
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

107

Manuscript received December 5, 2022
Manuscript revised December 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.12.14

Access Control Mechanism for CouchDB

Ashwaq A. Al-otaibi 1†, Reem M. Alotaibi 1† and Nermin Hamza2††
aalotaibi0553@stu.kau.edu.sa ralotibi@kau.edu.sa nermin.hamza@cu.edu.eg

1† Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
2†† Faculty of Graduate Studies of Statistical Research, Cairo University, Cairo, Egypt

Summary
Recently, big data applications need another database different
from the Relation database. NoSQL databases are used to save and
handle massive amounts of data. NoSQL databases have many
advantages over traditional databases like flexibility, efficiently
processing data, scalability, and dynamic schemas. Most of the
current applications are based on the web, and the size of data is
in increasing. NoSQL databases are expected to be used on a more
and large scale in the future. However, NoSQL suffers from many
security issues, and one of them is access control. Many recent
applications need Fine-Grained Access control (FGAC). The
integration of the NoSQL databases with FGAC will increase their
usability in various fields. It will offer customized data protection
levels and enhance security in NoSQL databases. There are
different NoSQL database models, and a document-based
database is one type of them. In this research, we choose the
CouchDB NoSQL document database and develop an access
control mechanism that works at a fain-grained level. The
proposed mechanism uses role-based access control of CouchDB
and restricts read access to work at the document level. The
experiment shows that our mechanism effectively works at the
document level in CouchDB with good execution time.
Keywords:
Big data; Security issues; Access control; Fine-Grained Access
control (FGAC); NoSQL database.

1. Introduction

The increasing amount of data has created
enormous challenges for obtaining, storing,
managing, and analysing data [1]. The term big
data refers to data with 3V. They are high volume,
velocity, and variety [2]. It is not possible to
process big data using traditional data processing
platforms [3].

Google and Facebook are among the
companies that have discovered that relational
databases are unable to handle big data and
achieve the requirements of their users [3]. As a
result, a new database called NoSQL reads as
"Not Only SQL." The NoSQL provides data
model flexibility, scalability, dynamic schemas,
and efficient processing big data. It can process
structure, semi-structured and unstructured data

like documents, e-mail, and social media
effectively. It utilizes distributed devices for data
storage and retrieval.

Nowadays, organizations moved from Relation
Database Systems (RDBS) towards NoSQL
databases because of the increasing use of cloud
computing and big data [3]. Compared with
different databases, a NoSQL database is a good
choice for big data applications.

The NoSQL databases based have been
arranged on their popularity [4]. The top NoSQL
databases are MongoDB, Hypertable, CouchDB,
Redis, and Cassandra.
Despite the popularity of NoSQL databases and their
advantages, these systems have critical security problems
[5]. Weak data protection is the most important issue
applied in the current mechanisms [6]. In data protection,
access control is the fundamental requirement of any
database system [5]. Access control is one of the
main security utilities currently provided by
RDBMSs and NoSQL databases [7]. Authorize
users to access only a portion of the entire database called
granular security [8].

Most NoSQL databases implement standard
access control techniques at the level of coarse-
grained. Several document-based databases allow
users to access the entire database or nothing at all
[9]. Improving levels of data protection in
systems can increase their growth and usability.
As big data platforms frequently handle sensitive
data, access control mechanisms should work at
the finest granularity levels [10].

Enforcement of a Fine-Grained Access Control
(FGAC) into databases that store user personal
data can be very useful [4]. FGAC is an essential
requirement in many applications. NoSQL
databases are classified into four models, which
are key-value, column-based, document-based,
and graph-based database [11]. A Few NoSQL

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

108

databases provide native support of FGAC, such
as Accumulo, which is a key-value database that
implements an access control mechanism at the
cell level. However, most NoSQL databases did
not implement FGAC.

This paper proposes an access control
mechanism that implements read access at the
document level. The proposed mechanism works
on Role-Based Access Control (RBAC) of
CouchDB. It is used within a design document of
the specified database. The proposed mechanism
aims to allow authorized users to access specific
documents within the database. The document
access depends on specific permission rules. We
evaluate the proposed mechanism using
UNECE’s Country Overview dataset. In
particular, the main contributions of this paper are
as follows:
 Propose an access control mechanism and

implement authorization at a fine-grained level
in the CouchDB database.

 Work on Role-Based Access Control (RBAC)
of CouchDB.

 Implement read access to work at the document
level.

The paper is organized as follows. Section II
provides a review of existing access control
models in different NoSQL databases. Section III
and IV present the proposed access control
mechanism and the experimental set-up.
Finally, Section V shows the conclusion of the
paper.

