
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.1, January 2023 
 
 

 

46

Manuscript received January 5, 2023 
Manuscript revised January 20, 2023 
https://doi.org/10.22937/IJCSNS.2023.23.1.7 

 

Comparative Analysis of Machine Learning Techniques for IoT 
Anomaly Detection Using the NSL-KDD Dataset 

 
Zaryn Good†, Waleed Farag†, Xin-Wen Wu††, Soundararajan Ezekiel†, Maria Balega†, Franklin May†,       

and Alicia Deak† 
 

†Department of Mathematical and Computer Sciences, Indiana University of PA, Indiana, PA, USA 
††Department of Computer Science, University of Mary Washington, Fredericksburg, VA, USA 

Summary 
With billions of IoT (Internet of Things) devices populating 
various emerging applications across the world, detecting 
anomalies on these devices has become incredibly important. 
Advanced Intrusion Detection Systems (IDS) are trained to detect 
abnormal network traffic, and Machine Learning (ML) algorithms 
are used to create detection models. In this paper, the NSL-KDD 
dataset was adopted to comparatively study the performance and 
efficiency of IoT anomaly detection models. The dataset was 
developed for various research purposes and is especially useful 
for anomaly detection. This data was used with typical machine 
learning algorithms including eXtreme Gradient Boosting 
(XGBoost), Support Vector Machines (SVM), and Deep 
Convolutional Neural Networks (DCNN) to identify and classify 
any anomalies present within the IoT applications. Our research 
results show that the XGBoost algorithm outperformed both the 
SVM and DCNN algorithms achieving the highest accuracy. In 
our research, each algorithm was assessed based on accuracy, 
precision, recall, and F1 score. Furthermore, we obtained 
interesting results on the execution time taken for each algorithm 
when running the anomaly detection. Precisely, the XGBoost 
algorithm was 425.53% faster when compared to the SVM 
algorithm and 2,075.49% faster than the DCNN algorithm. 
According to our experimental testing, XGBoost is the most 
accurate and efficient method. 
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1. Introduction 

Internet of Things (IoT) is a blend of two words 
“Internet” and “Things”. The Internet is a computer 
network that provides a variety of communication facilities 
and information globally. The interconnected computer 
networks use the standard Internet protocol suite (TCP/IP). 
On both a global and local level it consists of millions of 
private, public, business, and government networks to 
create a whole network of networks. With billions of users 
every day, the Internet has become staple in cultures and 
society across the world. While majority of the population 
has at least some concept of what the Internet is, when you 
bring up the topic of “Things”, that could really mean 
anything. The “Things” are tangible objects that are 

present in this physical or material world. At its core, the 
Internet of Things is interconnection through the internet 
of objects embedded with a computing device allowing 
them to both receive and send data [1]. Various IoT 
systems are being increasingly applied to a variety of 
domains, such as, Industry 4.0, smart energy, and smart 
cities and buildings to name a few. While the IoT with its 
expanding applications offers many opportunities to our 
society, they also bring highly challenging cybersecurity 
issues. The IoT devices connected to the Internet without 
any built-in security mechanisms create easy-to-use 
gateways and a larger attack surface for attackers and pose 
a great cybersecurity risk [1, 2]. 
    The goal of this study is to build effective and 
efficient anomaly detection models which can work in 
dynamic environments. As networking environments may 
be dynamic and network traffic captures may be different, 
it is important to comparatively study the detection models 
in regard to different datasets. In our previous work [2], we 
studied anomaly detection models built on XGBoost, SVM, 
and DCNN working with the IoT-23 dataset. These models 
were chosen as they are the most typical supervised 
machine learning techniques used for classification 
purposes. Using these machine learning models, anomalies 
can be classified which can help assess IoT devices to 
improve their security. In this paper, our research was 
focused on these models in regard to the NSL-KDD 
dataset.  
    The NSL-KDD dataset was chosen as it was designed 
to be applied as an effective benchmark dataset for the use 
of researchers to compare different intrusion detection 
methods. The dataset is widespread and has been used to 
train many models, allowing for effective comparison and 
benchmarking against previously trained models’ results. 
Further, the size of the dataset allows for faster train times 
and is more affordable [3]. 
    The NSL-KDD dataset is an improved version of the 
KDD CUP ’99 dataset which was built based on the data 
captured in DARPA’98 IDS evaluation program [4]. 
DARPA’98 is comprised of about 4 gigabytes of 
compressed binary tcpdump data of 7 weeks of network 
traffic. The KDD CUP ’99 training data consists of around 
4,900,000 entries containing 41 features and is labeled as 
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either normal or an attack [3].  
 
