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Summary 
Open surface water body extraction is gaining popularity in recent 
years due to its versatile applications. Multiple techniques are used 
for water detection based on applications. Different applications 
of Radar as LADAR, Ground-penetrating, synthetic aperture, and 
sounding radars are used to detect water. Shortwave infrared, 
thermal, optical, and multi-spectral sensors are widely used to 
detect water bodies. A stereo camera is another way to detect water 
and different methods are applied to the images of stereo cameras 
such as deep learning, machine learning, polarization, color 
variations, and descriptors are used to segment water and no water 
areas. The Satellite is also used at a high level to get water imagery 
and the captured imagery is processed using various methods such 
as features extraction, thresholding, entropy-based, and machine 
learning to find water on the surface. In this paper, we have 
summarized all the available methods to detect water areas. The 
main focus of this survey is on water detection especially in small 
patches or in small areas. The second aim of this survey is to detect 
water hazards for unmanned vehicles and off-sure navigation. 
Keywords: 
Water detection, Radars, Sensors, Stereo cameras., Satellite. 

1. Introduction 

In the era of autonomous vehicles and many other 
applications of water, the detection of water in the outdoor 
environment becomes more important. Water hazards may 
be in different shapes, types, and environments. The 
detection of water may be categorized on the basis of 
applications. Water hazards are detected for autonomous 
vehicles [1], Water reservoirs, and monitoring for 
agriculture and other purposes [2]. Water detection for 
special purposes like dengue larvae detection [3] is also 
important. Water hazards in the case of unmanned vehicles 
are ponds, mud, puddles, streams, river, and lakes. Water 
hurdles may be in different shapes, densities, and brightness 
levels based on daylight or shady areas.  Water hazards 
create problems for autonomous vehicles and cause detract 
from the path or mislead to wrong decisions [4][5]. To avoid 
hurdles and problems from water patches on road it is 
necessary to detect water areas well before time. There are 
two basic classifications of water detection, active water 
detection, and passive water detection. In active water 
detection, Radars and Sensors are used to detect water at an 
open surface or under the surface. In passive water detection, 
stereo cameras, and satellite images are used to segment 
water and no-water area. To detect water areas, sensors 

[6][7][8], near-infrared [9][10], infrared thermometers [11], 
and stereo vision based [12][13] methods are used. 

 
It is a need for time to detect water resources for better 

management. Different methods are used to detect the water 
resources such as satellite imaginary monitoring [14], and 
Synthetic Aperture Radar [15][16]. Detection of unseen 
water resources plays a vital role in water management and 
utilization, especially in the shortage of water. 

 
Water detection for a special purpose or at a small scale 

is used for various applications. Dengue mosquitoes lay 
their eggs in fresh water and dengue larvae grow in 
freshwater [17][18][19]. To detect dengue larvae, it is 
important to detect the water areas where mosquito eggs or 
larvae are available. This is a gray area, there is no such 
research available for water detection for such applications. 
all the available research on water detection is available for 
unmanned vehicles and other purposes. Water detection in 
drums, water reservoirs, buckets, flower vases, earthen pots, 
tires, plastic bowls, plastic sheets, glass, a group of metal, 
discarded appliances, dust carries, bins, and ant guard’s 
trays is still a gray area. 

 

1.1 Related Reviews 

Water detection is always taken as application-specific 
and some review articles are available on this topic. A 
review article [20] discusses four categories to find 
underground water tables such as reflected wave velocity, 
transmitted wave velocity between the wholes from the 
surface reflection coefficient, and ground wave velocity. In 
[21], the review of Thermal Infrared (TIR) for remote 
sensing focused on crop water stress is discussed. In [22], a 
review of surface water detection and delineation using 
remote sensing is discussed. In [23], a review of water 
bodies, and extraction in satellite images are discussed. In 
[24][25], a survey of outdoor water, hazards is investigated. 
By using infrared imagery, it is observed that the absorption 
coefficient of water is higher when compared to the visible 
range. In [26], thresholding techniques are reviewed for 
water detection. 
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2. Water Detection Methods 

Water detection in the outdoor environment is mainly 
classified into two major areas. The details are shown in Fig. 
1.