2. NOSQL Databases Access Control

Lack of access control mechanisms is one of the

main security problems in some NoSQL
databases.Vonitsanos et al. discussed the main
security concerns in NoSQL databases. Access
control and data protection can be considered as
some of the major security issues in these
databases [12].

 Dadapeer et al. [3] analysed the security
characteristics of MongoDB, Cassandra,

CouchDB, HBase, and Redis. Authorization
mechanisms differ in these databases. In general,
NoSQL databases implement ineffective
authorization techniques. Many of them did not
perform authorization on a fine-grained level. The
current section will present some research studies
on NoSQL Database access control.

Kulkarni [13] proposed a fine-grained access
control model for Cassandra and HBase. The
proposed model works at different levels, such as
a row, column, or column family level. However,
the model cannot be operated with other
databases.

Huang et al. [14] propose an Attribute-Based
Fine-Grained Access Control (AGAC) technique,
which supports five granularity levels and users’
atomic operations. The AGAC mechanism aims
to enhance the access control capacity of HBase.
Also, it provides flexibility in the authorization.
However, developing the access control
mechanism of other NoSQL database types
remains a huge challenge.

For graph-based databases, Morgado et al. [15]
developed a model that implements access control
for these databases. The model utilizes metadata
and provides Data Definition Language (DDL)
and Data Manipulation Language (DML)
operations. The aim is to permit various
applications to perform their access control model
in case of using the graph-oriented database. It
was applied to the Neo4j database. The model
was able to prevent unauthorized access.
However, the model should be executed in the
core of Neo4j, and its performance evaluated to
determine its feasibility. Also, the access control
mechanism needs to be expanded to operate at
finer granularity level.

To explore the possibility of implement
granular security in the graph-based database,
Crawford [16] utilizes graph concepts in the
Neo4j database to discover a mechanism that
allows access to data, whereas preserving the
security. The mechanism depends on
mathematical formulas to locate two-hop
connections that go out and return to the network
security layer. The user can detect these

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

109

connections without violating the security set by
the security layer.

For document-based databases, a document-
based database stores data as documents. Several
research studies have focused on MongoDB.
Colombo and Ferrari [17] suggested the
combination of a purpose-based model into
MongoDB. They design an enforcement monitor
that operates as a proxy between the server and
clients. The proxy monitors the stream of
messages between clients and the server and may
alter it. It can operate with any MongoDB
deployment. The proposed model worked on the
Role-Based Access Control (RBAC) [18] of
MongoDB and supported a purpose-based policy.
It implements access control at the document
level. However, the model is specific to
MongoDB. It should be generalized to work with
other NoSQL databases. Furthermore, there is a
need to improve the model to operate on the field
level.

To design an access control mechanism for
MongoDB that operates on the field level. The
authors [19] improved the RBAC model of
MongoDB to support both content and context-
based access control policies. They developed a
monitor that was determined to work with any
MongoDB deployment. The monitor is a Wire
protocol interpreter that works as a proxy. It
monitors and may change messages between
MongoDB clients and the server. However, the
monitor cannot work for all types of queries in the
same effective way. The overhead is low for find
and
map-reduce queries, whereas it is significant for
aggregate queries.

Longstaff and Noble [20] proposed an
Attribute-Based Access Control (ABAC) [21]
model for big data applications. The proposed
model can work with a relational database,
Hadoop, and NoSQL database. It depends on
modifying queries and integrates the ABAC into
the user transaction code. However, the
mechanism specific for SQL queries. The SQL
cannot process a variety of data from NoSQL
databases.

To integrate ABAC into databases, Colombo
and Ferrari [22] proposed a mechanism that
implements various ABAC policies for
documents on field level. The proposed
mechanism rewrites SQL++ queries and works
with each document-based database that provides
SQL++. However, a tool is needed to simplify
specifying policies and binding process.
Furthermore, the model only works with the
NoSQL databases that support SQL++.

In general, previous studies in document-based
databases have almost exclusively concentrated
on MongoDB. CouchDB is one of the most
common NoSQL databases [23]. Fig 1 show the
structure of CouchDB database. It is a document-
based database that allows authorized users to
read all documents in the database. The read
access works on the database level. Each
document is uniquely named and contains one or
more fields. The database system maintains the
documents metadata. Fields inside the document
consist of values of different forms (number,
Boolean, text, lists).

