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Abstract 
The travelling salesman problem (TSP) is an important 
combinatorial optimization problem that is used in several 
engineering science branches and has drawn interest to several 
researchers and scientists. In this problem, a salesman from an 
arbitrary node, called the warehouse, starts moving and returns to 
the warehouse after visiting n clients, given that each client is 
visited only once. The objective in this problem is to find the route 
with the least cost to the salesman. In this study, a meta-based ant 
colony system algorithm (ACSA) is suggested to find solution to 
the TSP that does not use local pheromone update. This algorithm 
uses the global pheromone update and new heuristic information. 
Further, pheromone evaporation coefficients are used in search 
space of the problem as diversification. This modification allows 
the algorithm to escape local optimization points as much as 
possible. In addition, 3-opt local search is used as an 
intensification mechanism for more quality. The effectiveness of 
the suggested algorithm is assessed on a several standard problem 
instances. The results show the power of the suggested algorithm 
which could find quality solutions with a small gap, between 
obtained solution and optimal solution, of 1%. Additionally, the 
results in contrast with other algorithms show the appropriate 
quality of competitiveness of our proposed ACSA. 

Keywords: Travelling Salesman Problem; Ant Colony System 
Algorithm; Global Updating; NP-hard Problems. 

 
1. Introduction 
 

The travelling salesman problem (TSP) is an 
important combinatorial optimization problem (COP) in 
services and industry because many problems can be 
converted into a version of the problem and hence, the 
algorithms for this problem can be applied to solve them [1]. 
Also, the problem is considered as a standard criterion for 
new discrete algorithms, and thus, the effectiveness of the 
algorithms can be evaluated in contrast with other 
algorithms. In this important COP, the two-dimensional 
specifications of a node called a warehouse and n other 

nodes called customers are presented as input data. 
Therefore, the Euclidean distance between the two nodes 
can be obtained. Now, a salesman starts moving from the 
warehouse node and returns to it at the end after visiting 
each customer once. The purpose is to discover a 
Hamiltonian cycle having the least Euclidean distance (Fig. 
1) [2].  

Fig. 1. Examples of sub-optimum solutions for different 
TSPs 

Exact and heuristic algorithms are two classes of 
methods that can be used to solve this problem as well as 
other COPs [3]. Using basic exact methods to solve this 
problem, one can make a list of all possible permutations of 
nodes, evaluate their costs, and select the best amongst them. 
However, to use these basic methods, one has to perform 
ሺ𝑛 െ 1ሻ!/2 computations for an undirected graph and ሺ𝑛 െ
1ሻ! computations for a directed graph. Thus, as the number 
of nodes grows, problem size becomes bigger, 
computations grow rapidly, and thus efficiency of the 
methods decline drastically so that after some certain 
problem size, the methods cannot find solution. That means, 
these methods require very long computational time for 
solving these problems, and since these problems need to be 
solved within short time, these methods are not 
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recommended to use. Branch and cut algorithm [4], branch 
and cut algorithm [5], lexisearch algorithm [6], and  
Lagrangian algorithm [7] are some examples of this type of 
algorithms. 

Since the TSP, as mentioned above, has many 
applications, finding solution to this problem is very 
important in reducing the cost of industrial and service 
companies and hence, has attracted a lot of attention. In 
recent years, many methods were suggested to solve this 
problem that have been dealt with seriously for almost three 
decades, the solution to this problem is not achieved in most 
cases, but the method can achieve a quality solution at an 
acceptable time [8]. Heuristic methods are methods that can 
provide solutions to any COP in a limited time and are 
mainly based on counting methods, except that they use 
additional information to guide the search. These methods 
are completely general in terms of application and can solve 
complex problems. However, in heuristic methods, unlike 
metaheuristic methods (another version of heuristic 
methods) a constant solution is obtained for the problem in 
each repetition of the method. So, it is unjustified to repeat 
the method to find a better solution and this is an advantage 
of the method, but in contrast, these methods cannot escape 
from the local optimal points (Fig. 2) and thus, easily get 
stuck in these points [9]. 