 
Fig. 1:Water detection techniques 

Active water detection techniques and passive water 
detection techniques. In active detection techniques, laser 
systems are employed to detect wet areas. In this technique, 
different radars and sensors are implemented for water 
forecast or detection. A laser beam is transmitted, that beam 
reflects from different surfaces and is received at the 
receiver of the laser or radar. The received beam has 
different reflections from different surfaces. The receiver 
decides on the wet areas on the basis of reflected rays. In 
the second form of water detection which is passive, 
different cameras are used. The received images are 
segmented by any available technique. Stereo cameras, 
satellite images, and other techniques related to imagery are 
used for water detection or wet area detection. Multiple 
image segmentation methods are available to detect water 
& no water. Water can be classified by using image 
processing, machine learning, and deep learning techniques. 

The available literature on water detection techniques is 
discussed below. 

2.1 Radar-based water detection 

Radar is commonly used for water detection in open 
environments. Multiple radars are placed to detect water or 
wet areas.  Radar transmits electromagnetic waves and these 
waves are reflected back from the water bodies that are 
received at the receiver. The parameters of the received 
waves tell the amount of water. Water detection with radar 
is further categorized into sub-types. 

2.1.1 LADAR as RADAR 
In [27], LADAR, color cameras, and polarization-

based sensors are used to detect the water. The LADAR hits 
are converted to build the color image space and data points 
are overlaid to show the color image segmentation as water 
and no water areas. In [28], the detection of obstacles, and 
the detection in foliage using LADAR and Radar are 
discussed. An algorithm is presented which detects 
obstacles in tall grass with single-axis LADAR. The 
discussed model shows that LADAR can penetrate from 
10cm to several meters. LADAR results generate a high-
resolution 2-D map. In [29], boundary detection and 
tracking using LADAR are discussed. An extended Kalman 
filtering using 2-dimensional LADAR is used to detect the 
boundaries of the road. The same method can be used for 
water area and no water area boundary classification. The 
above technique is simpler and more efficient. In [25], the 
detection of water hazards for autonomous off-road 
navigation is discussed to measure surface reflections and 
beam attenuation from a water body using LADAR. It 
covers the different angles and distances to prove the water 
detection. The authors also discussed that the depth of the 
water can also be determined by using LADAR. 

2.1.2 Ground-penetrating Radar (GPR) 
In [30], the concept of GPR is discussed. This method 

is good for underground water detection however it has 
limitations in detecting water on the open surface level. In 
[31], the authors dis- cussed the measurement of soil water 
content using ground-penetrating radars. Soil water content 
can be measured by quantitative soil water content detection 
and hydrological parameter estimation using GPR. To 
achieve good accuracy, GPR requires sufficient and 
spatially continuous surface disparity in dielectric 
permittivity. In [32], the main focus is on accurate 
measurements of the different techniques to locate water 
content. The accuracy of time-domain reflectometry (TDR), 
wide-angle reflection and refraction (WARR), and single 
trace analysis (STA) were determined from aggregate water 
content and refractive index. It is concluded that the 
accuracy of TDR and WARR is the same while the accuracy 
of STA is a little low as compared to the other two methods. 
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In [33], underlying the physical mechanism of GPR for 
underground water detection is addressed and synthetic 
modeling is used for real data analysis. 