    Although the KDD CUP ’99 dataset has been used for 
many years, it consists of several inherent problems. For 
the background and attack data they used synthesized data 
when creating the dataset. The workload of this data does 
not seem similar to traffic that were to occur in real 
networks. The dataset also contains no exact definition for 
the attacks. They are only categorized as normal or attack 
rather than the name of the specific attack [5]. The KDD 
CUP ’99 dataset also has a large number of redundant 
records as about 78% and 75% are duplicated in the train 
and test sets respectively [6]. To amend these issues, the 
NSL-KDD dataset was created.  
 

This dataset differs from the IoT-23 dataset in that it 
has less data overall, however it contains more 
classifications. Both datasets have imbalanced data which 
is an issue. To cope with this issue, the data was assessed 
using balanced accuracy as this evaluation metric takes 
this into account [3].  

 
In our research, each algorithm was assessed based on 

accuracy, precision, recall, and F1 score. Our research 
results show that the XGBoost algorithm outperformed 
both the SVM and DCNN algorithms achieving the 
highest accuracy. We further studied the efficiency of the 
anomaly detection models powered by these ML 
algorithms and obtained interesting results on the 
execution time taken for each model when running the 
anomaly detection. Our research showed that the XGBoost 
algorithm was 425.53% faster when compared to the SVM 
algorithm and 2,075.49% faster than the DCNN algorithm. 
According to our experimental testing, XGBoost is the 
most accurate and efficient method. 

 
    Comparatively showing the effectiveness and 
efficiency of ML powered anomaly detection models 
working on a different dataset, this study will help 
individual users and organizations identify the most 
effective and efficient anomaly detection systems powered 
by machine learning algorithms in securing their IoT 
systems and devices based on the working environments 
and types of data.  
 
    The rest of the paper is organized as follows. In 
section 2, related works to this study will be presented. In 
section 3, machine learning techniques used in this study 
will be explained. In section 4, the experimental 
consideration will be addressed to include preprocessing of 
data and training of machine learning models. In section 5, 
evaluation metrics will be addressed, and the results from 
each of the machine learning models will be compared. 
The concluding remarks will be presented in section 6.  
     

2. Related Works 

Recent work has shown the effectiveness of machine 
learning and its ability to help with the security of IoT 
devices. In 2016, Canedo and Skjellum conducted research 
involving IoT devices using Artificial Neural Networks 
supporting the effectiveness of using machine learning to 
secure IoT devices [7]. Further, it was determined that with 
the great amount of data being collected from IoT devices, 
new algorithms are needed for extracting data and 
applying regression and classification for improving 
security [8]. 
    In one of our recent works, we applied XGBoost, 
SVM, and DCNN to the IoT-23 dataset to study how well 
these machine learning algorithms could classify 
anomalies. The data was preprocessed having 4 total 
classifications where 50% of the data was malicious and 
50% of the data was benign. After training each of the 
machine learning models with this data, XGBoost proved 
to be most effective and efficient method when working on 
the IoT-23 dataset [2].  
    However, it is interesting to ask: What are the optimal 
anomaly detection models when working in different 
environments with different datasets? Due to diverse IoT 
applications, networking environments may be dynamic 
and network traffic may be different. Therefore, it is 
important to comparatively study the detection models 
regarding different datasets. Extending our previous 
research on the IoT-23 dataset, in this paper, we investigate 
the anomaly detection models in regard to the NSL-KDD 
dataset, attempting to identify the most effective and 
efficient anomaly detection models which can work in 
dynamic environments. 

