
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

230

Manuscript received October 5, 2022
Manuscript revised October 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.10.30

Reviewing And Analysis of The Deadlock Handling Methods

Enas E. El-Sharawy1* , Thowiba E Ahmed2, Reem H Alshammari3 ,
 eeelsharawy@iau.edu.sa ,teahmed@iau.edu.sa, ralshammari@iau.edu.sa
Wafaa Alsubaie 4 ,Norah Alqahtani 5 , Asma Alqahtani 6

 2180006511@iau.edu.sa, 2180001045@iau.edu.sa; 2180001191@iau.edu.sa
1,2,3,4,5,6 , Computer Science Department, College of Science and Humanities, Imam Abdulrahman Bin Faisal

University, P.O.Box 31961, Jubail, Saudi Arabia

Abstract
Objectives: The primary goal of this article is to compare the
multiple algorithms used for deadlock handling methods and then
outline the common method in deadlock handling methods.
Methods: The article methodology begins with introducing a
literature review studying different algorithms used in deadlock
detection and many algorithms for deadlocks prevented, recovered,
and avoided. Discussion and analysis of the literature review were
done to classify and compare the studied algorithms.
Findings: The results showed that the deadlock detection method
solves the deadlock. As soon as the real-time deadlock detection
algorithm is identified and indicated, it performs better than the
non-real-time deadlock detection algorithm. Our novelty the
statistics that we get from the percentages of reviewing outcomes
that show the most effective rate of 47% is in deadlock prevention.
Then deadlock detection and recovery with 28% finally, a rate of
25% for deadlock avoidance.
Keywords:
Operating System, CPU Management, Deadlock Handling
Methods, Deadlock Prevention, Deadlock Avoidance, Deadlock
Detection, And Recovery.

1. Introduction

Operating systems are like an interface between the
user and the computers. Without it, humans cannot manage,
control, and use computer systems and assist in allocating
resources such as memory, disk, files, and many of them,
which help solve the user's problems and make the system
usable effectively. To the CPU (the Central Processing
Unit), management is essential to achieve maximum CPU
usage by scheduling the CPU, allowing one process to use
the CPU. At the same time, there is a process waiting due to
a lack of resources [1]. Deadlock is one of the expected
severe problems in various operating systems and multi-
tasking programs [2]. Deadlock occurs when a process is
waiting. At the same time, another process holds a requested
resource, which awaits a resource from another process.
And therefore, none of the processes can run and release
retained resources in an operating system. So, if the process
cannot change its state indefinitely due to the use of
required resources by another process, the system becomes
deadlocked. Deadlocks are an unwelcome yet intriguing

condition of the system. Several variable conditions can
lead to deadlocks, which, as a result, make them highly
complicated and challenging to stop. Recovering from
deadlocks often has its difficulties, mainly since it is
difficult to re-establish the mechanism, complete broken
processes, and a comparable one before the deadlock.
Through resource trajectories and state diagrams, several
formalized approaches can forecast deadlocks. However, it
needs a strong.
There are three common strategies for dealing with a
deadlock: deadlock prevention, deadlock avoidance, and
deadlock recovery [2]. The built operating system and
highly effective synchronization algorithms limit their
occurrence [3] entirely. In this research paper, we have
surveyed deadlock. This paper is structured as follows (I)
Literature Selection Methodology, (II) Related Work, (III)
Discussion, and (IV) Conclusion.

2. literature selection methodology

Literature selection methodology is the methodology
that was followed in literature selection as follows:

A-The keyword search phase: The research articles were
searched in the Google Scholar database using the
following keywords: (1) Operating Systems (2) CPU
management (3) Deadlock Methods (4) Deadlock
avoidance (4) Deadlock recovery (5) Deadlock prevention.
The result of the research at this stage is 55 articles.

B- Abstract Filter phase: The abstract determines the
research articles relevant to the research at this stage.
The selection resulted in 32 articles on deadlock
avoidance, deadlock recovery, and deadlock
prevention.

2.1. Related work

In this section, the deadlock handling methods are
reviewed as follows:

2.1.1 Deadlock prevention

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

231

In [2], the researchers have considered deadlock one of
the most severe database problems, and if the platform is
distributed, the matter becomes more complex. The paper's
main goal was to improve other deadlock prevention
algorithms and propose the VGS algorithm, which prevents
deadlocks for system applications distributed by a dual-
commitment protocol. The transactions were carried out
through the pipeline method, effectively preventing
deadlocks. The mechanism reduces wait time for required
transactions and enables transactions to share the same set
of resources. The proposed algorithm eliminates the circular
wait state for the shared resource pool operations. Two
commitment protocols prevent wait and wait for states
without causing any low resource usage.

