
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.1, January 2023

46

Manuscript received January 5, 2023
Manuscript revised January 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.1.7

Comparative Analysis of Machine Learning Techniques for IoT
Anomaly Detection Using the NSL-KDD Dataset

Zaryn Good†, Waleed Farag†, Xin-Wen Wu††, Soundararajan Ezekiel†, Maria Balega†, Franklin May†,

and Alicia Deak†

†Department of Mathematical and Computer Sciences, Indiana University of PA, Indiana, PA, USA
††Department of Computer Science, University of Mary Washington, Fredericksburg, VA, USA

Summary
With billions of IoT (Internet of Things) devices populating
various emerging applications across the world, detecting
anomalies on these devices has become incredibly important.
Advanced Intrusion Detection Systems (IDS) are trained to detect
abnormal network traffic, and Machine Learning (ML) algorithms
are used to create detection models. In this paper, the NSL-KDD
dataset was adopted to comparatively study the performance and
efficiency of IoT anomaly detection models. The dataset was
developed for various research purposes and is especially useful
for anomaly detection. This data was used with typical machine
learning algorithms including eXtreme Gradient Boosting
(XGBoost), Support Vector Machines (SVM), and Deep
Convolutional Neural Networks (DCNN) to identify and classify
any anomalies present within the IoT applications. Our research
results show that the XGBoost algorithm outperformed both the
SVM and DCNN algorithms achieving the highest accuracy. In
our research, each algorithm was assessed based on accuracy,
precision, recall, and F1 score. Furthermore, we obtained
interesting results on the execution time taken for each algorithm
when running the anomaly detection. Precisely, the XGBoost
algorithm was 425.53% faster when compared to the SVM
algorithm and 2,075.49% faster than the DCNN algorithm.
According to our experimental testing, XGBoost is the most
accurate and efficient method.

Keywords:
Internet of Things (IoT), XGBoost, SVM, DCNN, NSL-KDD,
Machine Learning, Anomaly Detection

1. Introduction

Internet of Things (IoT) is a blend of two words
“Internet” and “Things”. The Internet is a computer
network that provides a variety of communication facilities
and information globally. The interconnected computer
networks use the standard Internet protocol suite (TCP/IP).
On both a global and local level it consists of millions of
private, public, business, and government networks to
create a whole network of networks. With billions of users
every day, the Internet has become staple in cultures and
society across the world. While majority of the population
has at least some concept of what the Internet is, when you
bring up the topic of “Things”, that could really mean
anything. The “Things” are tangible objects that are

present in this physical or material world. At its core, the
Internet of Things is interconnection through the internet
of objects embedded with a computing device allowing
them to both receive and send data [1]. Various IoT
systems are being increasingly applied to a variety of
domains, such as, Industry 4.0, smart energy, and smart
cities and buildings to name a few. While the IoT with its
expanding applications offers many opportunities to our
society, they also bring highly challenging cybersecurity
issues. The IoT devices connected to the Internet without
any built-in security mechanisms create easy-to-use
gateways and a larger attack surface for attackers and pose
a great cybersecurity risk [1, 2].
 The goal of this study is to build effective and
efficient anomaly detection models which can work in
dynamic environments. As networking environments may
be dynamic and network traffic captures may be different,
it is important to comparatively study the detection models
in regard to different datasets. In our previous work [2], we
studied anomaly detection models built on XGBoost, SVM,
and DCNN working with the IoT-23 dataset. These models
were chosen as they are the most typical supervised
machine learning techniques used for classification
purposes. Using these machine learning models, anomalies
can be classified which can help assess IoT devices to
improve their security. In this paper, our research was
focused on these models in regard to the NSL-KDD
dataset.
 The NSL-KDD dataset was chosen as it was designed
to be applied as an effective benchmark dataset for the use
of researchers to compare different intrusion detection
methods. The dataset is widespread and has been used to
train many models, allowing for effective comparison and
benchmarking against previously trained models’ results.
Further, the size of the dataset allows for faster train times
and is more affordable [3].
 The NSL-KDD dataset is an improved version of the
KDD CUP ’99 dataset which was built based on the data
captured in DARPA’98 IDS evaluation program [4].
DARPA’98 is comprised of about 4 gigabytes of
compressed binary tcpdump data of 7 weeks of network
traffic. The KDD CUP ’99 training data consists of around
4,900,000 entries containing 41 features and is labeled as

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.1, January 2023

47

either normal or an attack [3].