3. Anomaly Detection Models  

Machine Learning has received an increase of 
attention due to its capabilities of solving business and 
societal issues. With correct preprocessing of data and 
tuning of training parameters, machine learning models can 
find an optimal solution for a given problem [9]. In this 
study, we chose the following Machine Learning models: 
eXtreme Gradient Boosting (XGBoost), Support Vector 
Machines (SVM), and Deep Convolutional Neural 
Networks (DCNN). We focused on the use of these 
machine learning models because they are well reputed for 
use in classification problems and they have been 
represented in numerous hackathons, competitions, and 
more [10]. 
 
3.1 Extreme Gradient Boosting 
 
eXtreme Gradient Boosting or XGBoost [11] is a leading 
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model for working with standard tabular data. It works 
under a gradient boosting framework used in regression, 
classification, ranking, and prediction. The model is built 
in a stage wise fashion and generalizes the prediction 
models or decision trees. Extreme gradient boosting differs 
from gradient boosting as it uses a more regularized model 
to help control overfitting [2]. This also aids in better 
performance. In a 2020 survey by Kaggle [12], XGBoost 
was in the top 3 most used methods and algorithms by 
employed data scientists as shown in Figure 1.  
    XGBoost involves three types of parameters: general, 
booster, and learning task. General parameters relate to the 
booster that is used. This is usually a tree or linear model. 
Booster parameters are chosen based on the type of booster 
that is used. Lastly, learning task parameters are chosen 
based on the learning scenario and differ depending on the 
given problem [2, 13].  

 

Fig. 1. Most common methods and algorithms used by Kaggle members 
who identify as employed “data scientist” [12]. 

 
3.2 Support Vector Machines 
 

Support Vector Machine or SVM is a supervised 
algorithm used in regression and classification problems. It 
finds the best hyperplane that divides a dataset by classes. 
See Fig. 2. The further from the hyperplane the data lies, 
the more confident we are in their classification. 
    Generally, there is no exact single line that perfectly 
divides real data, and a curved boundary is used. We can 
use a “kernel trick” for non-linear inputs. The kernel is 
defined by K(x,x′) where x and x′ are the inputs, and K is the 
kernel used [15]. We have a variety of kernels to choose 
from, with the following as the most common: 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. An example of a separable problem in a 2-D space. The support 
vectors, marked with gray squares, define the margin of largest separation 

between the two classes [14]. 

Linear Kernel: the fastest but least accurate for multiple 
classes 

 K(x,x′) = X⟨x,x′⟩ (1) 
Polynomial Kernel: used for nonlinear models 

 K(x,x′) = (⟨x,x′⟩ +1)d (2) 

where d is the degree of the polynomial. Radial Basis 
Function: most often used as it overcomes the space 
complexity issues of SVM 

  (3) 
Sigmoid or Multi-layer Perceptron uses a single layer, 
preferred in neural networks 

 K(x,x′) = tanh(ρ⟨x,x′⟩ + g) (4) 

where ρ is the slope and g is the intercept. 
   Common tuning parameters are C and Gamma. C is 
used for controlling the tradeoff between smooth decision 
boundary and classifying the training points correctly. 
Gamma defines how far a training example reaches [16].   

