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Summary 
Scene classification of very high-resolution (VHR) imagery can 
attribute semantics to land cover in a variety of domains. Real-
world application requirements have not been addressed by 
conventional techniques for remote sensing image classification. 
Recent research has demonstrated that deep convolutional neural 
networks (CNNs) are effective at extracting features due to their 
strong feature extraction capabilities. In order to improve 
classification performance, these approaches rely primarily on 
semantic information. Since the abstract and global semantic 
information makes it difficult for the network to correctly classify 
scene images with similar structures and high interclass similarity, 
it achieves a low classification accuracy. We propose a VHR 
remote sensing image classification model that uses extracts the 
global feature from the original VHR image using an EfficientNet-
V2L CNN pre-trained to detect similar classes. The image is then 
classified using a multilayer perceptron (MLP). This method was 
evaluated using two benchmark remote sensing datasets: the 21-
class UC Merced, and the 38-class PatternNet. As compared to 
other state-of-the-art models, the proposed model significantly 
improves performance. 
Keywords: 
VHR, Remote sensing, scene classification, Deep learning, 
EfficientNet. 

1. Introduction 

Our ability to obtain images with very high resolution 
(VHR) has advanced with the advancement of remote 
sensing technologies [1]. We can now measure the Earth's 
surface in detail with VHR images, which are a valuable 
data source for Earth observation. Additionally, VHR 
images can provide accurate insights into man-made 
infrastructures, like streets, because they allow for their 
depiction.VHR images have been included in several 
datasets, including the UC Merced dataset [2], which 
consists of 21 different scene classes each with 100 images; 
the PatternNet dataset [3] containing 38 classes with 800 
images per class; and the WHU-RS19 dataset [4, 5], which 
contains 950 images arranged into 19 categories.While low-
level attributes such as spectral, textural, and geometrical 
characteristics can be used in scene classification, they 
rarely yield satisfactory results. Several algorithms, 
including machine learning and data-driven approaches, 

have been proposed in the field of remote sensing in recent 
years. The accuracy of classification has been improved by 
researchers using advanced classification approaches. It has 
been found that there are three types of VHR imagery [6]: 
low level, middle level, and high level. A low-level method 
[7-11] extracts information from local or global locations to 
design artificial features, such as colors. As a result, this 
method performs poorly in terms of classification [6]. In 
order to obtain statistical representations, scientists have 
designed middle-level methods [12-15] , such as the 
improved Fisher vector. The accuracy of classification can 
also be improved by using deep learning-based methods 
[16-21]. 

The field of computer vision has recently proven 
the benefits of deep learning. Image categorization and 
object recognition are greatly improved using convolutional 
neural networks (CNNs), such as AlexNet [22], VGGNet 
[23], Inception Net [24], and ResNet [25]. By training 
CNN-based frameworks, high-level discriminative features 
can be automatically extracted, which are commonly used 
in the past. Meanwhile, CNN-based algorithms have been 
employed in remote sensing and shown to be effective. The 
multilevel improved circle pooling (MICP) method was 
proposed by Kunlun et al. [26] to improve the 
discriminative power of CNN activations. A CNN-based 
classification algorithm based on multilayer perceptrons 
(MLPs) was proposed by Osama et al. [27]. In this case, the 
features are created using a pre-trained CNN without fully 
connected layers. Due to the limited number of training 
images available in each class, this method employs data 
augmentation techniques to increase the number of training 
images available. MLPs were used to classify the resulting 
feature maps. BRBM stands for best representation branch 
model, created by Zhang et al. [28]. In order to obtain the 
final classification accuracy, the BRBM uses a classifier 
using CapsNet that extracts feature maps using ResNet50. 
On both benchmarks of remote sensing datasets, the BRBM 
achieves good results when compared with state-of-the-art 
methods. 

Deep learning models are designed to increase 
classification accuracy at the expense of speed. Although 
scene classification could be made more accurate, and the 
time complexity should be reduced, both need to be 
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improved. Hence, we developed a deep transfer learning 
method for classifying VHR images. The main 
contributions of this study are as follows: 

 Generate robust features for a VHR image by 
utilizing EfficientNetV2L.  

 Our framework uses the extracted features to 
determine the classification of scenes from remote 
sensing. In addition, we used the Adagrad 
optimizer to classify the VHR image. 

 Two public benchmark VHR datasets were used to 
demonstrate the effectiveness of the proposed 
model. The proposed model achieves better 
classification accuracy than other related models 
after extensive experiments.  

In the remainder of this paper, we organize our 
findings as follows. In section 2, we discuss related work on 
classifying VHR images. In section 3, each component of 
the proposed deep-learning-based classification model is 
explained in detail. In Section 4, the dataset used, the 
experimental setup, and the results are summarized. Section 
5 concludes with concluding remarks. 