 Although the KDD CUP ’99 dataset has been used for
many years, it consists of several inherent problems. For
the background and attack data they used synthesized data
when creating the dataset. The workload of this data does
not seem similar to traffic that were to occur in real
networks. The dataset also contains no exact definition for
the attacks. They are only categorized as normal or attack
rather than the name of the specific attack [5]. The KDD
CUP ’99 dataset also has a large number of redundant
records as about 78% and 75% are duplicated in the train
and test sets respectively [6]. To amend these issues, the
NSL-KDD dataset was created.

This dataset differs from the IoT-23 dataset in that it
has less data overall, however it contains more
classifications. Both datasets have imbalanced data which
is an issue. To cope with this issue, the data was assessed
using balanced accuracy as this evaluation metric takes
this into account [3].

In our research, each algorithm was assessed based on

accuracy, precision, recall, and F1 score. Our research
results show that the XGBoost algorithm outperformed
both the SVM and DCNN algorithms achieving the
highest accuracy. We further studied the efficiency of the
anomaly detection models powered by these ML
algorithms and obtained interesting results on the
execution time taken for each model when running the
anomaly detection. Our research showed that the XGBoost
algorithm was 425.53% faster when compared to the SVM
algorithm and 2,075.49% faster than the DCNN algorithm.
According to our experimental testing, XGBoost is the
most accurate and efficient method.

 Comparatively showing the effectiveness and
efficiency of ML powered anomaly detection models
working on a different dataset, this study will help
individual users and organizations identify the most
effective and efficient anomaly detection systems powered
by machine learning algorithms in securing their IoT
systems and devices based on the working environments
and types of data.

 The rest of the paper is organized as follows. In
section 2, related works to this study will be presented. In
section 3, machine learning techniques used in this study
will be explained. In section 4, the experimental
consideration will be addressed to include preprocessing of
data and training of machine learning models. In section 5,
evaluation metrics will be addressed, and the results from
each of the machine learning models will be compared.
The concluding remarks will be presented in section 6.

2. Related Works

Recent work has shown the effectiveness of machine
learning and its ability to help with the security of IoT
devices. In 2016, Canedo and Skjellum conducted research
involving IoT devices using Artificial Neural Networks
supporting the effectiveness of using machine learning to
secure IoT devices [7]. Further, it was determined that with
the great amount of data being collected from IoT devices,
new algorithms are needed for extracting data and
applying regression and classification for improving
security [8].
 In one of our recent works, we applied XGBoost,
SVM, and DCNN to the IoT-23 dataset to study how well
these machine learning algorithms could classify
anomalies. The data was preprocessed having 4 total
classifications where 50% of the data was malicious and
50% of the data was benign. After training each of the
machine learning models with this data, XGBoost proved
to be most effective and efficient method when working on
the IoT-23 dataset [2].
 However, it is interesting to ask: What are the optimal
anomaly detection models when working in different
environments with different datasets? Due to diverse IoT
applications, networking environments may be dynamic
and network traffic may be different. Therefore, it is
important to comparatively study the detection models
regarding different datasets. Extending our previous
research on the IoT-23 dataset, in this paper, we investigate
the anomaly detection models in regard to the NSL-KDD
dataset, attempting to identify the most effective and
efficient anomaly detection models which can work in
dynamic environments.

3. Anomaly Detection Models

Machine Learning has received an increase of
attention due to its capabilities of solving business and
societal issues. With correct preprocessing of data and
tuning of training parameters, machine learning models can
find an optimal solution for a given problem [9]. In this
study, we chose the following Machine Learning models:
eXtreme Gradient Boosting (XGBoost), Support Vector
Machines (SVM), and Deep Convolutional Neural
Networks (DCNN). We focused on the use of these
machine learning models because they are well reputed for
use in classification problems and they have been
represented in numerous hackathons, competitions, and
more [10].

