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Abstract 
Keypoint detection and matching algorithms are frequently 
compared in the literature using datasets of real-world images that 
have a range of geometric and non-geometric variations; these 
include viewpoints, illuminations, visual content, and distortions. 
Homography (H) matrices often describe geometric variations 
when utilizing these image datasets. However, models for non-
geometric differences between these images are rarely offered, 
resulting in inaccurate and misleading comparisons. This study 
presents a methodology for objectively comparing classical 
keypoint detection and matching algorithms by eliminating 
implicit non-geometric influences from assessments, therefore, 
offering a step towards limiting the comparison between an image 
pair to the geometric transformations between them. This 
proposed technique uses the H matrix provided by the image 
dataset to generate an augmented image that resembles one of the 
images in each image group. The performance of the proposed 
technique was evaluated using several traditional keypoint 
detections and matching techniques using image groups from 
well-known datasets to determine the impact of excluding non-
geometric changes. The assessments are conducted using the 
performance measures of repeatability, precision, and recall rates. 
Keywords: 
Augmented image; geometric transformation; homography matrix; 
keypoints.  

 
1. Introduction 

Numerous academics and researchers have 
investigated image matching by detecting and comparing 
visual features like corners and keypoints [1]. In image-
based applications, keypoints are the most often applied 
features (sometimes called interest points) which are used 
in various applications such as robotic navigation [2], image 
registration [3], object recognition [4], visual tracking [5], 
augmented reality [6], and many more [7]. Typically, the 
extracted or generated keypoints are desired to be 
insensitive to differences between similar images captured 
from the same real-world scene. These differences may 
include geometric transformations such as rotation, scale, 
skew, and perspective changes and photometric variations 
such as illumination changes. In addition, other non-
geometric alterations must be resolved when dealing with 
the keypoints of these images. 

Recently, several keypoint detectors and descriptors 
have been published, ranging from handcrafted keypoint 
algorithms to the most current neural networks and deep 

learning-based algorithms [1]. Although modern deep 
learning algorithms are more accurate and efficient in 
tackling issues involving similar images with geometry and 
photometric alterations, classical approaches remain 
competitive for certain image transformations [8]. 
Moreover, classical techniques may be involved or utilized 
in some deep learning algorithms for their operation and 
structure, with the former being less complex, generally 
faster, and needing no training phase to function. Because 
of this, these keypoint detectors and descriptors are still in 
use and high demand for several studies and applications.  

 
 Detection and matching algorithms are commonly 

compared using geometric and photometric variations 
datasets. Databases such as "VGG" [9] and "HPatches" [10] 
are often associated with homography (H) matrices to assist 
in the comparison of images. The H matrix needs to be 
given to aid in verifying the comparison, yet, models for 
implicit non-geometric adjustments, such as photometric 
changes, that have the potential to impact comparisons are 
rarely revealed. This problem suggests that keypoint-based 
algorithm comparisons may be inaccurate if the geometric 
transformation is challenging. An assessment approach 
based on image augmentation that discards implicit 
unprescribed non-geometric changes in evaluating 
keypoint-based algorithms is presented to address this issue. 
While works of literature generate new H matrices 
to produce augmented images for training purposes, this 
research augments images using the dataset's provided H 
matrix to avoid non-geometric modifications. The effect of 
removing non-geometric modifications is shown by 
comparing these image pairings' repeatability, accuracy, 
and recall rates to those of the originals using well-
established keypoint detection and matching algorithms. 

 
The following section describes picture augmentation 

and its role in image generation. Next, dataset artifacts that 
affect keypoint matching comparisons are described. The 
suggested solution is then presented after that. The fourth 
section compares the recommended approach to images 
with three keypoint detectors. Last, a conclusion is drawn 
with a look to future work.  
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2. Image Augmentation 
 
Image augmentation refers to the creation of new 

images from existing ones. Several ways have been used to 
build or grow image datasets, especially when training 
learning-based systems [11]. Inception, ResNet, and 
EfficientNet are a few well-known models that use image 
augmentation techniques during training [12]. In addition, 
as shown in [13] [16] [15] [16], image augmentation has 
also been used to match features in images with geometrical 
changes.  

