uneven distribution of values in
class la- bel characteristics could be one of the causes of
poor classification algorithm accuracy with imbalanced
datasets. As a result, the classifier’s performance is biased
toward the majority class.

In the literature, various sampling approaches are
proposed to balance imbalanced datasets. The balanced
datasets improve the accuracy of the classification
algorithms. Undersampling, Oversampling, and
Synthetic data generation are the most common methods
for dealing with imbalanced data.

Undersampling reduces certain samples from the
majority class in order to balance the data. Undersampling
is both informative as well as random. Informative under-
sampling selects samples from the majority class based on
a pre-specified criterion whereas random undersampling,
select samples randomly and discards them. For
informative undersampling, the algorithms Easy Ensemble
and Balance Cascade are popular. The disadvantage of
undersampling method is the loss of information.
Oversampling is the process of reproducing samples from

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

2

the minority class in order to achieve symmetry among the
non-defective and defective records and balance the data.
Oversampling is also both informative and random.
Informative oversampling is a technique that generates
synthetic minority class samples based on a set of criteria.
Random oversampling balances data by randomly
oversampling minority class samples. Oversampling
eliminates the problem of data loss. It does, however, have
a data duplication problem. The Synthetic Minority
Oversampling Technique (SMOTE) is a benchmark
technique for dealing with this imbalance problem. In this
technique, new synthetic data samples will be created by
randomly selecting a minority class sample and its nearest
neighbor samples. In this paper, a new method is proposed
for balancing defective and non-defective samples called
Centroid and Nearest Neighbor based Class Imbalance
Reduction (CNNCIR). To overcome the problem of high
dimensionality Ant colony optimization (ACO) technique is
used which selects only the relevant features which have a
high contribution to improve the classification model’s
performance. The models are trained using a range of
machine learning classifiers, and the performance of our
new method was compared to that of SMOTE.

2. Related work

To solve the problem of class imbalance and high
dimensionality in software defect prediction, many
approaches have been proposed by the researchers. Re-
sampling methods can be used to balance datasets by
eliminating data samples from majority class or
reproducing the data samples from minority class. In the
literature, random undersampling, random oversampling,
and variants of these methods are often used. These
procedures, on the other hand, run the risk of erasing or
duplicating valuable information.

GNV RamanaRao [1] reviewed the literature on
developing defect prediction models in software
engineering using machine learning and statistical methods.
To address the issue of class imbalance, [2] suggested a
novel Neighborhood based Under-Sampling (N- US)
approach. This project aims to demonstrate the efficacy of
this approach in predicting damaged modules with high
accuracy. To reduce information loss, the technique N-US
under samples the dataset to enhance the visibility of
minority data points while limiting the excessive deletion
of majority data points.

The Jensen-Shannon divergence was utilized by [3]
to automatically determine the most comparable source
project to the target project. The project’s class imbalance
is then improved using a grouped synthetic minority

oversampling approach (SMOTE).
Parameters for the probable range of tolerable noise

for baseline models are proposed in [4]. They proposed a
model for SDP, which outperforms other methods and has
the highest noise tolerance. Mohammad AmimulIhsan
Aquil [5] assessed a variety of software defect prediction
models, including ensemble, clustering, and classification
techniques, and found that Ensemble strategies gave
consistency in high accuracy prediction.

Comparison of the results with seven recently used
bio-inspired algorithms and metaheuristics for feature
selection, including Ant Colony Optimization, Multi-
Objective Evolutionary Algorithm, using the Genetic
Algorithm (GA), Bee Search, Harmony Search, Bat
Search, Cuckoo Search, Tabu Search, and Particle Swarm
Optimization (PSO) as baseline algorithms is given in [6].
MLMNB-SDP framework is presented in [7], which
includes a statistical hypothesis testing method for
detecting software metrics with substantial conditional
dependencies.

A new approach is suggested [8], in which the error
database is retrieved and then used as input. In the next step,
the clustering process clusters the collected input (data).
The modified C-Mean Algorithm is used for this. As a
result, the data is grouped. The clustered data is
subsequently grouped using an efficient classification
technique. As a result, we employ a hybrid nervous
system. As a result, there are software flaws, and the
MCS technique is used to reduce them. A framework for
software fault prediction based on CFS and SMOTE
techniques is suggested in [9]. This system was built
using Decision Tree (DT) and Bayesian Networks (BN)
classifiers.