 
 
 
 
 
 
 
 
 

Fig. 2. Local and Global points in a compound optimization 
problem 

One of the most important and promising versions of 
heuristic methods that do not have problems with complete 
counting methods are metaheuristic methods that have 
recently focused more on them. These methods have 
similarities with social or natural systems and their 
application is derived from continuous methods of research 
which has had very good results in solving the complex 
problems. In these methods where the performance of the 
method, different from heuristic methods, controlled by the 
client, solutions are found within a reasonable time. Even 
though obtained solutions are better than the solutions using 
heuristic methods and the methods possibly do not get stuck 
in local optimizations, but there are numerous parameters 
which must be set by the user, may be  experimentally. 
However, the parameters setting is also a difficult job. 
Different values of the parameters cause the methods to 

obtain different solutions in similar iterations. Therefore, 
these methods do not have a rigid process for finding the 
solutions and random parameter setting play an important 
role in these methods. Tabu search (TS) [10], genetic 
algorithm (GA) [11], scatter algorithm (SA) [12], ant 
colony system (ACS) [13] bee colony optimization (BCO) 
[14], memetic algorithm (MA) [15], and neural network 
(NN) [16] are examples of metaheuristic algorithms. 

Hybrid metaheuristic and heuristic methods are new 
methods that are highly considered by researchers and 
scientists today, because the combination of these methods 
makes the advantages of each method as best as possible 
and obtains appropriate and good quality solutions within 
very short time [17-20]. The combination of such methods 
also includes the benefits of heuristic method, which obtains 
a good solution within a shorter time and has good 
efficiency to escape the optimal local points based on 
metaheuristic methods [21]. In other words, such 
algorithms have a more suitable structure for searching in 
the space of solutions and have a more regular procedure 
for finding elite solutions. In these algorithms, first, the 
space is searched as much as possible at an acceptable time, 
and the susceptible areas with elite solutions are obtained, 
then the search process is pushed from the global to the local 
state, and the algorithm searches for the neighborhoods of 
elite solutions with a more exact procedure [22]. 

The TSP is NP-hard, meaning that no polynomial 
algorithm is available to obtain optimal solution, and the 
computing time to find solution grows exponentially 
through its size. Therefore, these kinds of problems are 
often solved with heuristic and metaheuristic techniques. 
Also, because the TSP has numerous industrial and service 
applications, an efficient metaheuristic algorithm equipped 
with diversification and intensification mechanisms is 
suggested. We propose an efficient ant colony system 
algorithm (ACSA) that uses 3-opt local search as 
intensification mechanism. Several sets of benchmark 
instances are considered in this paper for comparing results 
by our algorithm with the results by several other 
metaheuristic algorithms. The experimental results indicate 
that our algorithm can provide better solutions for almost all 
instances within an acceptable computational time. 

This paper is arranged as follows. The components of 
the proposed ACSA to solve the TSP are described in 
section 2 and the parameters setting are considered in 
section 3.  Section 4 reports comparative study of our 
suggested algorithm with other metaheuristic algorithms 
tested on some standard instances from the literature. 
Finally, the conclusions are summarized in Section 5. 
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2. The Proposed ACS Algorithm 

ACS is one of the oldest ant colony optimization (ACO) 
methods which can find sub-optimum solutions within a 
short time. This algorithm has been an improvement over 
ant system (AS) due to the introduction of new mechanisms. 
In this method, the ant that is capable of finding the best 
solution, releases pheromone on its path in every iteration 
[23]. Alternatively, the best solution in the current iteration 
is encouraged to improve its usefulness. After some time, 
all ants in AS build similar paths. If the path is not found 
good, means that the algorithm fails to find better solutions, 
then the searching and extracting procedure is terminated. 
Thus, the algorithm fails to find efficient solutions for large 
sized problem instances.  