Figure 1: CouchDB database structure

For updating (edit, add, delete) and reading

database documents, CouchDB supports a
RESTful HTTP API by using various request
forms such as put, get, post, head, copy, and
delete. CouchDB data structure is a JavaScript
Object Notation (JSON) object.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

110

The CouchDB server has many databases. Each
one consists of its own authorization rules. These
rules determine which users are permitted to write
and read documents, modify specific database
configuration parameters, and create design
documents. The server admin can set up the
authorization rules and can modify them at any
time. Database authorization rules set a user into
one of two categories:
 Members who can access all documents, create

documents, and alter any document unless
design documents.

 Admins who can write and read all kinds of
documents, alter which users are admins or
users, and set specific configuration options for
each database. The actions of a database admin
are restricted to a specific database.

CouchDB provides a function to restrict
document updates, which is called
validate_doc_update. This function can be used to
deny unauthorized requests to update documents.
In CouchDB, no mechanism restricts access to
documents. The members can access all
documents in the database.

In this work, we propose an access control
mechanism for CouchDB to restrict the document
read access. The mechanism uses RBAC that is
supported by CouchDB, and it implements access
control at the document level. It depends on the
user role and the role field created in the document.
When a user requests a document, only allow
access to that document if the roles are the same.

3. The Proposed Mechanism

There are two different scenarios for the proposed access
control mechanism, and we will explain the admin scenario
and then the user scenario.
3.1 Admin Scenario
The database admin assigns roles to the users, adds the field
“role” in every document stored in the database, and creates
an access control component in the specified database. Fig.2

shows the admin scenario of the proposed mechanism, and
Fig3. illustrates the documents inside CouchDB database
with role field.

Figure 2: Admin scenario of the proposed access control
mechanism

The access control component consists of a design
document that contains a show function. The show function
provided by CouchDB is used to represent documents in
various formats. Also, it can be used to operate server-side
functions without the need for a pre-existing document.
In this work, we use it to run the AccessbyRole function that
implements access control at the document level by only
allow users whose roles match the role field to access the
requested document.
The proposed mechanism used the access control
component when the user sends a get request for a
document. Request a document using the show function
work in this format:

GET/mydb/_design/mydesign/_show/myshow/doc_id

However, we want to request the document directly from
the database with a simple GET request. Rewrites feature
used to rewrite the specified path according to rules
determined in the specific design document.

Rol

CouchD
B DB

Access
control

componen
t

Docume
nt

Admi User

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

111

Figure 3: CouchDB documents with the proposed
mechanism

Listing 1: shows the pseudocode of the access control
component.

Listing 1 Access control component

{"_id": "_design/role",

"shows": {

"AccessbyRole": "function(doc, req){\r\n if (doc.role ==
req.userCtx.roles) {\r\n return toJSON(doc) } else \r\n {\r\n
return \"unauthorized to access this document\";\r\n \r\n}}"

},

"language": "javascript",

"rewrites": [

{

"from": "dataset/*",

"to": "../../_design/role/_show/AccessbyRole/*",

"method": "GET"}]}

The rules are defined in a string, or array field called
rewrites within the design document.
This combination of features within the design document
resource means that the application can be deployed without

disclosing the full CouchDB API to the users by using a
virtual host.
CouchDB can assigns requests to various locations based
on the Host header. This permits different virtual hosts on
the same device to map to various design documents or
databases.
The most prevalent use case is to provide entire control over
the application’s URIs by mapping a virtual host to a rewrite
handler. To insert a virtual host, it is enough to edit the
host’s file and add an entry. In this work, we add a virtual
host called localdb in the windows host file instead of the
localhost of CouchDB.

We work in a virtual host named localdb. To set a virtual
host configuration, we work on default.ini and local.ini,
which are CouchDB configuration files. In the default.ini
file, we create a section called Virtual Host (vhost) preceded
by Cross-Origin Resource Sharing (Cors). Then, we edit the
vhosts section in the local.ini and add localdb to it. Now, all
GET document requests to the database will be redirected
to the proposed mechanism.

3.2 User Scenario
When the user wants to access a specific document, she/he
sends a GET request with a document id to the CouchDB.
The CouchDB uses an access control component that exists
in the database to check whether the user is authorized to
access the requested document or not.
Every user has a role, and if the role field of the requested
document is the same as the user’s role, the document is
returned to the user. Otherwise, the user is unauthorized to
access this document. Fig.4 shows the user scenario.

Figure 4: User scenario of the proposed access control
mechanism

User DB
Access
Control

Component

Check
user’s
role &

role
field

Document

Unauthorize
d

Document

Document
id

Same

Not Same

CouchDB
server DB

Document:
{Role:

"Manager",
Country:

"Albania",
Year: "2000"}

Document:
{Role:

"investor ",
Country:
"Spain",

Year: "2006"}

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

112

4. Experimental Setup
To evaluate the proposed mechanism, the test was
performed with document requests for different users
to evaluate the performance of the mechanism and its
execution time.