The effect of data sampling on Just-In-Time fault
prediction was investigated in [10]. The ratio of class
imbalance dataset and the performance of the SDP model
have a substantial negative relationship, according to our
findings. Second, while most software fault data is not as
imbalanced as one might assume, even a little amount of
imbalance is enough to damage classical learning
performance.

Concise information on the most recent trends and
breakthrough in ensemble learning for software defect
prediction is presented in [11], as well as a foundation for
future improvements. Synthetic minority oversampling
technique (SMOTE) to balance the dataset and predicted
the severity at the system and component levels is used
in [12]. To deal with the two independent projects with
heterogeneous feature sets, Boosted Relief Feature
Subset Selection (BRFSS) is developed [13].
Datasets are created using the Rapid Keyword Extraction
(RAKE) technique to extract the topics or keywords from

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

3

developer descriptions of bug reports [14]. A systematic
literature evaluation is conducted in [15], which identifies
most recent research trends in field of SDP by reviewing
papers published between 2016 and 2019.

Stable SMOTE-based oversampling ways to reduce
the unpredictability in each stage of SMOTE-based
oversampling techniques is presented in [16]. In this
approach, defective instances are chosen and K-neighbor
instances are selected using distance measure and
uniformly distributed interpolation.

EMWS is created in [17], using the whale
optimization algorithm (WOA), a meta-heuristic search-
based feature selection algorithm, which successfully
identify less number of and closely related representative
features. Second, they built WSHCKE, a unified defect
prediction predictor that uses CNN, a kernel extreme
learning machine (KELM), a hybrid deep neural network
method, for integration of the features that are selected into
CNN abstract deep semantic features. This method
enhances prediction performance by leveraging KELM’s
strong classification capacity. A filter-based feature
selection research and synthesis using a variety of search
methods and algorithms is given in [18]. In addition, five
filter-based feature selection strategies are investigated
using five different classifiers on datasets acquired from
NASA’s repository.
A high-dimensional sampling space to generate new
minority class samples is used in [19]. They used scaling
constraint and random over-sampling scope constraint by
differentiating m-class samples to synthetically generate
new samples.
The state of the art in software defects using Machine
Learning algorithms is presented in [20]. In [21], the
authors discovered that prior to applying deep learning for
defect prediction, oversampling is both effective and
necessary.
The study of [22] tries to determine the best classifier for
classification of faults. In their study, they considered five
categories of classification methods from which they used
twenty one classifiers on five open source applications.
MATLAB’s classification LearnerApp was used to test
multiple classification models. Over KNN, Regression,
and Tree, the work proposes the usage of Ensemble and
SVM algorithms. Among the twenty-one classifiers,
ensemble methods and SVM performed well compared to
other classifiers. A feature selection method based on
clustering technique named Relief-based clustering (RFC),
was proposed [23]. Two unique ways for learning from
imbalanced data, one for severely imbalanced data and the
other for moderately imbalanced data, with the goal of
improving predicting accuracy over the minority class is
introduced in [24].

The work of [25], attempts to give a comparative
study of several techniques for dealing with class
imbalances. They conducted a comprehensive
experimental investigation which compares the
efficiency of various class imbalance procedures. They
evaluated the classification algorithms using various
performance metrics like AUC, Precision, K-fold Cross-
validation, recall and execution time. In this work, they
discovered that for ensemble classification models like
XGBoost, AdaBoost and Random Forest with
oversampling followed by undersampling performs well.

A comprehensive overview of machine learning and
the problem of unbalanced data is provided in [26]. In
addition, they devised a method for predicting heart
disease, cervical cancer, and chronic kidney disease
which combines a softmax regression algorithm with an
upgraded sparse auto encoder. To tackle the problem of
class imbalance, [27] suggested a solution utilizing a
Machine Learning approach for Prediction of Software
Defects. A novel resampling approach called kernel
density estimation-based variation sampling (DVS) is
proposed by generating new minority defective samples
[28]. More than half of the Eigen values in each new
sample are directly inherited from the current faulty
samples, but some will be altered.

OS-CCD, a new oversampling method suggested by
[29], is a new notion called classification contribution
degree. OS-CCD eliminates oversampling from noisy
points while following the spatial distribution
characteristics of original data on the class boundary.
Soft computing based machine learning techniques to
develop an efficient approach is used in [30]. This
approach helps to predict, optimize the features and
efficiently learn the features.