In this paper, we propose to use an algorithm to 
examine the space areas more accurately. So, a modified 
ACS algorithm is used here. The ACS, introduced in [24], 
was largely inspired by the ant system method. In addition, 
the algorithm has attained some improvements due to the 
introduction of new mechanisms in terms of efficiency in 
comparison to other types of ACO algorithms. Here, due to 
the weaknesses in the ACS algorithm, some modifications 
are made to the algorithm. 

 

2.1. Heuristic problem information 

One of the coefficients that is of great importance in 
ACS and has a very important role in selecting nodes, is the 
heuristic information coefficient of the problem which is 

shown by . This coefficient, in the beginning of the 

algorithm’s iterations where the pheromone’s impact is less 
important, has a key role and decides the position and side 
of the search areas. In the conventional ACS algorithm, this 
value is considered equal to the inverse of the cost between 
the two nodes, like the nearest neighborhood method, the 
lower the cost the more likely it is to be chosen. As the 
nearest neighborhood algorithm is not obtaining well good 
quality solutions, it can be replaced with some efficient 
heuristic algorithms. For this reason, it is proposed to use 
the idea of a saving algorithm, which is an efficient 
innovative method that has more power to find good quality 
solutions within lesser time. Therefore, this coefficient is 
considered equal to 

, where a, b, 

c and d are fixed numbers which are adjusted by the user 
and the cost is between ‘node i' and ‘node j’. Table 1 shows 
the tested values and the best values found for these 
parameters. In this table, by considering three parameters b, 
c and d equal to 1, the best value a is obtained 1.5 by testing 
instances and comparing the solutions. Then, by 
considering value a, c and d to 1.5, 1 and 1 respectively, the 

best value b is obtained. Finally, the best values c and d are 
similarly found. 

 
 

2.2. Pheromone evaporation coefficient 

This parameter is used at the bottom of each iteration 
of the ACS algorithm, which is shown as a constant value. 
This coefficient decreases the pheromone quantity in all 
edges to a certain value. In this study, this coefficient 
changes due to the correct analysis of the ACS algorithm 
and converts from constant coefficient to variable 
coefficient. Therefore, by changing the state of the 
algorithm, this coefficient changes and makes the algorithm 
more efficient. The fixed coefficient of the pheromone does 
not make any difference when implementing the algorithm 
for any solution quality, in spite of the reality that the 
solutions are less accurate at the starting of the algorithm 
and the heuristic information of the instance has more 
power to orientation of the algorithm. However, the number 
of iterations is added, and the appropriate usage of the 
pheromone quantity poured on the edges, the solutions will 
reach a higher quality. So, it is well to consider this 
coefficient as an ascending function from the starting of the 
algorithm. Also, since the stopping condition for the 
algorithm is defined by the multiple number of nodes of 
each problem, this functional coefficient of iterations is 
considered.  

Therefore, it is suggested that the pheromone 
evaporation rate at the starting of the algorithm is low and 
with increasing iterations this value increases. This method 
triggers the algorithm to use a logical process to search and 
find better solutions locally and globally initially and finally 
by the algorithm respectively. Because the accuracy of the 
solutions at the starting is low and the low evaporation 
pheromone quantity causes the difference in the pheromone 
on the met and unsealed manes in the algorithm's iteration 
to increase until the chances of being selected by the 
unsealed edges increase. This also triggers the algorithm for 
searching globally at the starting of the process, but when 
iterations increase and more high-quality solutions are 
produced, searching is better to tend from global to local to 
search for the same as elite solutions. Therefore, increasing 
the evaporation of the fermion with an ascending function 
causes this goal to be realized because by increasing the 
pheromone coefficient, the difference between the met and 
unsealed mane is increased and the chances of unsealed 
edges being selected in previous iterations are close to zero. 
Therefore, the algorithm is more likely to consider 
previously met edges along with their neighbors. 

Therefore, the objective of this study is to present a 
function that is ascending and always has a range [0,1] 
based on the conditions of the problem parameters (formula 
(1)). In this process and in the searches performed, an 

( )ij t

0 0 0 0( )i j i j i j i jt a c b c c c d c c     
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ascending trigonometric function instead of constant 
coefficient is suggested in formula (1), which makes it 
possible to obtain better results for the algorithm, which is 
dealt with in the next section. 