In [13], data augmentation was used as part of the 
training procedure for the conventional neural network 
(CNN). When the training images are replaced with 
counterparts that have undergone a geometric 
transformation, the trained network performs very well for 
image quality assessment (IQA), which is insensitive to 
geometric modifications. The authors of [6] noted that the 
environment is considered by camera-based systems when 
a keypoint detector or descriptor is used in practical 
applications like augmented reality. As a direct result, it is 
challenging to establish a technique suited for mobile apps 
that considers diverse viewing situations and resolves the 
noise issues associated with printed images [6]. Although 
the proposed augmentation strategy in [14] is somewhat 
light compared to the raw local feature description, it 
provides significant gains on large-scale benchmarks and in 
various contexts. This enhancement demonstrates the 
applicability and generalizability of geometric matching in 
many situations. Images of wild outdoor or indoor scenes, 
patch-level homography datasets, and application-level 3D 
reconstruction image sets are benchmarks [14]. During the 
training phase, the authors of [15] used various strategies to 
augment the data. Various cropping, scaling, and rotating 
methods were used to obtain the augmented images. In [16], 
the authors provide a system for locating and tracking 
various geometrically featured planar objects. Combining 
traditional keypoint detectors with Locally Likely 
Arrangement Hashing (LLAH) can achieve keypoint 
matching based on geometric features. If the keypoint 
matching inlier rate is above a predefined threshold, a 
pyramid level is chosen for the image-pyramid. 

In the literature, the major goal of image augmentation 
for features and image matching was to train learning 
networks. This goal was achieved by delivering and 
integrating new images with varied scenarios do not present 
in the original collection. This study augments images 
differently than previous research. This study employs 
image augmentation to create images with only preset 
geometric differences (no non-geometric changes) for 
objective keypoint identification and matching assessments.  

The generation of augmented images could be 
accomplished based on the H matrix provided in datasets, 
as indicated previously. For example, given the image pair 

𝐼௔  and 𝐼௕ , the second image is augmented from the first 
image. 

𝐼ሚ௕
௔ ൌ 𝐼௔் ൌ 𝐼௔ୌ   (1) 

where 𝐼ሚ௕
௔ represents the augmented image that is equivalent 

to the original image 𝐼௕ by transforming image 𝐼௔ using the 
transformation matrix T. Usually, the datasets are 
associated with the H matrix that transforms the first image 
(often called reference image) to the second image in the 
same image group. 

Figure 1 is an example from the VGG dataset, the 
"Graffiti" image group (image pair I1&I4), which 
demonstrates a change of viewpoint across images of the 
same scene. One image is generated from the other image 
in the same pair using the appropriate transformation based 
on the H matrix of that pair. The symbols Ia and Ib represent 
the first and second images in each image pair for image 

groups within the examined datasets. 
Fig. 1. Sample of image generation using the given homography matrix 

H for the image pair (Ia = I1 & Ib = I4) of the "Graffiti" group. 

3. Viewpoint-Change Images Issues   
 
Viewpoint-change datasets from real-world settings 

often include image group issues due primarily to violations 
of the homography assumption (i.e., images are not 
restricted to a plane), inaccurate homographies [12] [17], 
non-rectified distortions (e.g., the benchmark may not 
address the radial distortion [10]), and implicit non-
geometric (e.g., photometric) changes. Even when the H 
matrix is supplied, which should aid in validating the 
comparisons, no model is often provided to explain any 
other discrepancies between these image pairs. Therefore, 
non-prescribed modifications, such as moving objects and 
photometric variations, may impact the comparisons' 
outcomes. For example, using the image pair from Fig. 1, 
the inverse of the H matrix is used to transform and project 
(align) the second image onto the first image, as shown in 
Fig. 2. This alignment of the original image pair (I1 & I4) in 
the "Graffiti" image group results in several differences and 
inaccuracies. These flaws cannot be rectified by adjusting 
the projection matrix, which is restricted to changes within 
the image plane. Images taken in real-world settings from 
various perspectives often include similar implicit 

T=H 

image 𝐼௔் 

image 𝐼௔

image 𝐼௕ 

H
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variations. The imprecise H matrix and non-geometric 
alterations degrade the quality and accuracy of performance 
assessments for any image-matching process.  