3. Methodology

Our proposed method, Centroid and Nearest
Neighbor based Class Imbalance Reduction (CNNCIR),
generates new samples depending on the centroid
calculated using all minority class samples. The general
methodology of our approach is given below.

Let Di = s1, s2, s3,..., sn, where si (1≤i≤n)is the ith sample
of the ith module in the imbalanced dataset. Each si having
‘m’ features, where each feature represents one software
metric and a class label attribute. The class label indicates
whether or not the corresponding module is defective. A
non-defective module has a class label attribute value of
zero, whereas a defective module has a value greater than
zero. We converted the values greater than zero to one

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

4

because as per binary classification algorithms, class
label attribute should contain either one or zero. Figure 1
depicts the proposed framework.

3.1. Centroid and Nearest Neighbor based

Class Imbalance Reduction Algorithm

(CNNCIR)

The imbalanced dataset Di is partitioned into
two groups depending on the value of class label.
The minority class is the group with the fewest
samples, as shown in Figure 2, whereas the
majority class is the group with the more number
of samples. Let the number of nearest neighbors
be ‘k’ (5 in our study) and ‘n’ be the difference of
samples between two classes. The centroid (C) is
calculated from the minority class samples, and K-
nearest neighbors of the centroid are identified by
using Euclidean distance measure. ‘n/k’ is the
number of synthetic samples to be generated
between the centroid and each nearest neighbor.
After that, the associated scalar differences
between the centroid (C) and its nearest neighbors
are computed. The nearest sample is added to the

scalar multiplication of a random number whose
value is between 0 and 1 and its associated
difference to obtain a new sample. This process is
carried out for the remaining nearest neighbors
also. To balance the minority and majority classes,
the created synthetic samples are appended to the
minority class.

Fig. 1. CNNCIR Framework

Fig. 2. Demonstration of CNNCIR with minority and majority classes

Algorithm1: Centroid and Nearest Neighbor based
Class Imbalance Reduction Algorithm (CN NCIR)

Input: Di be the Imbalanced Dataset, A1, A2, A3, ..., Am
be the features (software metrics) with a class label and
s1 , s2 , s3, . . . , sn are samples of dataset
Output: Balanced Dataset (BD)

Step-1: Divide the imbalanced dataset Di into two
partitions based on value of class label
which represent non-defective and
defective classes

Step-2: Minority class is represented as Dmi, which has
less number of samples related to a class
Step-3: Majority class is represented as Dmj, which has
more number of samples related to a class
Step-4: Centroid (C) is calculated for Dmi using C
=average (A1), average (A2), average (A3), . . . ,
average (Am)
Step-5: For every sample si in Dmi

Step-5.1: Compute the distance between si and C
using Euclidian distance

Step-6: Arrange the samples in non-decreasing order of
their distance
Step-7: Select first ‘k’ samples (‘k’ nearest neighbors)
denoted as nn0, nn1, nn2, . . . , nnk−1
Step-8: Calculate the difference between those ‘k’

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

5

samples and centroid(C) and let them be d0, d1, d2,. . . ,
dk−1
Step-9: Generate ‘n/k’ random numbers rand0, rand1,
rand2, . . . rand (n/k)−1, between 0 and 1, where n/k =
(|Dmj|-|Dmi|)/k such that defective and non-defective
samples get balanced

Step-9.1: For every random number randj
Step-9.1.1: A new sample nnp + randj * dr is
generated
Step-9.1.2: Add newly generated sample to Dmi

3.2 ACO based Feature Selection Algorithm
The ant colony optimization algorithm is modeled after
how ants look for food. Different ants take different paths
from their colony to the food source and then return to
their nest in the process of looking for food by leaving a
chemical (pheromone) on the path. In comparison to the
ants which travelled the longest path, the ants which
walked the shortest path may be able to reach the nest
more quickly. As time passes, the chemical that has been
deposited on the path may evaporate, resulting in more
pheromone being deposited on the shortest path than on

the longest path. In this way the behavior of ants can be
used to find the optimal or shortest path. In this paper, we
simulated ant behavior for the selection of relevant subset
of features i.e., the ones which contributed the most to
improve the model’s performance. The ACO based
feature selection algorithm is given below.