3.3 Deep Convolutional Neural Network 
 

Deep Convolutional Neural Networks (DCNNs) 
are models that can learn characteristics and classify 
them into labels. DCNNs consist of multiple layers and 
each layer performs specific tasks. The convolutional 
layer uses filters that activate when a feature is detected 
that will be learned. It then uses pooling layers that try 
to reduce overfitting. The fully connected layer is used 
for the actual classification of the network [17]. Table 1 
shows the number of layers for each of the networks 
used. VGG16 and VGG19 are some of the oldest CNN 
(Convolution Neural Network) models.  
    Parameters used for DCNN vary, however some 
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commonly used ones include MiniBatchSize, 
MaxEpochs, InitialLearnRate, ValidationFrequency, and 
ValidationPatience. A mini batch splits epochs into 
smaller epochs. MaxEpochs is the maximum epochs or 
iterations for the model to go through. InitialLearnRate 
is the learning rate where it controls how a model learns 
based on previous errors. ValidationFrequency validates 
data during training. Lastly, ValidationPatience stops 
training the data when the validation loss no longer 
decreases [2].  

 
TABLE 1 

NETWORK ARCHITECTURE 
 

Network  Depth 

(layers) 

Parameters 

(million) 

Image Size 

VGG16  16  138  224×224 

VGG19  19  144  224×224 

GoogLeNet  22  4  224×224 

ResNet50  50  23  224×224 

AlexNet  8  61  227×227 

 

4. Experimental Consideration  
 

XGBoost is designed for efficient processes and 
performance by implementing gradient boosted decision 
trees. The two main reasons that we chose to use XGBoost 
in our investigations are due to its execution speed, and 
model performance. Just like with the SVM algorithm, we 
tested the XGBoost algorithm with the NSL-KDD dataset 
using three different data splits. We split the data between 
training and testing with a split of 80% training and 20% 
testing, 75% training and 25% testing, and 65% training 
and 35% testing. The data set was composed of 125,974 
captures and twenty-one classes with 27 features. 
   Deep Convolutional Neural Networks (DCNNs) are a 
framework that has shown groundbreaking success in 
many applications, including accurately classifying image 
data. For this investigation, we used the DCNN fusion 
architecture. Fusion allows for higher classification 
accuracy without increasing the number of layers in the 
neural network, especially when using suboptimal or 
incomplete data. First, the IoT data is converted from 
two-line element set (TLE) encoding to a vector. The data 
is then processed with one-hot encoding and converted to 
an image that can be fed into the DCNN. The features 
extracted from the penultimate layers from the DCNN 
implementations are combined and processed by 
dimension reduction algorithms, including t-distributed 
stochastic neighbor embedding (t-SNE) and principal 
component analysis (PCA). Finally, the features are 
clustered to classify the capture by the type of the attack 

that took place. This framework for fast and accurate 
classification can be applied to other datasets, such as 
satellite classification. 
 
4.1 Preprocessing 
 

During the preprocessing, we determined that the 
following features would be removed; as statistically they 
did not contribute to the training; or there were an 
overwhelming number of empty values. 

• duration 
• src bytes 
• dst bytes 
• land 
• wrong fragment 
• urgent 
• hot 

• count 
• srv count 
• serror rate 
• srv serror rate 
• same srv rate 
• doff srv rate 
• srv diff host rate 

A combination of one-hot encoding for select remaining 
features and label encoding for our classes was used. 

 
4.2 Training for XGBoost 
 
The Python (3.10) libraries: Scikit-learn (version 1.1) and 
xgboost (version 1.5.0) were used to test the dataset. The 
MinMaxScaler function was used to scale the features. We 
transformed the array into a DMatrix format and entered in 
the desired tree booster parameters of max depth and eta. 
The learning task parameter multi:softmax was used in 
conjunction with the num class parameter to classify the 
data. The evaluation metric merror was also calculated. In 
addition, root mean square error (RMSE) was evaluated to 
show how far predictions were from the correct values 
Since our data had multiple classifications, balanced 
accuracy was assessed. 