    

                                   (1)                                
  loop: The total number of algorithm loop repetitions 

which is considered as the final condition of the algorithm.
  

  t: Represents the repeat number of the algorithm, 
which is at least equal to 1 and maximum. 

 𝜌௧: The evaporation rate is new, which increases with 
time. 

  𝜌: Fixed evaporation rate for algorithms that is always 
considered from the interval [0,1].  

Since t changes from 1 to n, the value (𝜋𝑡/3𝑛) changes 
between zero and (𝜋/3ሻ  consequently has a descending 
function between [0.5, 1] and  [ 1 െ 𝜌 𝑐𝑜𝑠ሺ 𝜋𝑡/3𝑛ሻሿ 
ultimately is based on the ascending functional 

coefficient in [0, 1]. 

 

2.3. The 3-Opt algorithm 

In obtaining higher quality solutions, our proposed 
ACSA algorithm is merged with the 3-opt local search 
improving algorithm. This local search method is enabled 
once a better quality solution is obtained for the algorithm 
than in the previous iterations. The reason why local search 
is activated in the situation is that once a better quality 
solution is obtained than in the previous iterations, there 
may be another better quality solution in the neighbor, 
which can be achieved by more searches in the neighbor. 
This method, as presented in Fig. 3, works based on 
removing three edges from the solution and re-connecting 
those three edges in a different way. There are several ways 
to re-create the tour, but only if it applies to the problem 
constraints and the recent tour gets a better quality solution 
than in the previous iteration. The operation of removing 
three edges and re-connecting again continues continuously 
to the point that no new improver movements are found for 
the algorithm. 

 

Fig. 3. The 3-Opt local search 

3. Parameters Analysis 

Premature convergence causes a search to be 
concentrated prematurely around sub-optimum solutions, 
which will bring about the abandonment of the search for 
new solutions in the algorithm. Search stagnation refers to 
a situation in which all ants follow a single path and 
construct a single solution a few times. In such cases the 
system will stop discovering new and good routes and 
cannot generate better solutions. In other words, premature 
convergence occurs when the algorithm prematurely 
focuses only on one part of the solution space and its 
neighbors instead of doing an adequate global search all 
over the search space. In contrast, most successful meta-
heuristic methods first conduct an adequate global search in 
order to identify potential points for good solution and then 
move toward these points for finding near-optimum 
solutions. One of the best ways to prevent premature 
convergence is to use parameter setting for the algorithm, 
which allows the algorithm to perform appropriate global 
and local searches in the problem space with the appropriate 
number of parameters. 

Parameter setting is very important for meta-heuristic 
algorithms because it causes the algorithm to achieve values 
for its parameters, which makes it likely to obtain its best 
values for the test instances. However, due to time limits, it 
cannot investigate all the possible values of the parameters. 
For this reason, in addition to using efficient methods such 
as Taguchi, one should also use the experience of others. In 
other words, it is better to get the minimum and maximum 
efficiency of these parameters from other articles and based 
on these values, consider some of them as candidates and 
then use other methods to find their best values. Note that 
due to time constraints, there is no guarantee that all of these 
parameters will be optimal, but it is likely that the parameter 
values will be among the best values found for them. 

A number of parameters of our algorithm, which have 
a significant impact on our algorithm’s convergence, are 
considered and analyzed in this section. For this purpose, 
different values are tested for each parameter in order to 
find values close to their normal values. Then, Taguchi 
method is utilized for finding the best parameter values  and 
the final parameter values are shown in the Table 1. Note 
that for this setting the parameter instance eli76 is 
considered and for each candidate value in Taguchi method, 
each problem is examined ten times and the best of these 
values are reported. Also, for each parameter test, the other 
parameters are considered constant so that the best value 
can be found for it. Four parameters of this algorithm 
including initial pheromone on edges, 𝛼, 𝛽 and loop are 
considered separately to investigate the effect of parameters 
of the ACSA on the solution. It should be noted that 
𝛼 𝑎𝑛𝑑 𝛽 are the ability of the effect of the pheromone and 
the heuristic information of the problem in the next mane 

t 1 cos( )
3

t

loop

  

,

, 
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by ants and loop is the repetition rate of the algorithm, 
respectively. 