In [4], the researchers have considered the deadlock
problem more complex if the platform is distributed.
Therefore, it is essential to develop an effective control
system to improve system performance while preventing
deadlock. The paper's main objective is an algorithm
proposal to prevent deadlock end with the advent of grid
computing, prevent the problem of deadlock in the network
environment by resource availability, and ensure that all
available services in the network are used efficiently. The
technology applied is C-platform encryption; the AMD A6-
3420M APU is the processor used. The RAM is 4 GB, and
the operating system is Windows 7. The system provides an
improvement over other deadlock prevention algorithms [2],
while [4] using an algorithm had proposed to prevent a dead
end with the advent of grid computing. The results indicate
that the program code did run in the university lab and on
personal systems. It did implement using a particular
network simulation. The researcher recommends that many
experiments should be carried out to verify the results
obtained.

In [5], effective priority-based and voting algorithms
for deadlock prevention in a distributed environment are
introduced to solve distributed systems' concurrency and
starvation control problems. The authors in [7] provide
deadlock prevention mechanisms of grid computing, while
this study presents a solution for distributed systems against
the starvation and concurrency control problems. Besides
mentioning the characteristics of the priority-based and
voting algorithms and some novel features like
implementing non-maskable SJSF and interrupts
techniques for sharpening the search to pick the most
outstanding candidate for accessing the critical section (CS).
The introduced algorithms afford a better opportunity for
deadlock prevention by allowing one process in every CS.
It presents a fair chance to all the participating processes for
accessing CS.

In [6], the researchers have considered that shifting the
cloud computing model leads to disruptions to traditional
business models in the information and communication
sector. So, this paper aims to establish a standstill

prevention algorithm (n VM-out-1 PM) for resource
separation and virtual machine management. The algorithm
works on heterogeneous distributed platforms to reschedule
sourcing policies for resource specifications. The anti-
freeze algorithm has been implemented on a physical
machine server with an Intel E5-2603V3 processor and
16GB of memory. During the day, the RAM, CPU, and
complex drive data have been collected from the device's
physical servers every 4 hours. The proposed algorithm was
implemented using the Cloud Sim emulator. The results
showed that the anti-freeze algorithm has the best
performance and the most beneficial material resources. In
[4] and [6], they are similar in creating a deadlock algorithm
but in [4] in preventing deadlock with grid computing,
while [6] for resource separation and management in virtual
machines, on heterogeneous distributed platforms.

In [7], the authors have considered the Deadlock
problem. Multiple transactions can access one database
simultaneously through a concurrent transaction database
system. This allows different transactions to join the same
data object simultaneously. The author suggested the Petri
net model of the 2PL locking protocol for concurrent
transaction databases to solve this problem. Next, give the
2PL protocol's anti-deadlock algorithm. On this basis, a
shatter-resistant scheduling system provides using this
protocol. This technology is particularly suitable for
preventing deadlock in distributed concurrent transaction
databases. State equations are used to evaluate a correct
scheduling method to avoid stalemates and ensure the
smooth execution of simultaneous transactions and access
graphs. The main conclusion of this study is to prevent
stalemates, and this study addresses deadlocks. Compared
to [6], the device deals with inertia in cloud computing.

In [8], the deadlock problem can arise when multiple
processes try to access shared resources if some basic
synchronization mechanisms are adopted. Therefore, the
authors proposed a new solution to distributed transaction
services and several types of deadlocks. They have used
advanced replica and timestamp mechanisms to prevent
deadlocks. This approach uses existing lock-in policies with
replicas to solve foolproof deadlocks. The experimental
results showed that there is no dead end. A timestamp-based
restart policy is more convenient and outperforms similar
solutions to distribute resources globally. The proposed
mechanism does not include more precise control over
many locks, such as reciprocal and proprietary locks.
Unlike [7], the system deals with several types of locks. The
resource manager must handle standard locks with
particular care, but they require more careful consideration.

In [9], the authors have addressed deadlock control of
multithreaded software Dependence on Gadara nets. The
method they used is an iterative deadlock prevention policy
based on siphons. They have successfully figured out all the

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

232

false markings that reduce emptiable siphon and are
forbidden to avoid deadlocks.