1. Algorithm 2 Feature Selection using ACO

Input: D be the Dataset, A1, A2, A3, ..., Am be the features
(software metrics)
ph: Array[n] initialized to zero, which contains
pheromone values
ρ: Denotes evaporation ratio of Pheromone.
(Considered the value as 0.25)
Output: m features which are relevant and lies
between

௡

ଶ
 and n

Step-1: Randomly ‘m’ number of features are
selected from D consisting ‘n’ features.
Store these features in another dataset DS.

Step-2: Split DS into training and test set.
Step-3: Calculate the accuracy (ACp) using logistic
regression classifier on DS.
Step-4: Pheromone values of ph related to ‘m’
features are incremented by 1.

Step-5: Perform the step-5 for MaxIteration (User
input) times

Step-5.1: Once again, randomly ‘m’ features are
selected from D and Store these features
in dataset DS.

Step-5.2: Split DS into training and test set.
Step-5.3: Calculate the accuracy (ACc) using

logistic regression classifier on DS.
(ACc represents current accuracy and
ACp represents previous accuracy)

Step-5.4: if (ACc ≥ ACp) then Pheromone value of
ph related to ’m’ features are
incremented by 1 and remaining n-m
features decremented by ρ else
Pheromone values of ph related to ‘m’
features are decremented by ρ

Step-6: ph array is sorted in descending order.
Step-7: Select first ‘m’ pheromone values from ph and
retrieve corresponding features from dataset D.

4. Experimentation and Results

In our proposed method, we chose six open-source
software defect datasets from PROMISE repository that
were related to defect prediction. Table 1 shows the list of
datasets as well as the percentages of class imbalance. All
of the data sets have higher numbered features and include
a variety of features.

Table 1. Experimentation datasets

4.1 Performance Measures

There are various performance evaluation metrics used
for classification models are given in eq. 1 to 6.

1. Accuracy: It calculates the percentage of true

findings among all cases.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
 ሺ1ሻ

2. Precision: It calculates percentage of

expected positives compared to all positives.

The standard deviation of a set of variables

is used to calculate it.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 ሺ2ሻ

Dataset Defective
Class

Non-Defective
Class

Minority
Class%

CM1 42 285 12.84

KC2 107 415 20.49

KC3 36 158 18.55

MC2 44 81 35.2

PC1 61 644 8.65
PC3 134 943 12.44

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

6

3. Sensitivity or Recall: It’s a metric for

determining how many positives are

accurately categorized. It refers to how close

a measurement is to a given value.

𝑆𝑒𝑛𝑐𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ 𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 ሺ3ሻ

4. F-Measure: It is a harmonic mean or can also

be defined as average of precision and recall.
𝐹 െ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒

ൌ
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑅𝑒𝑐𝑎𝑙𝑙
 ሺ4ሻ

5. Specificity: It is a measure to correctly identify

true negatives.
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

ൌ
𝑇𝑁

𝑇𝑁 ൅ 𝐹𝑃
 ሺ5ሻ

6. Geometric mean: It measures the
performance of classifier against minority and
majority classes.

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑒𝑎𝑛
ൌ √𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ሺ6ሻ

7. AUC (Area under ROC Curve): An

evaluation metric for binary classification

problems is the “area under the receiver

operator characteristic (ROC) curve”. This

AUC curve summarizes the ROC curve and

is used to define a classifier’s ability to

distinguish between positive and negative

classifications. The AUC curve indicates how

well a classifier can distinguish between

classes. The higher the AUC curve, the better

the classifier’s ability.
Comparison of seven performance metrics
between proposed CNNCIR technique and
SMOTE technique using nine classifiers with
Mean ±SD is listed in Table 2.

Table 2. Comparison of seven performance metrics between
SMOTE and proposed CNNCIR techniques using nine
classifiers with Mean±SD