 
4.3 Training for SVM 
 

The data used for training SVM was the same 
preprocessed data used with XGBoost. Again, the data was 
standardized using MinMaxScaler. Different kernels were 
chosen, and the Linear kernel received the best overall 
performance. The regularization parameter was the value 
of C and the kernel coefficient for rbf and sigmoid kernals 
was gamma. Due to the number of classes, we used the one 
versus one strategy. This created extra computational time, 
and it was found we had to reduce the dataset or reduce the 
number of classes. Both options were explored.  
    The Support Vector Machine (SVM) algorithm has 
multiple kernel types such as Linear, Polynomial, RBF 
(Radial Basis Function), and Sigmoid kernels which were 
compared. By finding the most accurate kernel type to use 
for the SVM algorithm, it will create competitive results 
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when comparing against the XGBoost and DCNN 
algorithms. This will give us an example of how the 
NSL-KDD dataset can be analyzed by multiple different 
algorithms, and the different results that each can give. 
 
4.4 Training for DCNN 
 

For the fully connected layers and the convolutional 
layer, the parameters Weight Learn Rate Factor and Bias 
Learn Rate Factor were used. For the fully connected layer, 
both were set to twenty. For the convolutional layer, they 
were set to ten. The training parameters were the execution 
environment, which was the GPU, Mini Batch Size of 10, 
Max Epochs set to 5, Initial Learn Rate of 0.0001, 
Validation Data using test set, Validation Frequency of 5, 
and Validation Patience of 10. 
 
5.  Results 
 

Various metrics were calculated when running 
XGBoost, SVM, and DCNN. As Python was used for the 
SVM and XGBoost algorithms, the metrics were from 
scikit-learn functions. Matlab was used to run DCNN, and 
these metrics were calculated based on confusion matrices. 
    First, balanced accuracy was calculated. With data 
that is imbalanced, accuracy can be misleading. Using 
balanced accuracy is better in this case since it accounts 
for both the positive and negative outcome classes. F1 
score was another metric taken into consideration. F1 score 
is the mean of precision and recall. It is a popular metric as 
it is a combination of two other important metrics. These 
metrics can be calculated as follows [17]: 

 

 
where TP is True Positive, FP is False Positive, TN is True 
Negative, FN is False Negative, TPR is True Positive Rate, 
and TNR is True Negative Rate. 
 
 Additionally, root mean square error (RMSE) was 
measured. This is used to evaluate the quality of 

predictions by showing how far predictions fall from true 
values. This is measured using Euclidean distance [2].  

  
 
 The research results are detailed in the following.  
 
5.1 XGBoost Results 
 

Our experimental results show that the detecting 
performance scores of the XGBoost model depend on the 
training/testing split of the dataset. Both the 80/20 split 
(that is, 80% of the data used for training the model and 
20% of the data used to test the detection effectiveness of 
the model) and the 65/35 split had scores where they 
excelled in while the 75/25 split was consistently either the 
lowest, or between the two scores. While the 65/35 split 
had the highest precision score of 89.3%, it continued to 
perform poorly through the other classifications when 
compared to the 80/20 split. As shown in Figure 3, the 
80/20 split achieved a precision score of 84%, an accuracy 
score of 80.3%, an F1 score of 81%, and a recall score of 
80.3%. This has led us to the conclusion that the 80/20 
split was the split to use to better our investigation into the 
NSL-KDD dataset. 

 

Fig. 3. XGBoost performance results using various splits 
 

5.2 SVM Results 
 

From our testing, we have found that the highest 
overall scores were received by the Linear kernel using a 
75/25 split of the data between training and testing. The 
scores that it received were a 79.33% precision score, a 
77.07% accuracy score, a 76.75% F1 score, and a 77.07% 
recall score. We can also see that the Linear kernel 
produced the best results for each split that was 
experimented with. For the 80/20 split, we received a 
precision score of 70.52%, an accuracy score of 77.06%, 

(5) 
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an F1 score of 71.76%, and a recall score of 77.06%. The 
65/35 split gave a precision score of 67.57%, an accuracy 
score of 64.81%, an F1 score of 62.67%, and a recall score 
of 61.99%. Results shown in Figure 4 are using linear 
kernel as it achieved best results.  