 
Fig. 2. Example of the differences that might affect the performance of 

an image-matching algorithm. Using the given homography matrix 
H, the figure depicts the projection of image (I4) into image (I1) for 
the Graffiti image group. 

 To further investigate the effect of these errors on images, 
the structural similarity index measure (SSIM) is utilized. 
The three steps of the SSIM method for evaluating 
similarity consist of brightness, contrast, and structural 
comparisons. Structural information extraction is 
independent of contrast and light effects [18]. The SSIM 
value ranges from 0 to 1, and it is defined by 

𝑆𝑆𝐼𝑀ሺ𝐼௔, 𝐼௕ሻ ൌ
ሺଶఓೌఓ್ା௞భሻሺଶఙೌ್ା௞మሻ

ሺఓೌ
మାఓ್

మା௞భሻሺఙೌ
మାఙ್

మା௞మሻ
  (2) 

where 𝜇௔ is the average of image Ia, μb is the average of 
image Ib, 𝜎௔ଶ and 𝜎௕

ଶ are the variances, and 𝜎௔௕ is the cross-
covariance of the two images. 𝑘ଵ and 𝑘ଶ guarantee that the 
denominator is not zero.  

The SSIM map, which presents a local image quality 
measure in the image's spatial domain, can show how 
similar the local areas of the two images are. Large (bright) 
values show similar local areas, while small (dark) values 
show different local areas. For example, figure 3 shows the 
SSIM maps for the "Graffiti" image pair (I1&I4) when 
projecting and aligning image I4 to image I1. The lower-
intensity (darker) values in the SSIM indicate high errors 
between aligned images. 

Fig. 3. Errors revealed by the SSIM map in the common region of image 
pair I1 & I4 of the "Graffiti" image group.  

4. Comparisons for Keypoints-based 
Algorithms 
 

 The performance evaluation of the algorithms that use 
these pictures is impacted by the inaccuracies in the aligned 
image pairs of the perspective change datasets. This study 

offers objective comparisons by removing implicit non-
geometric and non-described image modifications. 𝐼ሚ௕

௔ is a 
mathematically transformed version of 𝐼௔ , with no non-
geometric alterations. Fig. 4 shows the SSIM map 
calculated for this newly generated image with its original 
image compared to Fig. 3 for the original image pair without 
augmentation.  

Fig. 4. a) The common region of the aligned "Graffiti" images 𝐼ଵ and 𝐼ሚସ
ଵ, 

b) The SSIM map for a). 

 Similarly, inaccuracies might be found in other datasets. 
For example, Fig. 5 displays errors in one of the viewpoint-
change image groups "Abstract" in the "HPatches" dataset. 
Even though the dataset was intended to resolve the issues 
of the previous dataset, VGG, in which the homography 
constraint was not adequately enforced, it is evident that the 
error is due to the inaccuracy of the H matrix and the 
influence of the implicit variations.  
 

   
a) 

    
b) 

     
c) 

Fig. 5. Additional illustrations of the errors in the common region of the 
image pair in (left column) the “Abstract” group (from dataset 
“HPatches”) and (right column) “Boat” group (from dataset “VGG”) 
a) projection of image 𝐼ሚସ

ଵ onto image 𝐼ଵ, b) the SSIM map for the 

  
 

a)          b) 
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original image pair ( 𝐼ଵ & 𝐼ସ ), c) the SSIM map, using data 
augmentation, for the image pair (𝐼ଵ&𝐼ሚସ

ଵ). 

 Figures 3-5 illustrate, as instances, the SSIM maps for the 
"Graffiti," "Abstract," and "Boat" image pairs (I1&I4) from 
two different datasets. These differences may be caused by 
missing parts, image contents change, and image segments 
outside the comparable region, as seen in Fig. 2. Moreover, 
scene illumination change, and resampling/interpolation 
process may cause the differences. Such variations may be 
present implicitly in several datasets used to evaluate and 
verify detection and matching algorithms, but primarily the 
assessment procedure disregards them. 