2. Related Works 

Satellite images have been the subject of primary 
research in the literature. In terms of developed approaches, 
the following three groups can be distinguished: those based 
on low-level features [7-11] (scale invariant feature 
transform (SIFT), local binary pattern (LBP)), those based 
on mid-level visual representations [12-15] (e.g., bag-of-
visual-words (BoVW) and extreme value theory (EVT)-
based normalization), and those relying on high-level vision 
information [16-21] (e.g., deep learning methods). 

Deep-learning-based techniques have been 
developed for a number of applications in the last decade, 
including satellite image classification. The development of 
SRSCNNs was motivated by the drawbacks of BoVWs and 
CNNs [29]. The DLGFF framework provides a unique end-
to-end CNN by combining global context features (GCFs) 
with local object features (LOFs) for VHR imaging scene 
classification [30]. For object-based categorization, the 
proposed network has two branches: the local object branch 
(LOB) and the global semantic branch (GSB) [31]. Based 
on the preceding thematic maps and satellite images of the 
study regions, feature weight maps were derived for each 
terrain type [32].  

Recently, a method for analyzing VHR scenes 
based on saliency features was proposed in [33]. Global 
CNNs and saliency features are confused by this method. In 
the subsequent step, an enhanced MLP classifier was used. 
[34] Alhichri et al. proposed a deep learning model to 
classify remote-sensing scenes. The effectiveness of their 

experience was determined by a combination of an efficient 
Net CNN and an attention mechanism. Two versions of 
their model have been tested: EfficientNet-B3-Attn-1 and 
EfficientNet-B3-Attn-2. 

In EfficientNet-B3-Attn-1, the attention 
mechanism was added to the last feature map. However, in 
EfficientNet-B3-Attn-2, the attention model was added at 
the end of layer 262. According to Peng et al. [35], an 
efficient architecture search framework was proposed. Due 
to limitations in the extracted features from pre-trained 
CNN models, as well as data deficiencies from the extracted 
scene images, they also investigated a new paradigm that 
automatically designed a suitable CNN architecture. An 
image classification algorithm based on deep learning was 
developed by Xiaowei et al. [36]. Optimising cross-
validation was improved using recurrent neural networks 
(RNNs) and random forests. The researchers demonstrated 
that training neural networks can be improved by using 
multiscale views. Testing and training costs can be reduced 
while achieving optimal results with a random forest. A new 
CNN based on the Siamese network was proposed by Tang 
et al. [37].  

3. Methodology 

In this study, a remote sensing scene classification 
model based on deep CNNs is proposed, which includes 
four main tasks. The framework of our classification model 
is illustrated in Fig. 1. First, data pre-processing is 
performed. Second, the pre-trained model EfficientNetV2L 
was used to extract global features from the original VHR 
image. Finally, to classify the VHR image, the proposed 
model used an MLP classifier based on the Adagrad 
optimizer. Each step of the proposed model is described in 
the following subsections. 

3.1 Pre-processing 

Some models use images with values ranging from 0 
to 1. Others from -1 to +1. Therefore, in the proposed model, 
data pre-processing is performed as a part of the model (i.e., 
Rescaling layer).  

3.2 Feature Extraction 

In the proposed model, an EfficientNetV2L pre-
trained is used to extract features from the original VHR 
image. According to [38], CNN models are characterized 
by their width and depth. Using this approach, CNN models 
could be designed with fewer parameters and achieve better 
classification accuracy. Their original paper proposed seven 
such models, called EfficientNetB0 to EfficientNetB7, 
called EfficientNetV1 CNN models. Scaling up CNN 
models is the basis of the EfficientNetV1 family.  
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Fig. 1. A framework of the proposed model for VHR imagery scene 
classification. 

 
The compound coefficient used in this method is 

simple and highly effective. In contrast to traditional 
methods, EfficientNetV1 uniformly scales each dimension 
based on a fixed set of scaling coefficients. The 
performance of a model improves when each dimension is 
scaled. When all network dimensions are balanced 
according to the available resources, overall performance is 
improved. Compared to EfficientNetV1, EfficientNetV2 
[39] provides faster training speeds and more efficient 
parameters. By combining training-aware neural 
architecture search with scaling, the authors optimized 
training speed at the same time. Fused-MBConv was added 
to the search space to enhance the search process. 
EfficientNetV2 extensively utilized the main architectural 
differences between MBConv and fused-MBConv in its 
early layers. EfficientNetV2 prefers smaller expansion 
ratios for MBConv since smaller expansion ratios result in 
fewer memory access overheads. The smaller kernel size in 
EfficientNetV2 results in a smaller receptive field, so more 
layers are added to compensate. EfficientNetV2 lacks the 
last stride-1 stage from EfficientNetV1 due to its large 
parameter size and memory access overhead. Based on [38], 
EfficientNetV2L employs compound scaling similar to [38], 
with some additional optimizations, as shown in [39]: (1) 
the inference image size is 480, as large images often result 

in high memory and training speed overhead; (2) to increase 
network capacity without increasing runtime overhead, 
additional layers were added to stages 5 and 6 of the 
EfficientNetV1 architecture [38]. 