3.1 Extreme Gradient Boosting

eXtreme Gradient Boosting or XGBoost [11] is a leading

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.1, January 2023

48

model for working with standard tabular data. It works
under a gradient boosting framework used in regression,
classification, ranking, and prediction. The model is built
in a stage wise fashion and generalizes the prediction
models or decision trees. Extreme gradient boosting differs
from gradient boosting as it uses a more regularized model
to help control overfitting [2]. This also aids in better
performance. In a 2020 survey by Kaggle [12], XGBoost
was in the top 3 most used methods and algorithms by
employed data scientists as shown in Figure 1.
 XGBoost involves three types of parameters: general,
booster, and learning task. General parameters relate to the
booster that is used. This is usually a tree or linear model.
Booster parameters are chosen based on the type of booster
that is used. Lastly, learning task parameters are chosen
based on the learning scenario and differ depending on the
given problem [2, 13].

Fig. 1. Most common methods and algorithms used by Kaggle members
who identify as employed “data scientist” [12].

3.2 Support Vector Machines

Support Vector Machine or SVM is a supervised
algorithm used in regression and classification problems. It
finds the best hyperplane that divides a dataset by classes.
See Fig. 2. The further from the hyperplane the data lies,
the more confident we are in their classification.
 Generally, there is no exact single line that perfectly
divides real data, and a curved boundary is used. We can
use a “kernel trick” for non-linear inputs. The kernel is
defined by K(x,x′) where x and x′ are the inputs, and K is the
kernel used [15]. We have a variety of kernels to choose
from, with the following as the most common:

Fig. 2. An example of a separable problem in a 2-D space. The support
vectors, marked with gray squares, define the margin of largest separation

between the two classes [14].

Linear Kernel: the fastest but least accurate for multiple
classes

 K(x,x′) = X⟨x,x′⟩ (1)
Polynomial Kernel: used for nonlinear models

 K(x,x′) = (⟨x,x′⟩ +1)d (2)

where d is the degree of the polynomial. Radial Basis
Function: most often used as it overcomes the space
complexity issues of SVM

 (3)
Sigmoid or Multi-layer Perceptron uses a single layer,
preferred in neural networks

 K(x,x′) = tanh(ρ⟨x,x′⟩ + g) (4)

where ρ is the slope and g is the intercept.
 Common tuning parameters are C and Gamma. C is
used for controlling the tradeoff between smooth decision
boundary and classifying the training points correctly.
Gamma defines how far a training example reaches [16].

3.3 Deep Convolutional Neural Network

Deep Convolutional Neural Networks (DCNNs)
are models that can learn characteristics and classify
them into labels. DCNNs consist of multiple layers and
each layer performs specific tasks. The convolutional
layer uses filters that activate when a feature is detected
that will be learned. It then uses pooling layers that try
to reduce overfitting. The fully connected layer is used
for the actual classification of the network [17]. Table 1
shows the number of layers for each of the networks
used. VGG16 and VGG19 are some of the oldest CNN
(Convolution Neural Network) models.
 Parameters used for DCNN vary, however some

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.1, January 2023

49

commonly used ones include MiniBatchSize,
MaxEpochs, InitialLearnRate, ValidationFrequency, and
ValidationPatience. A mini batch splits epochs into
smaller epochs. MaxEpochs is the maximum epochs or
iterations for the model to go through. InitialLearnRate
is the learning rate where it controls how a model learns
based on previous errors. ValidationFrequency validates
data during training. Lastly, ValidationPatience stops
training the data when the validation loss no longer
decreases [2].

TABLE 1

NETWORK ARCHITECTURE

Network Depth

(layers)

Parameters

(million)

Image Size

VGG16 16 138 224×224

VGG19 19 144 224×224

GoogLeNet 22 4 224×224

ResNet50 50 23 224×224

AlexNet 8 61 227×227

4. Experimental Consideration

XGBoost is designed for efficient processes and
performance by implementing gradient boosted decision
trees. The two main reasons that we chose to use XGBoost
in our investigations are due to its execution speed, and
model performance. Just like with the SVM algorithm, we
tested the XGBoost algorithm with the NSL-KDD dataset
using three different data splits. We split the data between
training and testing with a split of 80% training and 20%
testing, 75% training and 25% testing, and 65% training
and 35% testing. The data set was composed of 125,974
captures and twenty-one classes with 27 features.
 Deep Convolutional Neural Networks (DCNNs) are a
framework that has shown groundbreaking success in
many applications, including accurately classifying image
data. For this investigation, we used the DCNN fusion
architecture. Fusion allows for higher classification
accuracy without increasing the number of layers in the
neural network, especially when using suboptimal or
incomplete data. First, the IoT data is converted from
two-line element set (TLE) encoding to a vector. The data
is then processed with one-hot encoding and converted to
an image that can be fed into the DCNN. The features
extracted from the penultimate layers from the DCNN
implementations are combined and processed by
dimension reduction algorithms, including t-distributed
stochastic neighbor embedding (t-SNE) and principal
component analysis (PCA). Finally, the features are
clustered to classify the capture by the type of the attack

that took place. This framework for fast and accurate
classification can be applied to other datasets, such as
satellite classification.