Table 1: Parameter setting for our proposed ACSA. 
Parameter Candidate values The best value 
Initial pheromone on edges  10, 20, …, 100 20 

𝛼  1-5 1 

 1-5 4 
Number of iterations based on number of 
instance nodes (loop) 

1-5 2 

4. Computational Experiments 

First, various standard problem instances are studied, 
and the solutions by our proposed ACSA algorithm are 
evaluated against the solutions by elitist-ant system (EAS) 
and common ACS. These metaheuristic algorithms are 
executed ten times for each instance due to weaving 

different solutions in each execution. Then the obtained best 
solutions are displayed in Table 2. Further, the results of 
ACSA are compared with other metaheuristic algorithms 
with the same conditions as Table 1 which are also shown 
in Table 2. In other words, their best solutions is compared 
in this table. The instances are provided on the website: 
http://www.iwr.uni-heidelberg.de/groups/comopt/software 
/TSPLIB95/tsp.  

Table 2: Results by the three algorithms for some instances. 

Instance n 
ACSA 

EAS ACS BKS 
Tbest WS AS BS 

1 GR48 48 10 5046 5046 5046 5075 5046 5046 
2 ATT48 48 10 10628 10628 10628 10701 10641 10628 
3 Eil51 51 10 426 426 426 429 429 426 
4 Berlin52 52 10 7542 7542 7542 7591 7542 7542 
5 ST70 70 10 690 682 675 684 684 675 
6 Eil76 76 10 538 538 538 545 538 538 
7 KroA100 100 10 21982 21462 21282 21456 21362 21282 
8 KroB100 100 10 22141 22141 22141 22304 22301 22141 
9 Eil101 101 10 662 636 629 642 642 629 
10 Lin105 105 10 14401 14384 14379 14703 14421 14379 
11 KroA150 150 10 28563 26726 26524 26821 26821 26524 
12 KroB150 150 10 27602 26352 26130 26439 26439 26130 
13 KroA200 200 10 31028 29883 29451 30098 29743 29368 
14 KroB200 200 10 31651 29802 29506 30672 29761 29437 

 

In Table 2, the number of nodes in each instance (n), 
number of execution required to find the best solution 
(Tbest), worst solution (WS), average solution (AS) and  
best solution (BS) found by our ACSA, and the best 
solutions obtained by common EAS and ACS, and the best 
known solution (BKS) are reported. According to the results 
reported in the table, the weakest algorithm among the three 
presented algorithms is the EAS algorithm, which could not 
achieve BKS for any of the 14 instances in the table. 
Therefore, this algorithm does not have the required 
performance for these instances. Alternatively, the 
conventional ACS algorithm that is a modification to EAS, 
is able to find better solution than the EAS algorithm. To be 
precise, the ACS algorithm is able to find BKS for three 

instances and so, for nine out of fourteen instances it 
obtained better quality solution than by the EAS algorithm. 
However,  the results by these two algorithms are equal for 
the remaining five instances and the EAS algorithm has not 
performed well than the ACS algorithm for any instance. 
Therefore, in general, the ACS algorithm has shown better 
performance than the EAS algorithm in every respect. By 
comparing our proposed ACSA with other two algorithms, 
it is found that our algorithm has a great performance to 
solve the instances and is able to find the BKS for twelve 
out of fourteen instances. In addition, for the remaining two 
instances, the algorithm has obtained better solutions than 
the previous two algorithms. These results find that the 
revisions made in our proposed algorithm caused the 


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algorithm to avoid local optimizations and found better 
solutions. 