4.1 Keypoint-based Methods 

 Keypoints are essential visual characteristics that have 
lately gained widespread use in the literature. Some of these 
methods were insensitive to fundamental geometric 
transformations like rotation and scaling, while others were 
designed to be invariant under higher-order transformations 
such as affine and projective transformations.  
While deep learning has provided a new approach to image 
matching, it still faces challenges during training, such as 
using CNN models on sparse point data for registration, the 
estimate of transformations, and matching [1]. According to 
[8], some conventional methods compete with and, in some 
situations, outperform deep learning methods. However, 
deep-learned algorithms outperform conventional 
approaches in other situations by a small margin. For 
example, although deep learning is favoured in illumination 
invariance, conventional detectors remain competitive [19]. 
In [20], while proven, deep learning's potential to tackle 
matching challenges in photogrammetry and remote 
sensing is not entirely exposed. Although automation and 
deep learning reduce the need for domain expertise, 
utilizing them as "black boxes" without checking outcomes 
is risky. Although CNN-based descriptors outperform 
traditional handcrafted features, according to the authors of 
[21], an appropriate adjustment of features may 
considerably improve the results of all methods and reduce 
the difference between SIFT (Scale Invariant Feature 
Transform [22]) and the existing learning-based descriptors. 
However, for handcrafted descriptors, this also includes 
determining the suitable normalization for the target 
domain [21].  
 Despite extensive previous studies, as in [23] [24] [25], 
no single detector or descriptor is best for all image 
geometrical and photometric changes [6] [26]. For example, 
in [27], it was shown that SIFT is one of the most accurate 
algorithms; however, in [22], both the SURF (Speeded Up 
Robust Features) [28] and KAZE [29] approaches 
significantly surpassed SIFT. Moreover, KAZE is superior 
to SURF [30]. Therefore, as prototypes, these three 

keypoint detectors have been chosen for utilization in the 
experiments of this paper.  

4.2 Performance Measures 

 In the literature, a range of measurements is used to 
evaluate and contrast traditional keypoint-based methods' 
computational and statistical performance, including 
repeatability, accuracy, and recall rates. The repeatability 
rate is computed for evaluating the performance of keypoint 
detectors, while the precision and recall rates are applied to 
descriptors and matching stages. For a keypoint detector 
applied to two similar images, Ia and Ib, with Na detected 
keypoints in the first image and Nb detected keypoints in the 
second image that lie in the common region of both images, 
the repeatability rate is computed similar to [31]. 

 𝑅𝑒𝑝 ൌ
ேೝ೛
ଶ
ሺ
ଵ

ேೌ
൅

ଵ

ே್
ሻ  % 

where 𝑁௥௣ is the repeated keypoints count computed when 
projecting image 𝐼௕ onto image 𝐼௔. 

The precision and recall rates are calculated by,  

 𝑃 ൌ
ே೎
ே೘೟

 % 

and 

 𝑅 ൌ ே೎
ே೎ೝ

 % 

where 𝑁௖, 𝑁௠௧, and 𝑁௖௥ are the counts of correctly matched 
keypoint, the total matches, and the correspondences 
computed by projecting image 𝐼௕  onto image 𝐼௔ , 
respectively. 

5. Experimental Results 

5.1 Viewpoint-Change Image Groups 

The image groups used in the experiments are taken from 
two well-known datasets in the computer vision field: the 
VGG (Oxford) [9] and HPatches [10] datasets. The images 
in these datasets were divided into groups based on their 
geometric and photometric changes. Since the interest in this 
paper is in geometric transformations, six image groups are 
chosen to represent the transformation; three groups, 
"Graffiti," "Boat," and "Bricks," belong to the first dataset, 
while the other three groups, "Abstract," "Bird," and 
"Laptop," are from the second dataset. The primary purpose 
behind forming all these image groups was to evaluate 
detection and matching algorithms for changes in 
geometrical transformations across images. The changes in 
these groups range from rotation+scale to projective 
transformations, as seen in Fig. 7, which displays all the 
image groups used in this study's experiments. All 
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experiments throughout this paper were implemented using 
MATLAB 2022 software and its associated toolboxes.  