4.1 Preprocessing

During the preprocessing, we determined that the
following features would be removed; as statistically they
did not contribute to the training; or there were an
overwhelming number of empty values.

• duration
• src bytes
• dst bytes
• land
• wrong fragment
• urgent
• hot

• count
• srv count
• serror rate
• srv serror rate
• same srv rate
• doff srv rate
• srv diff host rate

A combination of one-hot encoding for select remaining
features and label encoding for our classes was used.

4.2 Training for XGBoost

The Python (3.10) libraries: Scikit-learn (version 1.1) and
xgboost (version 1.5.0) were used to test the dataset. The
MinMaxScaler function was used to scale the features. We
transformed the array into a DMatrix format and entered in
the desired tree booster parameters of max depth and eta.
The learning task parameter multi:softmax was used in
conjunction with the num class parameter to classify the
data. The evaluation metric merror was also calculated. In
addition, root mean square error (RMSE) was evaluated to
show how far predictions were from the correct values
Since our data had multiple classifications, balanced
accuracy was assessed.

4.3 Training for SVM

The data used for training SVM was the same
preprocessed data used with XGBoost. Again, the data was
standardized using MinMaxScaler. Different kernels were
chosen, and the Linear kernel received the best overall
performance. The regularization parameter was the value
of C and the kernel coefficient for rbf and sigmoid kernals
was gamma. Due to the number of classes, we used the one
versus one strategy. This created extra computational time,
and it was found we had to reduce the dataset or reduce the
number of classes. Both options were explored.
 The Support Vector Machine (SVM) algorithm has
multiple kernel types such as Linear, Polynomial, RBF
(Radial Basis Function), and Sigmoid kernels which were
compared. By finding the most accurate kernel type to use
for the SVM algorithm, it will create competitive results

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.1, January 2023

50

when comparing against the XGBoost and DCNN
algorithms. This will give us an example of how the
NSL-KDD dataset can be analyzed by multiple different
algorithms, and the different results that each can give.

4.4 Training for DCNN

For the fully connected layers and the convolutional
layer, the parameters Weight Learn Rate Factor and Bias
Learn Rate Factor were used. For the fully connected layer,
both were set to twenty. For the convolutional layer, they
were set to ten. The training parameters were the execution
environment, which was the GPU, Mini Batch Size of 10,
Max Epochs set to 5, Initial Learn Rate of 0.0001,
Validation Data using test set, Validation Frequency of 5,
and Validation Patience of 10.

5. Results

Various metrics were calculated when running
XGBoost, SVM, and DCNN. As Python was used for the
SVM and XGBoost algorithms, the metrics were from
scikit-learn functions. Matlab was used to run DCNN, and
these metrics were calculated based on confusion matrices.
 First, balanced accuracy was calculated. With data
that is imbalanced, accuracy can be misleading. Using
balanced accuracy is better in this case since it accounts
for both the positive and negative outcome classes. F1
score was another metric taken into consideration. F1 score
is the mean of precision and recall. It is a popular metric as
it is a combination of two other important metrics. These
metrics can be calculated as follows [17]:

where TP is True Positive, FP is False Positive, TN is True
Negative, FN is False Negative, TPR is True Positive Rate,
and TNR is True Negative Rate.

 Additionally, root mean square error (RMSE) was
measured. This is used to evaluate the quality of

predictions by showing how far predictions fall from true
values. This is measured using Euclidean distance [2].

 The research results are detailed in the following.

5.1 XGBoost Results

Our experimental results show that the detecting
performance scores of the XGBoost model depend on the
training/testing split of the dataset. Both the 80/20 split
(that is, 80% of the data used for training the model and
20% of the data used to test the detection effectiveness of
the model) and the 65/35 split had scores where they
excelled in while the 75/25 split was consistently either the
lowest, or between the two scores. While the 65/35 split
had the highest precision score of 89.3%, it continued to
perform poorly through the other classifications when
compared to the 80/20 split. As shown in Figure 3, the
80/20 split achieved a precision score of 84%, an accuracy
score of 80.3%, an F1 score of 81%, and a recall score of
80.3%. This has led us to the conclusion that the 80/20
split was the split to use to better our investigation into the
NSL-KDD dataset.