We have calculated the solution gap between the 
obtained solution and the BKS by the formula: 
Gap=100*(d1-d2)/d2, where d1 and d2 are the solution by 
an algorithm and BKS, respectively. Fig. 4 compares the 
worst, best and average solution Gaps for the instances by 
our proposed algorithm based on the results reported in 
Table 1. In this figure, X-axis represents the instances and 
Y-axis represents the Gaps. It is found in the figure that 
among the ten repetitions of the algorithm for the six 
instances - 1, 2, 3, 4, 6 and 8, there is no difference among 
three results. In addition, it is showed that for the instance 
10, the Gap is very low. In general, since the Gap for the 
remaining instances is less than 8%, it can be concluded that 
for this group of instances, our algorithm has a worthy 
ability to find quality solutions and various execution of the 
algorithm do not produce very different solutions. In other 
words, the algorithm retains the ability to find quality 
solutions in different executions for almost every instance. 

 
 
 
 
 
 
 
 
 

Fig. 4. The Gap comparison among WS, AS and BS by our 
proposed ACSA. 

In order to compare our ACSA and simple ACS, 
instance Eil51 has been used. Fig. 5 shows the solutions 
obtained by the algorithms throughout their executions. In 
the figure, X- axis denotes iteration numbers and Y-axis 
denoted best solutions in an iteration throughout the 
execution of an algorithm. In this test, the stopping 
condition of an algorithm is equal to the number nodes of 
the instance. The figure shows that at the beginning of the 
iterations, ACS shows very good improvement in the 
solution, however, after 18 iterations, there is no 
improvement. So, there is a premature convergence of 
solution. On the other hand, ACSA is not only capable of 
improving the solution quickly in every iteration, but it is 
also capable  of escaping the local optima and is achieving 
the BKS of 426 within 20 iterations.  

  

 
  

 

 

 

 

 

 

 

Fig. 5. Comparison between ACS (left) and ACSA (right) for Eil51. 

 

We further, picked solutions of six instances obtained 
by the proposed algorithm that are reported in Table 2, and 
showed in Fig. 6. As previously mentioned in these 
instances, the two-dimensional coordinates of the depot and 
customers are presented as data, which is specified in these 
figures on the X and Y axes. As seen in these figures, for 

each instance, a tour is found in which each customer is met 
exactly once, and the salesman returns to the depot at the 
end. For these six instances, our algorithm could obtain 
excellent solutions and hence, achieved BKS values. 
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               Berlin52                                                   Eil51                                                  Att48 

 
                   Eil76                                                 KroA100                                               St70 

Fig. 6. Solutions obtained by our ACSA for some instances. 

Table 3 presents the best solution found for 14 
instances by four metaheuristic algorithms. The left column 
for each algorithm shows the best solution by the 
algorithm(s) and the right column indicates its percentage 
of improvement compared to the BKS (Gap). Columns 2 
and 3 in the table  present the results by BCO [25]. The 

algorithm belonging to particle swarm optimization (PSO) 
[26] is presented in columns 4 and 5.  The effective ACO 
(EACO) has been presented in columns 6 and 7 [27]. 
Columns 8 and 9 contain the solutions of the ACSA. Further, 
the BKS has been reported in column 10 to compare 
solutions obtained by the algorithms. Finally, N/A means 
that the result is not reported for the instance.  

Table 3: Comparing four algorithms for standard TSP instances. 