3.3 Multilayer Perceptron (MLP) 

Multilayer perceptrons (MLPs), commonly known as 
feed-forward ANNs, are the most widely used ANN 
architectures. There are at least three layers: an input layer, 
a hidden layer, and an output layer. Perceptrons are modeled 
after brain neuron cells and are an essential component of 
MLP design. Perceptrons receive inputs from previous 
layers and transfer outputs to next layers after performing 
certain mathematical operations.  

There are four layers in the proposed MLP design. 
First, all image features were normalized through a 
normalization layer. A normalization process ensures that 
the data distribution for each pixel is uniform. During 
network training, it converges rapidly. Second, 50 units of 
density were used. Third, we used a dropout layer, as 
described in [27]. To reduce overfitting, neural networks 
employ dropout regularization to avoid complicated co-
adaptations to training data. Standard layouts can be 
performed using neural networks using this method. Fourth, 
we used a logistic regression algorithm (SoftMax) to 
normalize input values into a vector of value vectors 
representing classes in the VHR dataset that follow a 
probability distribution. By incorporating prior 
observations, the learning rate was modified using the 
Adagrad algorithm [40]. Adagrad optimizers are suitable 
for sparse data because they adapt a larger learning rate 
update for infrequent parameters and a smaller update for 
frequent parameters. In addition, the Adagrad optimizer 
takes considerably less time to predict than other optimizers 
(e.g., Adadelta, RMSprop, Adam, Nadam, and SGD). 

4. Experiments Results and Discussion 

Several experiments were conducted on two public 
remote sensing image datasets to assess the performance of 
the classification models. The first part of this section 
describes the datasets. The experimental setup and 
performance measures are presented in the second and third 
parts. In the fourth part of this section, we describe our 
experiments and discuss the results for each VHR dataset. 
Finally, we discuss the ablation study of the proposed model. 

4.1 Description of Datasets 

Two benchmark datasets for land use scene 
classification were used: UC Merced [2], and PatternNet [3]. 
The details of these datasets are listed in Table 1. Fig. 2 
shows the samples of the selected VHR datasets. All two 
datasets were used for benchmark comparison. 
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Fig. 2. Example of VHR images. 

Table 1: Key information on the benchmark VHR scenes. 

Dataset Images Classes Images per class Image size Spatial resolution (m) 

UC Merced 2,100 21 100 256 × 256 0.3 

PatternNet 30,400 38 800 256 × 256 0.062~4.693 

4.2 Experimental Setup 

In this study, the features of the images with pre-
trained CNNs (i.e., EfficientNetV2L) were extracted from 
the original VHR images. All the images were resized to 
480×480 pixels. The output global feature vector size was 
1280. After that, the MLP classifier was used for the 
classification step. The learning rate was 0.1. A dropout of 
0.4 is utilized in the proposed model. The proposed model 
used 100 epochs for the UC Merced, WHU-RS19, and 
PatternNet datasets. The batch size is 32~64. The 
experiment was repeated five times, and the average values 
were tabulated. The software environment used to conduct 
the proposed model was Python 3. All experiments were 
conducted on the Linux-based Google Colab (an online 

browser-based platform) with a Pro subscription. The 
platform provides 25 GB of RAM and a Tesla K80 12GB 
GPU as an accelerator. 

4.3 Experimental Results 

In the following subsections, two public VHR datasets 
are used in in-depth experiments to test the efficacy of the 
proposed model against the most advanced scene 
classification models under identical settings and training 
ratios. The same experimental setup was used five times, 
and the mean of the five outcomes was computed to 
evaluate the effectiveness of the proposed model. Various 
evaluation metrics, including confusion matrix, accuracy, 
precision, recall, and F1-Score, can be used to assess the 
performance of the proposed classification method. The 
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experimental findings show that the proposed model 
outperforms other state-of-the-art models. 