Fig. 3. XGBoost performance results using various splits

5.2 SVM Results

From our testing, we have found that the highest
overall scores were received by the Linear kernel using a
75/25 split of the data between training and testing. The
scores that it received were a 79.33% precision score, a
77.07% accuracy score, a 76.75% F1 score, and a 77.07%
recall score. We can also see that the Linear kernel
produced the best results for each split that was
experimented with. For the 80/20 split, we received a
precision score of 70.52%, an accuracy score of 77.06%,

(5)

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.1, January 2023

51

an F1 score of 71.76%, and a recall score of 77.06%. The
65/35 split gave a precision score of 67.57%, an accuracy
score of 64.81%, an F1 score of 62.67%, and a recall score
of 61.99%. Results shown in Figure 4 are using linear
kernel as it achieved best results.

Fig. 4. SVM performance results using various splits

5.3 DCNN Results

Much like with the SVM and XGBoost algorithms,
we have separated the NSL-KDD dataset into a few
different training/testing splits including an 80/20 split, a
75/25 split, a 70/30 split, a 65/35 split, and a 60/40 split.
Unlike with the other two algorithms we also split the
results between a top-five accuracy classification and a
top-one accuracy classification. For the top-five accuracy,
the most accurate combination was a 70/30 split using the
VGG19 neural network. For the top-one accuracy, the most
accurate combination was a 65/35 split using the ResNet50
neural network. Both results will be taken into
consideration when comparing the results received from
the SVM and XGBoost algorithms.

5.4 Comparison of Results

Using the Precision, Accuracy, Recall, and F1-score
metrics, we have now tested the XGBoost, SVM, and
DCNN machine learning algorithms against the NSL-KDD
dataset. After this testing, we will compare the results of
each algorithm that used the most accurate configuration.
For XGBoost, using an 80/20 split resulted in precision,
accuracy, recall, and F1 scores of 84%, 80.7%, 81%, and
80.3%, respectively. The SVM algorithm using a 75/25
split, and the Linear kernel received precision, accuracy,
recall, and F1 scores of 70.52%, 77.06%, 77.06%, and
71.76%, respectively. The DCNN algorithm using the
Resnet50 framework with an 80/20 split resulted in
precision, accuracy, recall, and F1 scores of 37.37%,
96.24%, 33.9%, and 35.55%, respectively. After obtaining
all of these results we take a closer look at the differences
between them. Although the DCNN algorithm resulted in

an accuracy score of 96.24%, all other metrics paled in
comparison with the next highest being precision at
37.37%. Compare this to both XGBoost and SVM where
their biggest jumps were of around 4% and 7%,
respectively.

Fig. 5. Top-five accuracy classification results

Fig. 6. Top-one accuracy classification results

 We also looked at the efficiency of the detection (that
is, how long it took to get these results). For both the
XGBoost and SVM algorithms, it took only a matter of
minutes, whereas to receive results for the DCNN
algorithm it took a matter of hours. More specifically, the
XGBoost algorithm was 425.53% faster than the SVM
algorithm and 2,075.49% faster than the DCNN algorithm.
From this comparison, we have found that even though the
DCNN algorithm had the highest accuracy score of
96.24%, the XGBoost algorithm performed the best overall
throughout this analysis.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.1, January 2023

52

6. Conclusion and Future Work

With the evolution of IoT devices and systems,
protecting these devices and systems remains a significant
and challenging issue in cybersecurity. As attacks on these
devices and systems can be detrimental to humans and
enterprises, it is of the utmost importance that IoT devices
are protected. This study provides an analysis of how
machine learning can be used to predict anomalies and this
information can be used to prevent or mitigate future
attacks. Machine learning algorithms used in this study
included XGBoost, SVM, and DCNN. Each of these were
fed data from the NSL-KDD dataset where the models
classified anomalies and benign data. This study found that
machine learning can effectively and efficiently be used
for anomaly detection. Amongst the three algorithms,
XGBoost proved to be the most effective and the most
efficient method.
 While the use of a dataset such as the NSL-KDD is
useful for training and benchmarking the ML models, it
does not directly compare to real world intrusion data. In
collected real world data, there is less redundancy and
more distinct types of attacks when compared to the
dataset. In this study, the main point was to compare the
accuracy and efficiency of the ML models that have been
trained on the NSL-KDD dataset. The next step would be
to collect and compile both anomalous and benign data
created by various IoT devices from real world IoT
applications. This data would then be used to create a new
dataset to train and test the models. This could be
compared to see how the model performances differ
between real world data and data from the NSL-KDD
dataset.