 
Fig. 4. SVM performance results using various splits 

 
5.3 DCNN Results 
 

Much like with the SVM and XGBoost algorithms, 
we have separated the NSL-KDD dataset into a few 
different training/testing splits including an 80/20 split, a 
75/25 split, a 70/30 split, a 65/35 split, and a 60/40 split. 
Unlike with the other two algorithms we also split the 
results between a top-five accuracy classification and a 
top-one accuracy classification. For the top-five accuracy, 
the most accurate combination was a 70/30 split using the 
VGG19 neural network. For the top-one accuracy, the most 
accurate combination was a 65/35 split using the ResNet50 
neural network. Both results will be taken into 
consideration when comparing the results received from 
the SVM and XGBoost algorithms. 

5.4 Comparison of Results 
 

Using the Precision, Accuracy, Recall, and F1-score 
metrics, we have now tested the XGBoost, SVM, and 
DCNN machine learning algorithms against the NSL-KDD 
dataset. After this testing, we will compare the results of 
each algorithm that used the most accurate configuration. 
For XGBoost, using an 80/20 split resulted in precision, 
accuracy, recall, and F1 scores of 84%, 80.7%, 81%, and 
80.3%, respectively. The SVM algorithm using a 75/25 
split, and the Linear kernel received precision, accuracy, 
recall, and F1 scores of 70.52%, 77.06%, 77.06%, and 
71.76%, respectively. The DCNN algorithm using the 
Resnet50 framework with an 80/20 split resulted in 
precision, accuracy, recall, and F1 scores of 37.37%, 
96.24%, 33.9%, and 35.55%, respectively. After obtaining 
all of these results we take a closer look at the differences 
between them. Although the DCNN algorithm resulted in 

an accuracy score of 96.24%, all other metrics paled in 
comparison with the next highest being precision at 
37.37%. Compare this to both XGBoost and SVM where 
their biggest jumps were of around 4% and 7%, 
respectively.   

 
 

 
Fig. 5. Top-five accuracy classification results 

 
 

 
Fig. 6. Top-one accuracy classification results 

 
 
   We also looked at the efficiency of the detection (that 
is, how long it took to get these results). For both the 
XGBoost and SVM algorithms, it took only a matter of 
minutes, whereas to receive results for the DCNN 
algorithm it took a matter of hours. More specifically, the 
XGBoost algorithm was 425.53% faster than the SVM 
algorithm and 2,075.49% faster than the DCNN algorithm. 
From this comparison, we have found that even though the 
DCNN algorithm had the highest accuracy score of 
96.24%, the XGBoost algorithm performed the best overall 
throughout this analysis. 
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6. Conclusion and Future Work 
 

With the evolution of IoT devices and systems, 
protecting these devices and systems remains a significant 
and challenging issue in cybersecurity. As attacks on these 
devices and systems can be detrimental to humans and 
enterprises, it is of the utmost importance that IoT devices 
are protected. This study provides an analysis of how 
machine learning can be used to predict anomalies and this 
information can be used to prevent or mitigate future 
attacks. Machine learning algorithms used in this study 
included XGBoost, SVM, and DCNN. Each of these were 
fed data from the NSL-KDD dataset where the models 
classified anomalies and benign data. This study found that 
machine learning can effectively and efficiently be used 
for anomaly detection. Amongst the three algorithms, 
XGBoost proved to be the most effective and the most 
efficient method.  
    While the use of a dataset such as the NSL-KDD is 
useful for training and benchmarking the ML models, it 
does not directly compare to real world intrusion data. In 
collected real world data, there is less redundancy and 
more distinct types of attacks when compared to the 
dataset. In this study, the main point was to compare the 
accuracy and efficiency of the ML models that have been 
trained on the NSL-KDD dataset. The next step would be 
to collect and compile both anomalous and benign data 
created by various IoT devices from real world IoT 
applications. This data would then be used to create a new 
dataset to train and test the models. This could be 
compared to see how the model performances differ 
between real world data and data from the NSL-KDD 
dataset. 
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