In [10], the authors tackled the deadlocks problem in the
flexible manufacturing system (FMS). They have used an
improved deadlock prevention strategy that depends on
controlling to avoid deadlocks. The result has avoided all
false markings; hence, the deadlock issue improved. In
contrast with [9], the method was less complex due to the
enhancement as they figured out that siphons with more
resources can be controlled by managing those with fewer
resources.

In [11], the authors had a problem with the increasing
need for dynamic transmission parameters in modern
wireless communication standards. That caused the
efficiency of the traditional static scheduling method to
reduce by applying Odyn technology which proposes a
mechanism to prevent the deadlock resulting from attempts
to allocate buffers in limited memory. Using the Design
Space Exploration design tool, the results show that it can
combat deadlock in offline mode.

In [12], the authors have presented an innovative
design method based on PN to prevent FMS (Flexible
Manufacturing System) inertia's Deadlock by integrating
and implementing one-step forward and one-step
backward-looking algorithms and using the simplified
constant-based method. This method led to more permissive
behavior of the controlled closed-loop system. Both the [9]
and [11] deadlock algorithms; however, the first one uses a
combination of one-step forward and one-step backward
algorithms. While the second implements Odyn technology,
which proposes a mechanism to prevent deadlocks resulting
from attempts to allocate buffers in limited memory.

In [13], the authors have considered the problem of
deadlocks in production software. The authors' primary
technique for deadlock detection and prevention in
production software is the UNDEAD system. It also
proposes a new idea of "merging locks" to tentatively
prevent deadlock problems, providing a "band-aid" for
production software. The evaluation results show that the
UNDEAD system detects all known stalemates. In the study
[6], a new algorithm for deadlock prevention is. While [13],
the detection and prevention of deadlocks.

In [14], the authors have viewed a potential dilemma
and the lack of means for modifying information between
separate applications due to the complexity of a typical
allocation of network resources covering multiple
administrative areas. Therefore, they proposed a new
approach that helps in the rapid joint allocation of network
resources: this approach is based on freedom from inertia
and building on the atomic deal. A test did perform to
evaluate the approach's effectiveness by simulating a
Common Network Resource Simulation System (GRCS),
running simulations 20 times for each case. The results

showed that the proposed method outperformed ODP2 and
improved significantly. We have seen that the atomic
treatment approach is efficient and has demonstrated this in
simulated experiments. As in [8], the method used is
excellent and has shown impressive results in preventing a
dead end in a different area.

In [15], the authors have considered the deadlocks that
can occur in an AMS during its operation by shared
resources rivalry, which can cause disastrous results in
automated manufacturing systems. This study aims to
evaluate the performance of automated manufacturing
systems by using Petri nets under different deadlock
prevention policies. The primary technique for deadlock
prevention is Siphons and iterative methods.

They used a simulation tool for 24-time units; the
result shows that the strict minimal siphon method in an
extensive system leads to the best behavioral
permissiveness than the other methods. In [14], the
simulation method and the suggested approach achieved
satisfactory results, while in [15], the Siphons method was
better than the other methods.

In [16], the authors have been studying the problem of
deadlock in the data center network. The study aims to
Debate the issue of deadlock formation in lossless networks.
In this study, the problems of the deadlock that occur are
discussed, and their causes are. The study suggests some
methods that help prevent deadlock before it happens, using
the simulation method. The result shows they are many
reasons for deadlock .in [15] was used different deadlock
prevention policies were, but [16] discussed the problems
of deadlock that occur and their causes.

In [17], the authors proposed a new method for
preventing deadlocks in synchronous systems, a group of
processes that conservatively share a set of common
resources. It can be implemented by solving a set of linear
integer programming problems. The results showed that this
method applies to more complex systems. This study's
problem is the same as the one in the study [8], but the
process of solving it differs as they used advanced replicas
and timestamp mechanisms to prevent stalemates.

2.1.2 Deadlock avoidance

In [18], the authors have extended the classic Banker's
algorithm to a class of flexible manufacturing systems
modeled by Petri Networks. It possesses two properties: the
first is to allow flexible routing of parts, and the second is
to allow multiple sets of resources to be used in each
processing step to avoid inertia. And to optimize Banker's
algorithm approach rather than guaranteeing resources
Sufficient to finish processing a specific part, it is sufficient
to transfer the part to a state in which there is no interaction
with the rest of the parts. This study differs in that it used
the classic Banker's algorithm from the dynamic Banker's

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

233

algorithm used in the study [21], but both algorithms
perform the same purpose: to avoid deadlock.