We followed several steps to test the efficiency of the
proposed mechanism, which are:

1. First, the admin creates users, roles, and assigns
roles to the users.

2. Second, the admin adds role fields to every
document.

3. Third, we specify which user will send the
document’s Get request.

4. Fourth, we specify the execution time for each
request.

4.1 Dataset Description

To evaluate the proposed model, we made use of
UNECE's Country Overview, which is a public dataset
that includes 884 documents with 79 fields. This
dataset was retrieved in the JSON-stat format using
the bulk document insert feature provided by
CouchDB. The admin adds a role field to each
document in the dataset.

4.2 Result Analysis

To evaluate the performance of the proposed
mechanism, we tested the validity of the mechanism
and discussed its execution time. We conducted two
different test cases to validate our mechanism
(authorized access and unauthorized access).

To implement the mechanism, we created two users
with different roles. Alice, with a manager role, and
Bob with an investor role. The user can access the
document if the user’s role matches the document’s
role.

4.2.1 Authorized Access Case

In our mechanism, the user is authorized to access the
required document when the user's role matches the
role field of the requested document. For example,
Alice can access any document where the role field is
a manager.

The figures below show the result of applying the
mechanism. Fig.5 shows the document with the role
field “Manger” and Fig.6 shows the result when the
user “Alice” sent a Get request for this document.

Alice has a Manager role, which is the same role as the
requested document. CouchDB returns the requested
document to the user.

Figure 5: Document with the role field “Manger.”

Figure 6: Result of an authorized request.

4.2.2 Unauthorized Access Case

In our mechanism, access to documents is
unauthorized when the roles are not the same. Fig.7
shows the result of the unauthorized Get request. Bob,
who has an “investor” role, tried to access a document
with the “Manager” role field. By using the proposed
mechanism, CouchDB returns “unauthorized to access
this document.”

Figure 7: Result of an unauthorized request.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

113

4.2.3 Execution Time

In this subsection, we will compare the execution time
of the Get request using the proposed mechanism and
without it. The execution time of the Get request is the
sum of prepare, socket initialization, Transmission
Control Protocol (TCP), Domain Name System (DNS)
lookup, handshake, transfer start, download, and
process.

First, we sent the GET request for a document without
using the mechanism. As shown in Fig.8, the
execution time was about 20ms. In the second case,
we sent a Get request for a document using the
proposed mechanism.

Fig.9 shows the execution time was about 22ms for an
unauthorized GET request, while Fig.10 shows the
execution time for the authorized GET request was
about 21ms.

Figure 8: The execution time of a Get request
without using the mechanism.

Figure 9: The execution time of an unauthorized
Get request using the mechanism

From the above figures, the execution time of a Get
request without using the proposed mechanism is
close to the execution time with using it. The proposed
mechanism did not affect the database’s performance.

However, the proposed mechanism does not work
with mango query including find and index. Moreover,
it does not support other NoSQL databases.

Figure 10: The execution time of an authorized Get
request using the mechanism.

5 CONCLUSION

 Recent developments in big data and cloud
computing have created the need to store a huge amount
of data in databases that offer high scalability and
availability. This has prompted companies to switch
from relational databases toward the NoSQL database.
NoSQL gained extensive market interest and became a
popular database choice. It can process huge volumes of
unstructured, structured, semi-structured data.

NoSQL provides flexibility, scalability, better
performance, and often open source in the schema.
However, it does not have a standard query language
and lacks the appropriate security techniques. As large
amounts of sensitive user data stored in NoSQL
databases, the security provided by these systems has
become a growing concern. NoSQL databases need
effective data protection.

Access control and data protection are among the
important security issues. Access control is the primary
part of data protection for any DBMS. The majority of
NoSQL systems implement basic access control
techniques that work on a coarse-grained level.
However, FGAC is the main requirement in many data
management systems and applications. Implement
FGAC in the NoSQL databases is a new research topic
recently covered.

Acknowledgment
This work was supported by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah,
under grant No. (DG-044-612-1440). The authors,
therefore, gratefully acknowledge the DSR technical
and financial support.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

114

Conflicts of Interest
 We have NO affiliations with or involvement in any
organization or entity with any financial interest or
non-financial interest in the subject matter or materials
discussed in this manuscript.

References

[1] M. Chen, S. Mao and Y. Liu, "Big data: A
survey," Mobile networks and applications,
vol.19, no. 2, pp. 171-209, 2014.