 

 Image Group 
#Graffiti Boat Bricks Abstract Bird Laptop 
1

 
2

3

 
4

 
5

 
6

 
Fig. 6. The image groups utilized in the experiments with their names. 

Each of the displayed groups contains six images with varying 
geometric transformations.   

5.2 SSIM Measures 

As stated in the earlier section, the tested datasets include 
the homography H matrix that specifies the geometric 
change between the group's first image (reference) and the 
remaining images. However, the images presented in the 
studied datasets, including the image groups in Fig. 6, suffer 
from erroneous alignment and non-geometric variances that 
impact the keypoint matching algorithms' measurements 
with no explicit, detailed information on the non-geometric 
changes in these groups. This is evident from Fig. 7, which 
depicts the SSIM measurements (2) of the six tested image 
groups. The top plot is obtained when the second original 
image, 𝐼௕, is transformed and superimposed over the original 
first image, 𝐼௔, within its pair of images. The bottom plots 
show the SSIM measurements when image augmentation is 
used for generating the image 𝐼ሚ௔௕using the supplied H matrix 
for each image pair in the tested datasets. The results of Fig. 
7 demonstrate that the image augmentation technique used 
in this study significantly enhances the similarity between 
images in each image pair assessed for geometric differences. 
However, the considerable scale differences between the 
images in the "Boat" image group provide variable SSIM 
findings. These significant scale changes induce additional 
errors due to the accompanying resampling and interpolation 
processes. 

 
a)                                     b) 

Fig. 7. The SSIM measurements for a) original image pairs (𝐼௔, 𝐼௕) when 
𝐼௕  is projected onto image 𝐼௔ ; b) image pairs (𝐼௔ ,𝐼ሚ௕

௔ )using image 
augmentation augmented image 𝐼ሚ௕

௔ projected into image 𝐼௔. 𝐼௔ and 𝐼௕ 
represent the first and second images for each image pair examined. 

5.3 Performance Assessment 

Three traditional handcrafted keypoint detectors and 
descriptors were adopted as examples in this paper for 
performance comparisons using the proposed method; 
KAZE, SURF, and SIFT. Figures 8-10 show the 
repeatability, accuracy, and recall rates for the original 
image pairs (Rep0, P0, and R0) and use the augmentation 
method for the second image in each r (Rep1, P1, and R1). 
These rates are determined for a distance of two pixels in all 
cases.  

The results of Figs. 8-10 illustrate that, in general, all 
measures, especially the precision, of the three applicable 
keypoint approaches, KAZE, SURF, and SIFT, improved 
when implicit unprescribed (non-geometric) modifications 
were excluded from comparisons. Since the three studied 
methods are rotation- and scale-invariant, this benefit is 
particularly noticeable for similarity and moderate affine 
transformation. The precision rates of the augmented 
modified image pairs for the "Laptop" and "Boat" image 
groups are much higher than the original image pairs' rates. 
The increase in precision rates varies between the "Bricks" 
and "Abstract" image sets, which exhibit affine and weak 
perspective transformations. KAZE performs better with 
dense keypoints in these image groups' augmented images. 
The limited number of keypoints and a greater degree of 
modifications in the last image pair of the "Bricks" group 
present difficulties for the performance of the other 
techniques, SURF and SIFT. Despite improvements, the 
last two pairs of images in perspective transformation, 
"Graffiti" and "Bird" image groups, continue to be 
challenging for all three methods due to the greater degree 
of modification than the first images in the groups. 
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a)      b) 

 
c)      d) 

 
e)      f) 

Fig. 8. Repeatability (Rep%), precision (P%), and recall (R%) rates using the KAZE method for the original image pairs (a, c, and e in the left column) and 
when the second image is augmented in each image pair (b, d, and f on the right column). 
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a)      b) 

 
c)      d) 

 
e)      f) 

Fig. 9. Repeatability (Rep%), precision (P%), and recall (R%) rates using the SURF method for the original image pairs (a, c, and e in the left column) and 
when the second image is augmented in each image pair (b, d, and f on the right column). 
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a)      b) 

 
c)      d) 

 
e)      f) 

Fig. 10. Repeatability (Rep%), precision (P%), and recall (R%) rates using the SIFT method for the original image pairs (a, c, and e in the left column) and 
when the second image is augmented in each image pair (b, d, and f on the right column). 