Classifier/

Measures

ACCURACY

SMOTE CNNCIR

AdaBoost 0.85±0.04 0.86±0.10

Decision Tree 0.82±0.10 0.86±0.08

Extra Tree 0.81±0.10 0.86±0.06

Gradient Boost 0.53±0.07 0.50±0.02

KNN 0.75±0.08 0.85±0.10

Logistic

Regression

0.78±0.03 0.87±0.05

Naïve Bayes 0.63±0.08 0.81±0.11

Random Forest 0.88±0.10 0.90±0.05

SVM 0.65±0.10 0.85±0.06

Classifier/

Measures

PRECISION

SMOTE CNNCIR

AdaBoost 0.82±0.05 0.87±0.13

Decision Tree 0.80±0.12 0.87±0.07

Extra Tree 0.77±0.12 0.87±0.06

Gradient Boost 0.53±0.06 0.50±0.02

KNN 0.71±0.09 0.85±0.16

Logistic

Regression

0.81±0.08 0.85±0.07

Naïve Bayes 0.73±0.15 0.81±0.13

Random Forest 0.86±0.11 0.92±0.07

SVM 0.73±0.11 0.85±0.08

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

7

The results reveal that the proposed CNNCIR technique
outperforms the SMOTE algorithm for all seven performance
measures listed in Table 3. CNNCIR outperforms the SMOTE
algorithm when employed with the nine classification techniques
mentioned above. Table 3 shows a comparison of the
improvement of the CNNCIR algorithm vs the SMOTE
algorithm utilizing 9 classifiers and 7 performance indicators. In
Table 3 each row represent the number of data sets in CNNCIR
that outperforms SMOTE in terms of performance. As seen in the
first row, CNNCIR outperforms SMOTE in 5 out of 6 datasets
when using the AdaBoost (AB) classifier. For the Decision Tree,
5 out of 6 datasets indicate performance improvement with
CNNCIR over SMOTE, while 1 dataset shows equivalent
performance with CNNCIR over SMOTE. In five out of six
datasets, CNNCIR outperforms the SMOTE method employing
ExtraTree. For the GradientBoost, 2 out of 6 datasets show
performance improvement with CNNCIR over SMOTE method,
while 1 dataset shows the same performance with CNNCIR over
SMOTE algorithm. For the K-nearest neighbor, CNNCIR
outperforms the SMOTE method in six out of six datasets. For