In [19], the authors have considered the problem of
unreliable communications resulting from the deadlocks of
industrial IoT devices that use multiple computing Access
(MEC) for bankers. So, they proposed the proposed
resource-saving algorithm to avoid deadlock; this algorithm
is based on fetching jobs from the RMS Scheduled Tasks
queue. This algorithm proceeds that the most used tasks get
a higher priority. Then it moves the jobs from the job queue
to the ready queue. The algorithm modifies how the tasks
leave the job queue and remain ready-made. The simulation
of this algorithm was made and compared in a system with
and without using the RPA algorithm. The results helped
prevent deadlock and provide more reliable interaction in
the network between mobile stations and MEC platforms
and based on Optimizing system power by getting rid of
inertia. From our saw effort and work, they thank it and
produced beneficial results in multi-access computing.

In [20], the authors have considered the problem of
poor resource management in cloud computing that leads to
Dead Lock. So, they have proposed an algorithm that helps
in load balancing, which is the throttling algorithm based on
preventing exceeding the task queue to balance the load and
avoid disasters. Also, they implemented it by simulating
with the help of the Cloud tool Analyst, which provides me
with a visualization of the results after comparing the
system with and without load balancing. The results showed
that load balancing is the most effective technique for
preventing disasters. So, the algorithm maintains the state
of resources periodically, and the computing model has
improved productivity response time to operations.

In [21], the researchers have considered Banker's
algorithm to allocate resources and avoid pitfalls. The
study's main aim is to suggest an approach to Banker's
algorithm to solve a problem related to determining the
cause of failure in performing operations. The proposed
Dynamic Banker algorithm resolves this problem after
comparing the performance of both algorithms. The results
showed that the proposed algorithm avoids stalemate by
identifying the process that needs an increase in resources
and the ease of adding resources. A throttling algorithm has
been submitted to aid load balancing based on task overrun
prevention [20]. Whereas [21] presented an improved
approach to Banker's algorithm.

In [22], the authors have considered the problem of
ineffective resource allocation that causes the problem of
complete stoppage of operations within the system. Given
the complexity of the algorithms that help in avoiding these
problems, such as the banker algorithm, they proposed a
new method that is less complex than the banker algorithm
and other algorithms. This method relies on the ease of
verifying resource requests. The new algorithm has

compared it to the Banker algorithm's performance. The
result shows that the proposed method is lower than the
Banker algorithm's complexity. The proposed method has
surpassed the suggested method in [21] effectiveness, time,
and complexity.

In [23], the authors have considered the Deadlock issue
that arises in modem flexible manufacturing systems (FMS)
easily because of shared source usage and high production
flexibility. This study aims to develop a novel deadlock
avoidance algorithm, and the primary technique is by
calculating the available usable space of circuits of the
digraph model. The result shows the algorithm secures high
permissiveness based on the dynamic, practical free space
calculation of circuits in the digraph model based on the
average percentage, which allows it to be above 90% among
all the tested examples consistently. In [21] propose an
approach to the Banker algorithm.

In [24], the authors discuss the problem of bankers'
security algorithm whether the system is in a safe or
insecure state, based on the needs of operations and their
availability using the permutation tree and the solution tree.
The results showed that the solution tree would have fewer
states than the permutation tree. As in [21], it's using the
same algorithm, but with a different methodology that
determines the cause of failure in operations; its results
showed that the algorithm Can avoid the impasse by the
process that needs an increase in resources and the ease of
adding resources to it.

In [25], the authors have considered the problem of
inertia in an automated guided vehicle (AGV) system. A
proposal that avoids rigidity is an adaptable and
straightforward algorithm based on a theoretical graph
approach instead of complex and immutable methods like
Petri-net. The work here has been carried out in two phases:
the first phase deals with avoiding the deadlock algorithm,
and the second part proposes targeting strategies that fit the
proposed algorithm. This algorithm has been characterized
by the ease of modifying the model and configuring the
system. The mathematical tests have been performed on 100
different seeds, and the results yielded a high performance
in avoiding inertia. And we see that their efforts deserve
thanks in applying a method to prevent stagnation less than
Petri-net's complexity as in [7].