2.1.3 Synthetic Aperture Radar (SAR) 
In [34], the volume variation of Lake, Izabel water is 

discussed.  An Advanced SAR (ASAR) is used to collect 
inundated area variation. Image processing techniques are 
used to make estimations for the inundated areas. In 
[35][36], SAR images are used to find the flood area and 
the segmentation of water and no water area. SAR images 
are filtered and corrected geometrically, after that a 
threshold technique is applied to segment water and no 
water area. SAR performs better in a hazy atmosphere, fog, 
smog, low visibility, and light rain. In [37], a new semi-
automated surface water detection method using SAR is 
discussed. This method works using a combination of 
radiometric thresholding and image segmentation by linear 
iterative clustering superpixel algorithm. In [38], a new 
method is discussed in which SAR images are calibrated to 
1x1 degree tiles. A probability density function is calculated 
for each tile for water vs no water and finally, a training data 
set is established. 

2.1.4 Sounding Radars 
The sounding RADAR is an application of a RADAR. 

The radio echo technique is used to find subsurface layers 
on the ground surface layer. In [39][40], the electrical and 
magnetic properties of a Martian surface and subsurface are 
discussed. In [41], local geoelectrical methods are used to 
find the underground water. It is investigated that the 
geoelectrical properties of Martian layers are not unique. In 
[42], the distribution of basal water between Antarctic 
subglacial lakes is also discussed. 

2.2 Sensors-based water detection 

Sensors-based water detection is normally used for 
small distances. Every sensor did not perform well in all 
conditions, the application of each sensor is different & 
accuracy depends on local conditions. 

2.2.1 Shortwave Infrared Sensors 
In [24], a survey of outdoor water, hazards is 

investigated. In [25], water hazard for autonomous vehicles 
is discussed. Water bodies are shown dark in near-infrared, 
overhead imagery. Ice and snow have very strong 
absorption beyond 1.4 µm and the wavelength about 1.5 and 
1.6 µm is used to detect water, ice, and snow. In [43], a 
linear physical-based model is applied using shortwave 
infrared (SWIR) sensors to detect moisture. The proposed 
model works in the solar domain (350-2500 nm) and is 
based on Kubelka–Munk two-flux radiated transfer theory. 
In [44], SWIR is used with normalized difference water 
index (NDWI) and moisture stress index (MSI). It is 

concluded that Satellite images with the data of SWIR are 
compared and show that MSI is less suitable for quantifying 
soil moisture. In [45], quantitative analysis of moisture in a 
solar module using SWIR is discussed. The concept of 
water reflectometry detection (WaRD) by using SWIR is 
implemented to calculate the water content on solar cells. In 
[46], quantitative analysis of water content is carried out by 
applying pixel-to-pixel data to moderate resolution imaging 
spectroradiometer and it shows good results. 

2.2.2 Thermal Infrared Sensors 
Thermal infrared sensors are commonly used in 

agriculture to detect water content, moisture, and water 
utilization by crops and plants. In [47], ground-based 
handheld thermal imagery is used to detect groundwater 
springs at a beach. The IR cameras were installed at an 
incident angle vertically to the ground surface. The 
limitation of this method is that it works purely in winter or 
summer. it did not perform well in moderate weather. In 
[48], thermal infrared imagery is used to detect canal water 
leakage detection. Thermal imagery in the range of 8-14 µm 
of the electromagnetic spectrum was found best to detect 
leakage sites. In [49], an unmanned air-borne vehicle with 
TIR is used to detect the irrigation effect on cotton crops.  
The TIR of 7-14 µm is used with an altitude of 90 degrees 
and 0.5 spatial resolution. The limitation of this method is 
the impact of bare soil contributions during low canopy 
cover. In [50], groundwater discharge detection TIR is 
discussed. Most of the applications of TIR are agriculture-
based and small water content detection. 