The effects of the chosen augmentation approach on the 
averages of the three metrics, repeatability, accuracy, and 
recall rates, are shown in Fig. 11. Each bar in Fig. 11's plots 
represents the change in the average of the stated measure 
following image augmentation, stacked for the three 

keypoint-based approaches. Figure 11 presents the values 
according to the following 

𝐴𝑣𝑅𝑒𝑝ௗ ൌ 𝐴𝑣𝑅𝑒𝑝ଵ െ 𝐴𝑣𝑅𝑒𝑝଴ %   (6.a) 

𝐴𝑣𝑃ௗ ൌ 𝐴𝑣𝑃ଵ െ 𝐴𝑣𝑃଴ %   (6.b) 

𝐴𝑣𝑅ௗ ൌ 𝐴𝑣𝑅ଵ െ 𝐴𝑣𝑅଴ %   (6.c) 
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where 𝐴𝑣𝑅𝑒𝑝଴, 𝐴𝑣𝑃଴, and 𝐴𝑣𝑅଴  are the averages of the 
original images' repeatability, precision, and recall rates per 
image group (𝑅𝑒𝑝଴, 𝑃଴, and  𝑅଴,  are illustrated in Figs. 8, 9, 
and 10, respectively). When applying image augmentation, 
the averages of the repeatability, precision and recall rates 
per image group are denoted as 𝐴𝑣𝑅𝑒𝑝ଵ, 𝐴𝑣𝑃ଵ, and 𝐴𝑣𝑅ଵ, 
respectively (𝑅𝑒𝑝ଵ, 𝑃ଵ,  and 𝑅ଵ, respectively) are shown in 
Figs. 8, 9, and 10). 

All three keypoint-based algorithms evaluated reacted 
differently to the augmented images with replaceable 

superiority, consistent with the earlier section's comments 
and the literature results. However, according to Fig. 11, the 
repeatability and accuracy rates of the KAZE and SIFT 
algorithms were more significantly impacted by the image 
augmentation than those of the SURF approach. The SIFT 
technique, on the other hand, performs better for the rotation 
and scale change image groups "Boat" and "Laptop" since it 
is supposed to be invariant to these sorts of changes. 
Furthermore, due to the high number of generated keypoints, 
the KAZE algorithm performs better in terms of 
repeatability than other methods. 

 

  a)      b)    c) 

Fig. 11. Comparisons of the change rates for the three performance measures: a) Repeatability, b) Precision, and c) Recall rates.  

Conclusions 

Accurate and fair performance evaluation of keypoint 
detectors and matching algorithms is essential in developing 
modern-day image processing and machine vision 
applications. These performance evaluations typically use 
datasets of real-world images that have a range of geometric 
and non-geometric variations. Unfortunately, ignoring non-
geometric influences has reduced the accuracy and fairness 
of the performance evaluation outcomes. Therefore, a 
methodology is presented in this paper to address this issue. 
The proposed technique creates an augmented image for 
each pair for image datasets where the H-matrix is included, 
eliminating the non-geometric influences. The proposed 
method for augmenting images does not require replacement 
comparisons with the source datasets. Instead, it offers an 
additional way to analyze exact geometric transformations 
of real images using H matrices derived from actual 
perspective change situations. The performance of the 
proposed method was evaluated using three well-known 
traditional handcrafted keypoint detectors and descriptors, 
namely KAZE, SURF, and SIFT. In addition, the 
repeatability, precision, and recall rates were measured. 
Results demonstrate that the three keypoint detectors and 
descriptors behave as predicted when analyzing geometric 
modifications.  

Future work should build on these experimental 
comparisons of the algorithms and conduct a more thorough 
review of them utilizing various evaluation techniques. In 
addition, this work might be expanded to explore the 

relationship between other particular combinations of 
augmenting data and assessing methods.  
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