2.1.3 Deadlock detection and recovery

In [26], the authors have considered the state space
explosion while using modelmodel-checkingniques. The
model checker consumes all the available memory to
produce reachable states. The main methods applied
proposed by the authors for deadlock detection in complex
software systems they a hybrid algorithm that uses Particle
swarm optimization (PSO) and BAT (BA) (BAPSO), and a
greedy algorithm to detect deadlocks. The empirical
findings indicate that the hybrid algorithm (BAPSO) is

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

234

more efficient than the particle swarm optimization
algorithm (PSO) and BAT algorithm (BA). And regarding
the greedy algorithm can compete with the meta-heuristic
algorithms in terms of accuracy and speed.

Deadlock detection algorithms have been proposed in
complex software systems [26], while [27] deadlock
detection algorithms in large-scale operating systems. In
[27], the authors have considered the deadlocks of operating
systems. So, they proposed the Race Condition Based
Deadlock Detection methodology by using queues to detect
race conditions causing deadlocks, which can appear in the
subsequent execution. As a result, the algorithm has proven
helpful since it is scalable when applied in a large-scale
environment. Furthermore, it is compatible with parallel
applications working as a master/slave mechanism. In
contrast, [26] was explicitly determined to study the need to
resolve deadlocks in Graph Transformation Systems (GTS).
This research was for a broader scope: large-scale operating
systems.

In [28], the researchers have considered that resource
allocation at the infrastructure level is essential in assigning
physical resources to virtual resources to more helpful use
resources in the cloud computing environment. This paper's
main objective is to suggest a new algorithm for allocating
resources to infrastructure based on a deadlock detection
approach. They used an open-source platform
heterogeneous and Java language to program algorithm
implementation. The proposed algorithm has been
implemented using the Cloud Sim simulator. The results
showed that the proposed algorithm could quickly detect
stalemates and solve practical situations. In contrast,[27]
deadlock detection algorithms have been implemented in
large-scale operating systems. While [28] has been
proposed for the deadlock detection algorithm.

In [29], the authors have considered the deadlocks
problem concerning resource allocation in heterogeneous
platforms. The primary applied technique proposed to solve
the deadlock problem by the authors is an approach for
developing the parallel deadlock detection algorithm. The
results show that applying suitable scheduling algorithms
for distributed resources of virtual server systems provides
optimal execution. The study [28] used a new algorithm that
has been proposed to detect deadlock. While [29] advancing
the deadlock detection algorithm.

In [30], the authors have considered the deadlock
problem in distributed systems; a distributed deadlock
detection algorithm based on history-based edge chasing
has been proposed. The algorithm can handle the
simultaneous implementation of the algorithm and evade
the same deadlock state's detection. The suggested
algorithm resolved and detected the deadlock in Distributed
Systems, unlike [28], which detects the deadlock in the
cloud computing environment.

In [31], the authors have discussed the deadlock
recovery strategy with minimal buffers for unified
automatic material handling systems (UAMHSs). Recent
technologies have proposed a Deadlock detection model for
UAMHSs. The appropriate criteria for device deadlocks
based on actual UAMHS properties have been established
along with a new deadlock recovery technique. Besides, for
parallel solving UAMHS deadlocks, an efficient heuristic
algorithm is suggested. Simulation trial findings indicate
that the novel deadlock recovery approach is superior to the
benchmark approach in reducing deadlock time and
enhancing tools. The study [31] detected and recovered the
deadlock while it [26][27] [29] only detected the deadlock.

In [32], the authors have considered one of the leading
design problems in the real-time concurrency control of
transactions: local and distributed resolution while meeting
the timing requirements of transactions. Therefore, a new
deadlock detection algorithm has been proposed, specially
built for distributed real-time database systems. They
carried out extensive simulation experiments to evaluate the
performance of the proposed algorithm. The findings show
that the real-time deadlock detection algorithm works much
better than the algorithm for non-real-time deadlock
detection. Unlike [28], a study focuses on detecting
deadlock in the cloud computing environment. This study
focuses on the management of real-time transaction
concurrency.

In [33], the authors have considered distributed
deadlock problem. A new algorithm for distributed
deadlock detection has been suggested. The Deadlock was
detected along the edges of the wait-for graphs in the
scheme by forwarding messages, called probes. The
algorithm is an updated variant of the algorithm of Chandy
that, in some circumstances, is false. The performance
findings suggest that the probe initiation rate is a dominant
factor in evaluating system performance in the modified
algorithm. The probe-based algorithm will outperform the
time-out technique for significant multiprogramming level
values compared with the time-out technique.