2.2.3 Optical Sensors 
There are three types of optical sensors i.e., coarse 

spatial sensors, medium spatial sensors, and high spatial 
sensors [51]. In coarse spatial resolution is used for flood 
inundation [52][53][54]. The NOAA and Advanced Very 
High-Resolution Radiometer (AVHRR) reduce efficiency 
from clouds. The Moderate-resolution Imaging 
Spectroradiometer (MODIS) was used regularly in 2000 
and these Satellite-based sensors were widely used for 
atmosphere monitoring and surface water detection 
[55][56][57]. In medium spatial sensors, the spatial 
resolution is increased from 80m to 30m. Landsat-8 is the 
most recent satellite launched to detect sur- face water areas 
[58][59][60]. High spatial resolution sensors are able to 
provide resolution at meter level and sub-meter level that 
makes it possible to detect small bodies of water. The 
limitations of these methods are small scene coverage 
mapping for large water bodies, shadows on images [61], 
and revisit frequency of these sensors. These type of sensors 
shows high accuracy at the Kappa coefficient = 0.95 and 
with high resolution to detect small water bodies 
[62][63][64]. 
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2.2.4 Multiple Spectral Scanners 
A normal sensor uses RGB wavelengths but multiple 

spectral sensors use RGB and other invisible wavelengths 
also.  In [65], the authors highlight a Dempster-Shafer 
theory that is modeled with supervised learning and the 
spectral band of water properties in a fully unsupervised 
context. In [66], the concept of ZY-3 multi-spectral imagery 
is used for water bodies detection. In the first method, a new 
water index named the high-resolution water index (HRWI) 
is used to detect water bodies, and the result is compared 
with the Normalized Difference Water Index (NDWI) while 
in the second method, the automatic urban water extraction 
method (AUWEM) algorithm is used with NDWI1 and 
NDWI2. Both methods show high accuracy, stability, and 
robustness in different environments and conditions. The 
limitations of both methods are complex and less efficient 
compared to NDWI. 

2.3 Stereo Camera-based Water Detection 

The stereo cameras are used as input devices to capture 
video and images containing water areas. 

2.3.1 Color & Texture based detection 
Water detection based on color and texture features 

[67], is a passive technique. By comparing the single feature 
method, it is more robust to the variation of ambient light. 
In [68], color and texture, both are used for water 
classification. For color, brightness values in HSV color 
space are combined with texture detection based on the 
local properties of the shape for segmentation. Finally, the 
variance of the local binary pattern is used to formulate the 
result. In [69], water is detected in multiple video frames. It 
used the measurements of entropy of trajectories of optical 
flow in different frames. The limitation of this method is 
camera resolution and propagating labels which may lead to 
improper dynamic texture analysis. 

2.3.2 Spatio-temporal invariant descriptors 
In [70], the motion properties of the water are explored. 

This method is robust in nature and per- form well with high 
classification accuracy. The limitation of descriptors is that 
they required dense sampling which leads to a large number 
of features which is difficult to handle [71]. In [72], a simple 
random forest model is applied to eleven different feature 
variables of remote sensing data. This method is simple, 
with high accuracy to detect water areas. In [73], remotely 
sensed data is used to a mapping of spatial and temporal 
variations of water inundation are observed. In [74], the 
combination of remote sensing and GIS is used to measure 
the quality of water over spatial and temporal scales. 

2.3.3 Daytime Water Detection Based on Color 
Variation 

In [6][7], color variations-based techniques are used to 
segment water areas in the daytime. In [75], the sky-
reflected colored imagery is used to classify the water area. 
The RGB imagery has different color variations for water 
and other terrains. It performs well for mid and far ranges 
and has the limitation of close range and small water bodies. 
In [76], the evaluation of water-detecting methods for 
unmanned vehicles is discussed. In [77], a color- tune-able 
lanthanide and radiometric sensors are used to detect water 
in ethanol. 

2.3.4 Polarization-Based Water Detection 
In [78], water area can be separated by comparison of 

polarization degree and similarities between water phases.  
In [79], a single pixel is identified in underwater imagery. 
Two cross-polarization schemes eliminate the background 
which is due to water and this scattered pixel is 
reconstructed by a cross-polarization method. In [80], a new 
technique is developed to detect water bodies for applying 
the traps to avoid chironomid females from laying eggs in 
water reservoirs. In [81], a polarization scheme is used to 
remove image degradation effects from underwater imagery. 