4.3.1 Classification results of the UC Merced dataset 

In Table 2, the performance of the proposed model on 
the UC Merced dataset was quantitatively measured using 
commonly used parameters, such as overall OA, precision, 
recall, Cohen's kappa coefficient (κ), MCC, ROC, and F1-
score. An overall accuracy (OA) comparison between the 
proposed model and state-of-the-art methods on the UC 
Merced dataset is reported in Table 3 to evaluate the 
effectiveness of our method. With training ratios (TR) of 
50% and 80%, the OAs of our model reach 97.38% and 
96.87%, respectively, exceeding those of all the methods 
listed in the table. Compared with the related methods 
reported in Table 3, the OAs of our model are 
approximately 1.12% and 0.71% higher than those of STHP 
[41], with a TR of 50% and 80%, respectively. For method 
using GoogLeNet [6] with a TR of 50% and 80%, the OA 
was 92.70% and 94.31%, respectively. The results show 
that the proposed model obtains better classification 
accuracy than the other related models. 

Table 2: Evaluation of the proposed VHR scene classification model on 
the UC Merced with TR = 80%. 

Metric Results 

OA 0.9738 

Precision 0.9751 

Recall 0.9750 

Kappa (𝜅) 0.9724 

MCC 0.9725 

ROC 0.9869 

F1-Score 0.9745 

Table 3: Comparison of overall accuracy (%) on the UC Merced dataset. 

Method Year 
Training Ratio (TR) 

50% 80% 

CaffeNet [6] 2017 93.98 95.02 

VGG-VD-16 [6] 2017 94.14 95.21 

GoogLeNet [6] 2017 92.70 94.31 

SalM3LBP-CLM [42] 2017 94.21 95.75 

PMWMFF [43] 2021 - 97.14 

SAFF [44] 2021 - 97.02 

LCPB [45] 2021 - 96.66 

AlexNet+MICP [26] 2021 - 96.13 

GAN [46] 2022 93.22 96.10 

STHP [41] 2022 95.75 96.67 

Proposed Model 2022 96.87 97.38 

4.3.2 Classification results of the PatternNet dataset 

Compared to the UC Merced, the PatternNet dataset 
provides a larger data size and more scene categories. The 
performance of the proposed model on the PatternNet 
dataset is reported in Table 4. The OAs of the proposed 
classification model and related works are listed in Table 5. 
Our model outperformed all the models and reached the 
highest OA of 98.76%, 98.46%, and 98.16% when the TRs 
were set to 80%, 60%, and 40%, respectively. The 
experimental results at TR=60% demonstrate that the 
proposed model increases the OA by 2.34%, 1.75%, and 
0.15% over GoogleNet, ResNet-50, and VGG-16 [35], 
respectively.  

Table 4: Evaluation of the proposed VHR scene classification model on 
the PatternNet. 

Dataset PatternNet TR = 80% 

OA 0.9876 

Precision 0.9877 

Recall 0.9876 

Kappa (𝜅) 0.9873 

MCC 0.9873 

ROC 0.9936 

F1-Score 0.9876 

 

Table 5: Comparison of overall accuracy (%) on the PatternNet dataset. 

Method Year 
Training Ratio (TR) 

40% 60% 80% 

Full-trained VGG-16 [35] 2021 - 97.31 - 

Full-trained GoogleNet [35] 2021 - 96.12 - 

Full-trained ResNet-50 [35] 2021 - 96.71 - 

Fine-tuning VGG-16 [35] 2021 - 98.31 - 

Fine-tuning GoogleNet [35] 2021 - 97.56 - 

Fine-tuning ResNet-50 [35] 2021 - 98.23 - 

STHP [41] 2022 - - 98.67 

Proposed Model 2022 98.16 98.46 98.76 

4.3.3 Time Complexity 

In this section, we examine the time cost of the 
proposed model. We compared the average training and test 
times for the two selected VHR datasets. All experiments 
were performed in the same environment described in 
Section 4.2. The comparison results are presented in Table 
6. 
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Table 6: Comparison of computation times on the two selected datasets. 

Metric UC Merced PatternNet 

TR 80% 80% 

Training images 1,680 images 24,320 images 

Feature size 1,280 1,280 

OA (%) 97.38 98.76 

Training time (min) 4.66 64.00 

Test time (sec) 0.073 0.489 

5. Conclusion 

This paper proposes a scene classification method 
based on transfer deep CNNs to improve the performance 
of very high-resolution (VHR) imagery scene classification. 
In the classification process, an adaptive gradient algorithm 
(i.e., Adagrad) was used in conjunction with a multilayer 
perceptron (MLP) to improve the classification accuracy. 
We tested the proposed model against two selected VHR 
scene datasets, and it achieved high classification accuracy 
of 97.38% for UC Merced, and 98.76% for PatternNet. By 
comparing the proposed model to traditional CNN-based 
models, the accuracy is improved. In order to make VHR 
scene classification more practical for practical applications, 
further research is needed to address the shortcomings of 
the proposed model. To reduce the computational cost of 
our trained model, we aim to combine features into short 
vector lengths more than the extracted from 
EfficientNetV2L. 
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