Instance
BCO PSO EACO ACSA

BKS 
Gap Sol Gap Sol Gap Sol Gap Sol

GR48 N/A N/A N/A N/A 5072 0.52 5046 0.00 5046 
ATT48 10661 0.31 N/A N/A 10701 0.69 10628 0.00 10628 
Eil51 428 0.47 427 0.23 429 0.70 426 0.00 426 
Berlin52 N/A N/A 7542 0.00 7591 0.65 7542 0.00 7542 
ST70 N/A N/A N/A N/A 686 1.63 675 0.00 675 
Eil76 539 0.19 540 0.37 545 1.30 538 0.00 538 
KroA100 21763 2.26 21296 0.07 21456 0.82 21282 0.00 21282 
KroB100 22637 2.24 N/A N/A 22304 0.74 22141 0.00 22141 
Eil101 635 0.95 N/A N/A 643 2.23 629 0.00 629 
Lin105 15288 6.32 N/A N/A 14703 2.25 14379 0.00 14379 
KroA150 27858 5.03 N/A N/A 26829 1.15 26524 0.00 26524 
KroB150 26535 1.55 N/A N/A 26439 1.18 26130 0.00 26130 
KroA200 29961 2.02 29563 0.66 30111 2.53 29451 0.28 29368 
KroB200 30350 3.10 N/A N/A 30771 4.53 29506 0.23 29437 
Average  2.22  0.27  1.49  0.04  
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Comparing BCO with PSO, it is seen that out of four 
instances whose results are reported, PSO obtained better 
solutions than the solutions obtained by BCO for three 
instances whereas BCO obtained better solution for only 
one instance. So, PSO is better than BCO. Comparing PSO 
with EACO, it is seen that out of five instances whose 
results are reported, PSO obtained better solutions than the 
solutions obtained by BCO for all instances. So, PSO is 
better than EACO also. Comparing ACSA with PSO, it is 
seen that out of five instances whose results are reported, 
ACSA obtained better solutions than the solutions obtained 
by PSO for four  instances whereas both obtained same 
solution for only one instance. For these instances, PSO 
could find solutions with less than 1% Gap. Despite being 
able to obtain the BKS for Berlin52, it failed to achieve 
these results for the remaining four instances. One can 
conclude that ACSA is capable to obtain better quality 
solutions compared to PSO and is capable to escape from 
the local optima. Comparing BCO with ACSA, BCO has 
produced close solution only for Eil76 and Eil101, while 
ACSA has obtained better solutions for the remaining nine 
instances. In general, BCO showed low performance and 
could not obtain best solution for any instance. Comparing 

ACSA with EACO, one can conclude that the ACSA can 
find better solutions that shows an acceptable enhancement 
of our algorithm. EACO is the weakest algorithm like BCO 
could not converge to best solution for any of fourteen 
instances. According to the performance of the algorithms 
from worst to best, one can list as: BCO, EACO, PSO and 
ACSA. 

Table 4 provides additional comparison between our 
proposed ACSA and other seven algorithms. A total of 
twelve instances are considered in this table, ten of which 
are medium-sized and the other two are large-sized. Each 
algorithm has two columns best Gap (BG) and mean Gap 
(MG). In addition, each algorithm is executed ten times for 
every instance, and the best solution Gap of these ten 
solutions are shown in the first column and their average in 
the second column. The seven algorithms used for 
comparison with ACSA are as follows: PSO [28], multi-
agent reinforcement learning algorithm (MARLA) [29], 
BCO [25], neural network (NN) [30], improved ACO with 
pheromone correction strategy (ACO-SEE) [31], 
generalized chromosome GA (GCGA) [32] and hybrid EAS 
(HEAS) [33]. 

Table 4: Comparing eight algorithms for standard TSP instances. 