In [34], the authors have discussed and analyzed the
issue of deadlocks in distributed DBMSs. The two
predominant deadlock models and the four different
distributed approaches to deadlock detection are discussed
in these systems. The Suggested methodology in this study
is a new deadlock detection algorithm. The algorithm was
based on the dynamic creation of deadlock detection agents
(DDAs), each responsible for detecting deadlocks in the
global wait-for-graph component of one connected
component (WFG). The experimental results indicate that
our newly proposed deadlock detection algorithm
outperforms the other algorithms in most configurations

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

235

and workloads and is very robust concerning different load
and access profiles, in contrast to all other algorithms.

3. Results and Discussion

After reviewing the studies for the deadlock handling
methods, many techniques have been developed to solve
deadlock problems. The reviewed studies from [2] to [17]
based on deadlock prevention utilized timestamps and
advanced replicas techniques to prevent different deadlock
types. And the other presented a Petri net model of the
locking protocol 2PL concerning a concurrent transaction
database to solve the deadlock problem. The findings
showed that the deadlock prevention system minimized and
avoided deadlock after using the suggested prevention
mechanisms.

The reviewed studies from [18] to [25], based on
deadlock avoidance, handled the deadlock using resource-
saving to avoid deadlock. Other studies attempted to
improve Banker's security algorithm for allocating
resources and avoiding deadlocks. The results showed high
performance in avoiding the impasse by identifying the
process that needs increased resources.

The reviewed studies from [26] to [34] based on
deadlock detection and recovery used the queues to detect
the deadlocks appearing in the subsequent execution. And
some others suggest an algorithm for allocating resources to
infrastructure based on a deadlock detection approach.
These paper presented studies related to the deadlock
problem to review deadlock algorithms to handle the
deadlock problem more efficiently. The results showed that
the deadlock detection method solves the deadlock. As soon
as the real-time deadlock detection algorithm is identified
and indicated, it performs better than the non-real-time
deadlock detection algorithm. The percentages of reviewing
outcomes are shown. The most significant percentage of 47%
is reached in deadlock prevention. Then deadlock detection
and recovery with 28%—finally, a percentage of 25% for
deadlock avoidance.

4. Conclusion

The results showed that the deadlock detection method
solves the deadlock. Our findings are the statistics that show
the largest percentage is reached in deadlock prevention.
Then deadlock detection and recovery with 28% finally, a
percentage of 25% for deadlock avoidance. This paper
presented studies related to multiple algorithms used for
deadlock handling methods: detection and recovery,
avoidance, and prevention. After discussion and analysis of
the literature review have been done to classify and compare
the algorithms studied, we found that the deadlock detection
method solves the deadlock. As soon as the real-time
deadlock detection algorithm is identified and indicated, it
performs better than the non-real-time deadlock detection

algorithm. The percentages of reviewing outcomes are
shown. The largest percentage of 47% is reached in
deadlock prevention. Then deadlock detection and recovery
with 28% finally, a percentage of 25% for deadlock
avoidance. We can increase the reviewed paper and
compare another comparison aspect for future work.

References

[1] Silberschatz A, Galvin PB, Gagne G. Operating system
concepts. John Wiley & Sons; 2006 Jul 13.
https://go.exlibris.link/0l5YRLFy.

[2] Goswami V, Singh A. VGS algorithm: an efficient deadlock
prevention mechanism for distributed transactions using
pipeline method. International Journal of Computer
Applications. 2012 May;46(22):1-9.doi:10.5120/7094-9224.

[3] Dimitoglou G. Deadlocks and methods for their detection,
prevention, and recovery in modern operating systems.
Operating systems review. 1998 Jul 1;32(3):51-
4.doi:10.1145/281258.281273.

[4] Malhotra D. Deadlock prevention algorithm in a grid
environment. In MATEC Web of Conferences 2016 (Vol. 57,
p. 02013). EDP Sciences.
DOI:10.1051/matecconf/20165702013.

[5] Mishra KN. Efficient voting and priority-based mechanism for
deadlock prevention in distributed systems. In2016
International Conference on Control, Computing,
Communication, and Materials (ICCCCM) 2016 Oct 21 (pp.
1-6). IEEE. DOI: 10.1109/ICCCCM.2016.7918267

[6] Nguyen HH, Nguyen TT. Deadlock prevention for resource
allocation in model nVM-out-of-1 PM. In2016 3rd National
Foundation for Science and Technology Development
Conference on Information and Computer Science (NICS)
2016 Sep 14 (pp. 246-251). IEEE. DOI:10.5120/7094-9224.