Classifier/

Measures

RECALL

SMOTE CNNCIR

AdaBoost 0.87±0.08 0.86±0.05

Decision Tree 0.84±0.10 0.85±0.12

Extra Tree 0.89±0.05 0.85±0.07

Gradient Boost 0.56±0.09 0.51±0.06

KNN 0.81±0.14 0.85±0.06

Logistic

Regression

0.75±0.07 0.89±0.04

Naïve Bayes 0.51±0.22 0.85±0.14

Random Forest 0.90±0.09 0.88±0.05

SVM 0.44±0.25 0.85±0.09

Classifier/

Measures

F-Measure

SMOTE CNNCIR

AdaBoost 0.84±0.05 0.86±0.09

Decision Tree 0.82±0.12 0.86±0.09

Extra Tree 0.82±0.09 0.86±0.06

Gradient Boost 0.54±0.07 0.50±0.04

KNN 0.75±0.10 0.84±0.11

Logistic

Regression

0.77±0.04 0.82±0.12

Naïve Bayes 0.56±0.06 0.81±0.09

Random Forest 0.88±0.10 0.90±0.05

SVM 0.53±0.18 0.85±0.07

Classifier/

Measures

Specificity

SMOTE CNNCIR

AdaBoost 0.82±0.03 0.86±0.16

Decision Tree 0.80±0.10 0.88±0.05

Extra Tree 0.74±0.15 0.87±0.06

Gradient Boost 0.51±0.07 0.50±0.05

KNN 0.69±0.11 0.86±0.14

Logistic

Regression

0.81±0.08 0.86±0.07

Naïve Bayes 0.74±0.36 0.77±0.22

Random Forest 0.87±0.10 0.92±0.06

SVM 0.85±0.09 0.84±0.08

Classifier/

Measures

Geometric Mean

SMOTE CNNCIR

AdaBoost 0.85±0.04 0.86±0.11

Decision Tree 0.82±0.10 0.86±0.08

Extra Tree 0.81±0.10 0.86±0.06

Gradient Boost 0.53±0.07 0.50±0.02

KNN 0.74±0.08 0.85±0.10

Logistic Regression 0.81±0.09 0.87±0.04

Naïve Bayes 0.52±0.21 0.80±0.12

Random Forest 0.88±0.09 0.90±0.05

SVM 0.59±0.14 0.85±0.06

Classifier/

Measures

AUC

SMOTE CNNCIR

AdaBoost 0.85±0.05 0.86±0.10

Decision Tree 0.82±0.10 0.86±0.08

Extra Tree 0.81±0.09 0.86±0.06

Gradient Boost 0.54±0.07 0.50±0.02

KNN 0.75±0.08 0.85±0.10

Logistic

Regression

0.78±0.04 0.87±0.05

Naïve Bayes 0.63±0.08 0.81±0.11

Random Forest 0.88±0.09 0.90±0.05

SVM 0.65±0.10 0.85±0.06

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

8

the Logistic Regression, CNNCIR improves performance in 6 out
of 6 datasets. For the Nave Bayes, 5 out of 6 datasets indicate
performance improvement with CNNCIR over SMOTE, while 1
dataset shows the same performance with CNNCIR over SMOTE.
For the Random Forest, two out of two datasets show
performance improvement with CNNCIR over SMOTE
algorithm, whereas two datasets show the same performance with
CNNCIR over SMOTE algorithm. In terms of SVM accuracy,
CNNCIR outperforms the SMOTE method in six out of six
datasets. In the same way, the second row compares precision,
the third row compares recall, the fourth row compares F-
Measure, the fifth row compares specificity, the sixth row
compares geometric mean, and the seventh row compares AUC.

Table 4 shows how the CNNCIR method outperforms the
SMOTE algorithm when utilizing various classifiers. Table 4
shows the output enhancement of CNNCIR over the SMOTE
method for each classifier. The accuracy of KNN, LR, and SVM
output is higher. The precision of DT and SVM output is higher.

In recall, LR and NB output is higher. In F-Measure, DT, NB,
and SVM produce higher results. The specificity of DT, ET, and
KNN is high. In the Geometric mean, KNN, NB, and SVM
produced greater results, while in the AUC, KNN, LR, NB, and
SVM produced higher results.

Table 3. Comparison of SMOTE with CNNCIR considering nine classifiers and seven performance metrics for six datasets. (X represents number of
datasets exhibiting enhanced performance against SMOTE, Y represents number of datasets exhibiting same performance against SMOTE)

Classifier/

Measures
AB DT ET GB KNN LR NB RF SVM

X Y X Y X Y X Y X Y X Y X Y X Y X Y

ACCURACY 5 0 5 1 5 0 2 1 6 0 6 0 5 1 2 2 6 0

PRECISION 5 0 6 0 5 0 2 0 5 0 3 1 5 1 5 1 6 0

RECALL 2 0 3 1 1 0 1 0 5 0 6 0 6 0 1 0 5 1

F-MEASURE 5 0 6 0 4 0 1 0 5 0 5 0 6 0 2 1 6 0

SPECIFICITY 5 0 6 0 6 0 2 1 6 0 5 0 2 0 5 1 3 0

GM 5 0 5 1 5 0 2 1 6 0 5 0 6 0 2 2 6 0

AUC 5 0 5 1 5 0 2 1 6 0 6 0 6 0 2 3 6 0

Table 4. Performance improvement (in percentage) with CNNCIR vs SMOTE using nine different classifier

Classifier/
Measures

ACCURACY PRECISION RECALL F-MEASURE SPECIFICITY GM AUC

AB 83.3 83.3 33.3 83.3 83.3 83.3 83.3

DT 83.3 100 50 100 100 83.3 83.3

ET 83.3 83.3 16.6 66.6 100 83.3 83.3

GB 33.3 33.3 16.6 16.6 33.3 33.3 33.3

KNN 100 83.3 83.3 83.3 100 100 100

LR 100 50 100 83.3 83.3 83.3 100

NB 83.3 83.3 100 100 33.3 100 100

RF 33.3 83.3 16.6 33.3 83.3 33.3 33.3

SVM 100 100 83.3 100 50 100 100

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

9

5. Conclusion

In this research, a novel approach is proposed for
handling class imbalance in software defect prediction
called Centroid and Nearest Neighbor based Class
Imbalance Reduction (CNNCIR), which takes into
account the dataset’s distribution aspects. To choose
relevant characteristics from the datasets, ant colony
optimization based feature selection is utilized. To produce
synthetic data, the suggested method employs a centroid
and nearest neighbor methodology. Several experiments
using the suggested approach are carried out on six openly
accessible public datasets. The obtained results using the
CNNCIR approach compared with SMOTE results. In
terms of seven standard prediction measures, our
experiment findings show that the suggested approach
CNNCIR outperforms SMOTE. When used nine machine
algorithms, CNNCIR outperforms SMOTE. The presented
approach can be expanded to provide defect prediction
across several projects (CPDP).