Instance 
MARLA PSO BCO NN ACO-SEE GCGA HEAS ACSA 

BG MG BG MG BG MG BG MG BG MG BG MG BG MG BG MG
Eil51  0.23  1.07  0.23  2.58  0.47  0.85 0.24  2.69  0.23 0.23 0.23 0.94 0.00 0.70 0.00 0.00
Berlin52  0.00  0.71 0.00 3.85  N/A  N/A 0.00 5.18  0.00 0.13 N/A N/A 0.00 0.11 0.00 0.00
St70  0.15  1.80 0.00 3.42  N/A  N/A N/A  N/A  0.00 1.36 0.00 0.44 0.00 0.00 0.00 1.04
Eil76  1.12  3.09  1.49  4.17  0.19  2.01 0.56  3.41  1.49 1.19 2.23 2.42 0.00 2.42 0.00 0.00
Pr76  0.86  2.38  0.11  3.82  N/A  N/A N/A  N/A  0.11 2.62 0.14 0.72 0.00 3.18 0.00 0.00
KroA100  0.00 0.98 N/A  N/A  2.26  3.43 0.24 1.13  0.00 0.72 0.50 1.23 0.00 0.11 0.00 0.80
KroB100  0.43  1.27 N/A  N/A  2.24  3.10 0.91  2.35  N/A N/A 0.24 1.81 N/A N/A 0.00 0.00
Eil101  0.64  4.17  N/A  N/A  0.95  2.29 1.43  3.12  N/A N/A 1.59 2.70 N/A N/A 0.00 1.11
KroA150  1.27  3.10 N/A  N/A  5.03  6.39 0.58  3.14  N/A N/A 1.40 2.92 N/A N/A 0.00 0.76
KroB150  2.28  2.86  N/A  N/A  1.55  3.68 0.51  1.92  N/A N/A 1.63 2.11 0.21 1.63 0.00 0.85
Rl1323  5.51  6.40 N/A  N/A  N/A N/A 11.31 13.00 N/A N/A N/A N/A N/A N/A 1.85 3.55
Fl1400  2.59  3.85  N/A  N/A  N/A  N/A 3.60 4.88  N/A N/A N/A N/A N/A N/A 1.75 2.98

 
 

Comparing the best solutions achieved by the 
algorithms, one can conclude that BCO, NN and GCGA 
algorithms have the worst solutions, and they could obtain 
optimal solutions for only zero, one and one instances, 
respectively. Besides, the three algorithms MARLA, PSO 
and ACO-SEE have obtained better solutions in this view, 
and they have achieved 2, 2 and 3 optimal solutions 
respectively. Finally, HEAS and ACSA algorithms have 
obtained high-quality solutions compared to the other 
algorithms and have reached the BKS for more than half of 
the instances. Alternatively, HEAS algorithm is able to find 
the optimal solutions for six instances while our proposed 

ACSA algorithm could achieve the optimal solutions for ten 
instances. Therefore, one can conclude that ACSA 
algorithm is the best algorithm among these eight 
algorithms and is capable to obtain high quality solutions. 

Another criterion based on which these eight 
algorithms can be compared is the average of the solutions 
in ten repetitions, so the proposed algorithm has found the 
best solutions. With more details, five algorithms - MARLA, 
PSO, BCO, NN, ACO-SEE and GCGA are different despite 
the number of best results, but in this regard, they were the 
same and none of them could achieve the optimal solutions. 
As in the previous comparison, HEAS and ACSA 
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algorithms have produced the best solutions. The HEAS 
algorithm could find optimal solution for only one instance, 
but our proposed ACSA, in this comparison, by obtaining 
the five best solutions, could find the best solutions 
compared to other algorithms.  Therefore, in general, from 
all these comparisons reported in tables 2, 3 and 4, one  can 
conclude that the improvements done in our proposed 
algorithm have produced the algorithm to produce better 
quality solutions and hence, our proposed ACSA has 
become one of the best algorithms. 

5. Conclusion and Future Works 

In this paper, an efficient ACS algorithm, called ACSA, 
is developed for solving the TSP.  In our proposed algorithm, 
several important improvements were done. According to 
the obtained results in comparison against other algorithms, 
one can conclude that the productivity of the proposed 
algorithm is very good, and the algorithm has obtained high 
quality solutions. In addition, this efficient algorithm can be 
combined with other innovative constructive algorithms 
due to random solutions obtained at the beginning of the 
execution to start working with better solutions. To further 
increase the productivity of the algorithm, it can be 
combined with local search or some heuristic algorithms 
such as genetic algorithm, simulated annealing or tabu 
search. Finally, this algorithm can be used in other versions 
of the TSP, such as the general TSP or time-dependent TSP. 
The execution of these ideas would be postponed to our 
future articles. Further, we shall study this problem using 
other metaheuristic algorithms, like genetic algorithms [34], 
tabu search [35], etc. 
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