2.3.5 Support Vector Machine (SVM) 
In [82], to detect the water or wet areas, SVM is used 

for hypothesis verification. Polarization difference, gradient 
magnitude, and graininess features are used for 
classification. In [83], wet and dry metals were classified 
using SVM. In [84][85], water leakage from the pipe using 
SVM is discussed. In [86], to forecast the dam water level, 
SVM is compared with an adaptive neuro-fuzzy inference 
system. In [87], decision trees and SVM are used for 
anomaly detection in the water distribution network. It 
shows that linear SVM is good for water quality monitoring. 
In [88], a least square SVM is used for water stress 
classification. In [89], wet road surface identification using 
SVM is discussed. The result shows that polynomial and 
RBF kernels did not perform well but linear kernel shows 
good results. In [90], super-pixel segmentation and SVM 
are used for the detection of water channel damage slope. 

2.3.6 Water detection using Deep Learning and 
stereo camera 

A deep learning approach is an effective method for 
water detection in specific applications.  In [91][92], Small-
World Neural Network (SWNet) is used to classify wet or 
water area. SWNet shows high accuracy by reusing pooling 
indicts and by choosing a lightweight decoder. In 
[93][94][95], water hazard detection with a fully 
convolutional neural network (CNN) based on reflection 
attention units is discussed. Here, focal loss and distance 
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between one pixel and an average of 2 columns are 
calculated. In [96][97], a multi-scale CNN is used for water 
classification. In [98], an Artificial neural network is used 
to generate a navigation map and principal component 
analysis for comparison of extracted information for water 
detection. In [99], a CNN is applied in the smart near-
infrared analysis of water pollution for agriculture. 

2.4 Satellite Images based Water Detection 

Satellite-based images are used for large-scale water 
identification and classification. Satellite data is largely 
used for the calculation of surface-covered water areas, 
seashore monitoring, and flood mapping in big disasters. 

2.4.1 Water Features 
In [100], different water features like the Normalized 

Difference Water Index (NDWI) modified normalized 
difference water index (MNDWI), Water ratio index (WRI), 
Normalized difference moisture index (MDMI), vegetation 
index, and automatic water extraction index (AW) are used 
to segment the water area and change in water area. In [101], 
the automatic water extraction index (AWEI) with the 
google earth engine, and in [102], the water natural 
difference index (NDWI) is used for water detection. In 
[103], constrained energy minimization is used with 
MNDWI and AWEI for water segmentation. 

2.4.2 Thresholding 
Water detection for open surfaces has many 

thresholding techniques These methods are Huang and 
Wang’s Fuzzy [104], Inter-mode [105], Iso-data [106], 
Maximum [107], Mean [108], Renyi’s [109], and Minimum 
Error [110]. All the above techniques were applied in 
satellite images for water detection. It shows that minimum 
thresholding techniques were the best technique for water 
body extraction and percentile, shan-bag has the lowest 
accuracy for water detection. 

2.4.3 Entropy-based 
High-resolution images obtained by satellites are used 

for water detection. In [111], an entropy-based method is 
used for water area segmentation. In this scheme, Kapur’s 
entropy-based thresholding method is used to formulate 
quality and performance matrices. In [112], entropy-based 
fusion indices and DSM, derivatives are for water sur- face 
extraction. In [113], entropy-based assessment and 
clustering of water areas are discussed and in [114], 
entropy-based water leakage detection is discussed. The 
authors in [115] focused on the Entropy-Based Naıve Bayes 
method for flood hazard evaluation. 

2.4.4 Machine Learning 

2.4.4.1 Ensemble Classification 
In [116], an ensemble classification method is used for 

water detection in satellite images. Three classifiers are 
used Maximum likelihood, SVM, and Random Forest. 
Ensemble classification is also used for different 
applications of water detection in satellite images 
[117][118]. In [119], a collaborated decision-making 
(CDWI) with water indices instead of threshold single water 
index (WI) is compared. The CDWI is more accurate in 
comparison to other models. 