Acknowledgments
Jayadev Gyani would like to thank Deanship of Scientific
Research at Majmaah University for supporting this work
under Project Number No. R-2022-313. The author is also
thankful to the anonymous reviewers for their useful
comments.

2. References

[1] RamanaRao, GNV., Balaram, VVSSS. &
Vishnuvardhan, B. (2018) Software defect prediction: past
present and future. International Journal of Computer
Engineering & Technology (IJCET), 9(5):116–131.

[2] Somya, G. (2021) Handling class-imbalance with KNN
(Neighborhood) under-sampling for software defect prediction.
Artificial Intelligence Review: 1-42

[3] Shang, Zheng., Jinjing, Gai., Hualong, Yu., Haitao Zou.
& Shang, Gao. (2021) Training data selection for imbalanced
cross-project defect prediction. Computers & Electrical
Engineering, 94

[4] Sushant Kumar, Pandey. & Anil Kumar, Tripathi. (2021)
An empirical study toward dealing with noise and class imbalance
issues in software defect prediction. Soft Computing, 25: 13465–
13492

[5] Mohammad AmimulIhsan, Aquil. & Wan Hussain,
Wan Ishak. (2020) Predicting software defects using machine
learning techniques. International Journal of Advanced Trends in
Computer Science and Engineering, 9(4): 6609 – 6616

[6] Asad, Ali. & Gravino, Carmine. (2021) Software fault

prediction using bio-inspired algorithms to select the features to
be employed: an empirical study. 29thInternational Conference
on Information Systems Development

[7] Harzevili., Shiri, Nima. & Alizadeh, Sasan H. (2021)
Analysis and modeling conditional mutual de- pendency of
metrics in software defect prediction using latent variables.
Neuro Computing 460:309-330

[8] SrinivasaKumar, C., RangaSwamy, Sirisati. &
Srinivasulu, Thonukunuri. (2021) Software defect prediction
using optimized cuckoo search based nature-inspired technique.
Smart Computing Techniques and Applications. Springer: 183-
192.

[9] Abdullateef, Balogun., Fatimah B Lafenwa, Balogun.,
Hammed, Mojeed. & Fatima Enehezei Hamza, Usman. (2020)
Data sampling-based feature selection framework for software
defect pre- diction. The International Conference on Emerging
Applications and Technologies for Industry 4.0. Springer

[10] Haitao, Xu., Ruifeng, Duan., Shengsong, Yang. & Lei,
Guo. (2021) An empirical study on data sampling for just-in-time
defect prediction. International Conference on Artificial
Intelligence and Security. Springer.

[11] Faseeha, Matloob., Taher, M, Ghazal., Nasser, Taleb.,
Shabib, Aftab., Munir, Ahmad. & Muham- mad, Adnan Khan.
(2021) Software defect prediction using ensemble learning: a
systematic literature review. IEEE Access, 9: 98754-98771

[12] Shubhra, Goyal Jindal. & Arvinder, Kaur. (2019) Bug
severity prediction using class imbalance problem. International
Journal of Recent Technology and Engineering (IJRTE), 8(4):
2687-2695

[13] Kalaivani, N. & Beena, R. (2020) Boosted relief feature
subset selection and heterogeneous cross project defect prediction
using firefly particle swarm optimization. International Journal of
Recent Technology and Engineering (IJRTE), 8(5): 2605-2613

[14] Jayalath, Ekanayake. (2021) Bug severity prediction
using keywords in imbalanced learning environment. International
Journal of Information Technology and Computer Science, 3:53-
60

[15] Faseeha, Matloob., Shabib, Aftab., Munir, Ahmad.,
Adnan Khan, Muhammad., Fatima, Areej., Iqbal, Muhammad.,
Alruwaili, Wesam Mohsen. & Elmitwally, NouhSabri. (2021)
Software defect prediction using supervised machine learning
techniques: a systematic literature review. Intelligent Automation
& Soft Computing, 29(2): 403-421

[16] Shuo, Feng., Jacky, Keung., Xiao, Yu., Yan, Xiao. &
Miao, Zhang. (2021) Investigation on the stability of SMOTE-
based oversampling techniques in software defect prediction.
Information and Software Technology, 139

[17] Kun, Zhu., Shi, Ying., Nana, Zhang. & DandanZhun.
(2021) Software defect prediction based on enhanced metaheuristic