[7] Xiao Ling Y. A Deadlock Prevention Algorithm for The Two-
Phase Locking Protocol Based on Petri Net. In2019 6th
International Conference on Systems and Informatics (ICSAI)
2019 Nov 2 (pp. 889-892). IEEE. DOI:
10.1109/ICSAI48974.2019.9010538.

[8] Lou L, Tang F, YouI, Guo M, Shen Y, Li L. An Effective
Deadlock Prevention Mechanism for Distributed Transaction
Management. In2011 Fifth International Conference on
Innovative Mobile and Internet Services in Ubiquitous
Computing 2011 Jun 30 (pp. 120-127). IEEE. DOI:
10.1109/IMIS.2011.109.

[9] Duo W, Jiang X, Karoui O, Guo X, You D, Wang S, Ruan Y.
A deadlock prevention policy for a class of multithreaded
software. IEEE Access. 2020 Jan 6;8:16676-88. DOI:
10.1109/ACCESS.2020.2964312.

[10] Zhuang Q, Dai W, Wang S, Du J, Tian Q. A MIP-based
deadlock prevention policy for siphon control. IEEE Access.
2019 Sep 6;7:153782-90.doi:
10.1109/ACCESS.2019.2939855.

[11] Dauphin B, Pacalet R, Enrico A, Apvrille L. Odyn: Deadlock
Prevention and Hybrid Scheduling Algorithm for Real-Time
Dataflow Applications. In2019 22nd Euromicro Conference
on Digital System Design (DSD) 2019 Aug 28 (pp. 88-95).
IEEE. DOI: 10.1109/DSD.2019.00023.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

236

[12] Zeng G, Wu W, Zhou M, Mao W, Su H, Chu J. Design of
Petri net-based deadlock prevention controllers for flexible
manufacturing systems. In2009 IEEE International
Conference on Systems, Man and Cybernetics 2009 Oct 11
(pp. 193-198). IEEE. DOI: 10.1109/ICSMC.2009.5346582.

[13] Zhou J, Silvestro S, Liu H, Cai Y, Liu T. Undead: Detecting
and preventing deadlocks in production software. In2017
32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE) 2017 Oct 1 (pp. 729-740). IEEE.
DOI: 10.1109/ASE.2017.8115684.

[14] Chuanfu Z, Yunsheng L, Tong Z, Yabing Z, Kedi H. A
Deadlock Prevention Approach based on Atomic Transaction
for Resource Co-allocation. In2005 First International
Conference on Semantics, Knowledge, and Grid 2005 Nov
27 (pp. 37-37). IEEE. DOI: 10.1109/SKG.2005.4.

[15] Abou el Nasr E, El-Tamimi AM, Al-Ahmari A, Kaid H.
Comparison and evaluation of deadlock prevention methods
for different size automated manufacturing systems.
Mathematical Problems in Engineering. 2015 Sep 16;2015.
https://doi.org/10.1155/2015/537893

[16] Hu S, Zhu Y, Cheng P, Guo C, Tan K, Padhye J, Chen K.
Deadlocks in data center networks: Why do they form, and
how to avoid them. InProceedings of the 15th ACM
Workshop on Hot Topics in Networks 2016 Nov 9 (pp. 92-
98). https://doi.org/10.1145/3005745.3005760.

[17] Tricas F, Garcia-Valles F, Colom JM, Ezpeleta J. A Petri net
structure-based deadlock prevention solution for sequential
resource allocation systems. InProceedings of the 2005 IEEE
international conference on robotics and automation 2005
Apr 18 (pp. 271-277). IEEE.
doi:10.1109/ROBOT.2005.1570131.

[18] Ezpeleta J, Tricas F, Garcia-Valles F, Colom JM. A banker's
solution for deadlock avoidance in FMS with flexible routing
and multi-resource states. IEEE Transactions on Robotics
and Automation. 2002 Dec 10;18(4):621-5. DOI:
10.1109/TRA.2002.801048.

[19] Ugwuanyi EE, Ghosh S, Iqbal M, Dagiuklas T. Reliable
resource provisioning using bankers’ deadlock avoidance
algorithm in MEC for industrial IoT. IEEE Access. 2018 Aug
10;6:43327-35.doi: 10.1109/ACCESS.2018.2857726.