Acknowledgment

This work is supported by the NSA under NSA grant
H98230-20-1-0296. We would like to thank Dr. Pearlstein,
TCNJ, for the use of Zelda. In addition, we would like to
thank all members of the IUP IoT Research team.

References
[1] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of

things (iot): A literature review,” Journal of Computer and
Communications, vol. 3, pp. 164–173, 04 2015.

[2] M. Balega, W. Farag, S. Ezekiel, X.-W. Wu, A. Deak, and
Z. Good, “IoT Anomaly Detection Using a Multitude of
Machine Learning Algorithms,” in the proceedings of the
IEEE Applied Imagery Pattern Recognition Workshop, Oct.
11-13, 2022, Washington, DC.

[3] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the kdd cup 99 data set,” in 2009 IEEE
symposium on computational intelligence for security and
defense applications. Ieee, 2009, pp. 1–6.

[4] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R.
Kendall, D. McClung, D. Weber, S. E. Webster, D.
Wyschogrod, R. K. Cunningham et al., “Evaluating
intrusion detection systems: The 1998 darpa offline
intrusion detection evaluation,” in Proceedings DARPA
Information Survivability Conference and Exposition.
DISCEX’00, vol. 2. IEEE, 2000, pp. 12–26.

[5] M. Palacios, “A Comparison of ANNs, SVMs & XGBoost
on some Challenging Classification Problems,” Oct. 2019,
eigenvector Research Incorporated. [Online]. Available:
https://eigenvector.com/wp-content/ uploads/2020/03/Wise
APACT Nonlinear Comparison.pdf

[6] S. Revathi and A. Malathi, “A detailed analysis on nsl-kdd
dataset using various machine learning techniques for
intrusion detection,” International Journal of Engineering
Research & Technology (IJERT), vol. 2, no. 12, pp.
1848–1853, 2013.

[7] J. Canedo and A. Skjellum, “Using machine learning to
secure iot systems,” in 2016 14th Annual Conference on
Privacy, Security and Trust (PST), 2016, pp. 219–222

[8] F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain,
“Machine learning in iot security: Current solutions and
future challenges,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 3, pp. 1686–1721, 2020

[9] L. Wu and J. Fan, “Comparison of neuron-based,
kernel-based, treebased and curve-based machine learning
models for predicting daily reference evapotranspiration,”
PLOS ONE, vol. 14, no. 5, pp. 1–27, 052019. [Online].
Available: https://doi.org/10.1371/journal.pone.0217520

[10] P. Das, et al., “Amazon sagemaker autopilot: a white box
automl solution at scale,” CoRR, vol. abs/2012.08483,
2020. [Online]. Available: https://arxiv.org/abs/2012.08483

[11] T. Chen and C. Guestrin, “Xgboost: A scalable tree
boosting system,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p.
785–794. [Online]. Available:
https://doi.org/10.1145/2939672.2939785

[12] “State of Machine Learning and Data Science 2020,” 2020.
[Online]. Available:
https://www.kaggle.com/kaggle-survey-2020

[13] Xgboost documentation. [Online]. Available:
https://xgboost.readthedocs.io/en/stable/index.html

[14] C. Cortes and V. Vapnik, “Support-vector networks,” in
Machine Learning, 1995, pp. 273–297.

[15] V. Jakkula, “Tutorial on support vector machine (svm),”
School of EECS, Washington State University, vol. 37, no.
2.5, p. 3, 2006.

[16] R. Pupale, “Support vector machines(svm) – an overview,”
June 2018. [Online]. Available:
https://towardsdatascience.com/https-medium-com-pupaler
ushikesh-svm-f4b42800e989#:~:text=SVM

[17] S. Ezekiel, L. Pearlstein, A. Alshehri, A. Lutz, J. Zaunegger,
and W. Farag, “Investigating gan and vae to train dcnn,”
International Journal of Machine Learning and Computing,
vol. 9, pp. 774–781, 12 2019.