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

10

feature selection optimization and a hybrid deep neural network,
Journal of Systems and Software, 180

[18] Ha, Th Minh Phuong., Le Thi My Hanh. & Nguyen
Thanh, Binh. (2021) A Comparative Analysis of Filter-Based
Feature Selection Methods, Journal of Research and Development
on Information and Communication Technology, 1(6):1-7

[19] Guo, Shikai., Dong, Jian., Li, Hui. & Wang, Jiahui. (2021)
Software defect prediction with imbalanced distribution by radius-
synthetic minority over-sampling technique. Journal of Software:
Evolution and Process 33(1)

[20] Ramesh, Ponnala. & Reddy, CRK. (2021) Software
defect prediction using machine learning algorithms: current state
of the art. Solid State Technology. 64(2)

[21] Rahul, Yedida. & Menzies, Tim. (2021) On the value of
oversampling for deep learning in software defect prediction. IEEE
Transactions on Software Engineering. 2021:1-11

[22] Inderpreet, Kaur. & Arvinder, Kaur. (2021) Comparative
analysis of software fault prediction using various categories of
classifiers. International Journal of System Assurance Engineering
and Management 12(1):520-535

[23] Xu, Xiaolong., Chen, Wen. & Wang, Xinheng. (2021)
RFC: A feature selection algorithm for software defect prediction.
Journal of Systems Engineering and Electronics. 32(2): 389-398

[24] Zheng, Jianming., Wang, Xingqi., Wei, Dan., Chen,
Bin. & Shao, Yanli. (2021) A novel imbalanced ensemble
learning in software defect predication. IEEE Access 9:86855-
86868

[25] Amit,Singh., Ranjeet Kumar, Ranjan. & Abhishek,
Tiwari. (2021) Credit card fraud detection under extreme
imbalanced data: a comparative study of data-level algorithms.
Journal of Experimental & Theoretical Artificial Intelligence. 1-
28

[26] Ebiaredoh-Mienye, Sarah., Esenogho, Ebenezer. &
Swart, Theo. (2021) Improved machine learning methods for
classification of imbalanced data

[27] Satya Srinivas, Maddipati. & Srinivas, Malladi. (2021)
Machine learning approach for classification from imbalanced
software defect data using PCA & CSANFIS. Materials Today:
Proceedings

[28] ZYuqing, Zhang., Xuefeng, Yan. & Arif Ali, Khan.
(2020) A kernel density estimation-based variation sampling for
class imbalance in defect prediction. IEEE International
Conference on Big Data and Cloud Computing

[29] Jiang, Z., Pan, T., Zhang, C. & Yang, J. (2021) A new
oversampling method based on the classification contribution
degree. Symmetry 13(2):1-13

[30] Mahesh Kumar, Thota., Francis H, Shajin. & Rajesh, P.

(2020) Survey on software defect prediction techniques.
International Journal of Applied Science and Engineering 17(4):
331-344

B. Kiran Kumar received the Ph. D in

Computer Science and Engineering from
JNTU, Hyderabad in 2021. Working as an
associate professor in the Dept. of
Information Technology, Kakatiya Institute
of Technology & Science, Warangal. His
research interest includes Data Mining,
Machine learning, Software engineering.

JAYADEV GYANI is working as Assistant
Professor in the Department of Computer
Science at CCIS, Majmaah University,
Kingdom of Saudi Arabia. He received his
PhD in Computer Science from University
of Hyderabad, India in 2009. His teaching
experience is 25 years. His research interests
include software engineering, big data

analytics, distributed computing, machine learning algorithms,
and their applications. He is a member of ACM and senior member
of IEEE.

Y. Bhavani received the Ph. D in Computer
Science and Engineering from JNTU,
Hyderabad in 2020. Working as an associate
professor in the Dept. of Information
Technology, Kakatiya Institute of
Technology & Science, Warangal. Her
research interests includes Network Security
and Cryptography, Machine Learning.

Ganesh Reddy P received his Bachelor
degree from Dept. of Information
Technology, Kakatiya Institute of
Technology & Science, Warangal. His
research interests includes Data Mining and
Machine Learning.

Nagasai Anjani Kumar received his
Bachelor degree from Dept. of Information
Technology, Kakatiya Institute of
Technology & Science, Warangal. His
research interests includes Data Mining, Ne
twork Security and Cryptography and
Machine Learning.