2.4.4.2 Support Vector Machine (SVM) 
The SVM is largely used for pipeline leakage detection 

as well as water area segmentation in satellite images 
[120][121][122]. In [123], SVM is used for river mapping 
in a satellite image. SVM is used to detect water level 
changes in a dam [86]. 

2.4.4.3 Bayesian 
In [124], the Bayesian procedure is used to improve the 

results of NDWI in satellite imagery. The climate change 
water resources uncertainties are discussed in [125], and in 
[126] anomalies in unlabeled water using Bayesian are 
elaborated. Water leakage and anomalies in water 
networks are explained in [127]. There are many 
methods available for open surface water extraction but 
most are application-specific and produce different 
results in different applications. 

 

3. Conclusion 

Water detection in open surfaces in the presence of 
different textures, backgrounds, and light conditions is a 
difficult task. A lot of work has been done in remote sensing 
and satellite imagery that is used for many applications such 
as Flood area monitoring, off-sure surveillance, water 
hazard detection, and water reservoir monitoring. 
Radars are used according to applications such as LADAR, 
ground-penetrating Radars, Synthetic aperture Radars, and 
Sounding Radars. LADAR creates a 2-D map on the result 
of reflections. To achieve good accuracy, ground-
penetrating radars require sufficient and spatially 
continuous surface disparity in dielectric permittivity. An 
advanced synthetic aperture radar is used to collect 
inundated area variations. The sounding RADAR uses a 
radio echo technique to find subsurface layers on the ground 
surface layer. For water detection, dielectric properties are 
calculated that differ from the dry and wet surfaces. The 
comparison shows that a single Radar did not give accurate 
segmentation as a group of Radars at different angles and 
heights produce accurate water area segmentation. 
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Different types of Radars are useful for different 
applications. 
 

Sensors are used for under-surface water detection and 
open-surface water detection. Short-wave, Thermal, Optical, 
and Multi-spectral sensors and applied for different 
applications. By using infrared imagery, it is observed that 
the absorption coefficient of water is higher when compared 
to the visible range. The SWIR cameras within wavelength 
sensitivity of 0.9 to 1.7 micrometers produce good results. 
Incident angle plays a vital role in the accuracy of water 
body detection. Thermal sensors are used for agriculture 
purposes to detect soil moisture for irrigation. Remote 
sensing is the most suite able way to find surface water. A 
normal sensor uses RGB wavelengths but multiple spectral 
sensors use RGB and other invisible wavelengths also. The 
study concludes that sensors can map 1-D and 2-D results 
of water bodies and can accurately measure the dimensions 
and depth of a water area. The accuracy depends upon the 
angle and wavelength selected for a specific area. Stereo 
cameras capture the images and the water area is segmented 
into captured images or videos. Different color variations, 
features, and luminance factors are used to distinguish 
between water and no water area. This type of water 
detection may be disturbed by shadows, texture, and 
brightness issues. In this method, the brightness of 
reflections, the ratio of saturation, and GLCM extracted 
feature sets are used to form a five-value feature set. The 
descriptors and Spatio-temporal Markov random field is 
used to detect the water mask in specific applications. The 
color change in the term of brightness is used to distinguish 
starting and ending points of the water body. Machine 
learning and deep learning play a vital role in image 
segmentation and classification. 
 

Satellites are widely used for remote sensing, high-
level water area segmentation, seashore monitoring, and 
flood mapping in big disasters. There are different orbits 
and image locations to capture satellite images. This type of 
water detection could not detect small areas of water bodies.  
Different techniques are applied to satellite images for 
water area identification such as water features, 
thresholding, entropy-based, machine learning, and deep 
learning. A better image classification technique can 
produce better results. 
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