[2] E. Sahafizadeh and M. A. Nematbakhsh, "A
survey on security issues in Big Data and
NoSQL," Advances in Computer Science: an
International Journal, vol. 4, no. 4, pp. 68-72,
2015.

[3] N. Dadapeer, G. Adarsh and M. Indravasan, “A
Survey on Security of NoSQL Databases,”
International Journal of Innovative Research in
Computer and Communication Engineering, vol.
4, no. 4, pp. 5250-5254, 2016.

[4] P. Noiumkar and T. Chomsiri, "A comparison the
level of security on top 5 open source NoSQL
databases," The 9th International Conference on
Information Technology and Applications
(ICITA2014), 2014.

[5] P. Colombo and E. Ferrari, "Fine-Grained Access
Control Within NoSQL Document-Oriented
Datastores," Data Science and Engineering, vol.
1, no. 3, pp. 127-138, 2016.

[6] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes and J.
Abramov, "Security issues in nosql databases,"
Trust, Security and Privacy in Computing and
Communications (TrustCom), 2011 IEEE 10th
International Conference on, pp. 541-547, 2011.

[7] P. Colombo and E. Ferrari, “Evaluating the effects
of access control policies within NoSQL
systems,” Future Generation Computer Systems,
vol. 114, pp. 491-505, 2021.

[8] S. Rizvi, A. Mendelzon, S. Sudarshan and P. Roy,
“Extending query rewriting techniques for fine-
grained access control,” Proceedings of the 2004
ACM SIGMOD international conference on
Management of data, pp 551-562, 2004.

[9] A. Alotaibi, R. Alotaibi and N. Hamza, “Access
Control Models in NoSQL Databases: An
Overview,” journal of king abdulaziz university
computing and information technology sciences,
vol. 8, no. 1, pp: 1 – 9, 2019.

[10] P. Colombo and E. Ferrari, “Access control in the
era of big data: State of the art and research
directions,” Proceedings of the 23nd ACM on
Symposium on Access Control Models and
Technologies, pp: 185–192, 2018

[11] Fidels Cybersecurity, “Current Data Security
Issues of NoSQL Databases”, 2014.

[12] G. Vonitsanos, E. Dritsas, A. Kanavos, P.
Mylonas and S. Sioutas, "Security and Privacy
Solutions associated with NoSQL Data Stores,"
2020 IEEE 15th International Workshop on
Semantic and Social Media Adaptation and
Personalization (SMA), pp. 1-5, 2020.

[13] D. Kulkarni, "A fine-grained access control
model for key-value systems," Proceedings of the
third ACM conference on Data and application
security and privacy, pp. 161-164, 2013.

[14] L. Huang, Y. Zhu, X. Wang and F. Khurshid,
“An Attribute-Based Fine-Grained Access
Control Mechanism for HBase,” International
Conference on Database and Expert Systems
Applications, Springer, pp. 44-59, 2019.

[15] C. Morgado, G. Busichia Baioco, T. Basso and R.
Moraes, "A Security Model for Access Control in
Graph-Oriented Databases," in 2018 IEEE
International Conference on Software Quality,
Reliability and Security (QRS), Lisbon, pp. 135-
142, 2018.

[16] B. Crawford, "Granular security in a graph
database," Master’s thesis, Naval Postgraduate
School Monterey United States, 2017.

[17] P. Colombo and E. Ferrari, "Enhancing
MongoDB with purpose based access control,"
IEEE Transactions on Dependable and Secure
Computing, 2015.

[18] D. Ferraiolo, R. Sandhu, S. Gavrilla and R. Kuhn,
“Proposed NIST standard for role based access
control,” ACM Transactions on Information and
System Security (TISSEC), vol.4, no.3, pp.224–
274, 2001.

[19] P. Colombo and E. Ferrari, "Towards virtual
private NoSQL datastores," in Data Engineering
(ICDE), 2016 IEEE 32nd International
Conference on, pp. 193-204, 2016.

[20] J. Longstaff and J. Noble, "Attribute based access
control for big data applications by query
modification," Big Data Computing Service and
Applications (BigDataService), 2016 IEEE

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.12, December 2022

115

Second International Conference on, pp. 58-65,
2016.

[21] V. Hu, D. Kuhn and D. Ferraiolo, "Attribute-
based access control," Computer, vol. 48, no. 2,
pp. 85-88, 2015.

[22] P. Colombo and E. Ferrari, "Towards a unifying
attribute based access control approach for
NoSQL datastores," Data Engineering (ICDE),
2017 IEEE 33rd International Conference on, pp.
709-720, 2017.

[23] A. CouchDB, Documentation,", URL:
https://docs.couchdb.org/en/stable/, 2017.