[20] Mahitha O, Suma V. Deadlock avoidance through efficient
load balancing to control disaster in a cloud environment.
In2013 Fourth International Conference on Computing,
Communications and Networking Technologies (ICCCNT)
2013 Jul 4 (pp. 1-6). IEEE.
doi:10.1109/ICCCNT.2013.6726823.

[21] Gaur M, Singh D. Implementation of Banker’s Algorithm
Using Dynamic Modified Approach. International Journal on
Recent and Innovation Trends in Computing and
Communication.;5(11):157-63.
https://d1wqtxts1xzle7.cloudfront.net.

[23] Begum M, Faruque O, Miah MW, Das BC. An Improved
Safety Detection Algorithm Towards Deadlock Avoidance.
In2020 IEEE 10th Symposium on Computer Applications &
Industrial Electronics (ISCAIE) 2020 Apr 18 (pp. 73-78).
IEEE. DOI: 10.1109/ISCAIE47305.2020.9108818.

[24] Zhang W, Judd RP. Deadlock avoidance algorithm for
flexible manufacturing systems by calculating effective free
space of circuits. International Journal of Production

Research. 2008 Jul 1;46(13):3441-57.DOI:
10.1109/ACC.2005.1470589.

[25] Singh RR, Singh DK. Deadlock Avoidance: A Dynamic
Programming Approach. In2010 International Conference on
Computational Intelligence and Communication Networks
2010 Nov 26 (pp. 661-664). IEEE. DOI:
10.1109/CICN.2010.130.

[26] Yoo JW, Sim ES, Cao C, Park JW. An algorithm for deadlock
avoidance in an AGV System. The International Journal of
Advanced Manufacturing Technology. 2005 Sep;26(5):659-
68. https://doi.org/10.1007/s00170-003-2020-4

[27] Yousefian R, Aboutorabi S, Rafe V. A greedy algorithm
versus metaheuristic solutions to deadlock detection in Graph
Transformation Systems. Journal of Intelligent & Fuzzy
Systems. 2016 Jan 1;31(1):137-49.
https://doi.org/10.3233/IFS-162127

[28] Do-Mai AT, Diep TD, Thoai N. Race condition and deadlock
detection for large-scale applications. In2016 15th
International Symposium on Parallel and Distributed
Computing (ISPDC) 2016 Jul 8 (pp. 319-326). IEEE. DOI:
10.1109/ISPDC.2016.53.

[29] Nguyen HH, Dang HV, Pham NM, Le VS, Nguyen TT.
Deadlock detection for resource allocation in heterogeneous
distributed platforms. recent Advances in Information and
Communication Technology 2015 2015 (pp. 285-295).
Springer, Cham. https://doi.org/10.1007/978-3-319-19024-
2_29

[30] Nguyen HH, Nguyen TT. The algorithmic approach to
deadlock detection for resource allocation in heterogeneous
platforms. In2014 International Conference on Smart
Computing 2014 Nov 3 (pp. 97-103). IEEE. DOI:
10.1109/SMARTCOMP.2014.7043845.

[31] Farajzadeh N, Hashemzadeh M, Mousakhani M, Haghighat
AT. An efficient generalized deadlock detection and
resolution algorithm in distributed systems. InThe Fifth
International Conference on Computer and Information
Technology (CIT'05) 2005 Sep 21 (pp. 303-309). IEEE.
DOI:10.1109/CIT.2005.69.

[32] Zhou Q, Zhou BH. A deadlock recovery strategy for unified
automated material handling systems in 300 mm wafer
fabrications. Computers in Industry. 2016 Jan 1;75:1-2.
https://doi.org/10.1016/j.compind.2015.10.014.

[33] Yeung CF, Hung SL. A new deadlock detection algorithm for
distributed real-time database systems. InProceedings. 14th
Symposium on Reliable Distributed Systems 1995 Sep 13 (pp.
146-153). IEEE. DOI: 10.1109/RELDIS.1995.526222.

[34] Obermarck R. Distributed deadlock detection algorithm.
ACM Transactions on Database Systems (TODS). 1982 Jun
1;7(2):187-208. https://doi.org/10.1145/319702.319717.

[35] Krivokapić N, Kemper A, Gudes E. Deadlock detection in
distributed database systems: a new algorithm and a
comparative performance analysis. The VLDB Journal.
1999 Oct;8(2):79-100.
https://doi.org/10.1007/s007780050075.

