
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

55

Manuscript received February 5, 2023
Manuscript revised February 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.2.6

Solving the Travelling Salesman Problem Using an Ant
Colony System Algorithm

Zakir Hussain Ahmed 1,*, Majid Yousefikhoshbakht 2, Abdul Khader Jilani Saudagar3,

and Shakir Khan4,5
1 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic

University (IMSIU), Riyadh 11432, Saudi Arabia.
2 Department of Mathematics, Faculty of Sciences, Bu-Ali Sina University, Hamedan 6517838195, Iran.

3 Information Systems Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
4 College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU),

Riyadh 11432, Saudi Arabia.
5 University Centre for Research and Development, Department of Computer Science and Engineering,

Chandigarh University, Mohali 140413, India.
* Correspondence: zaahmed@imamu.edu.sa

Abstract
The travelling salesman problem (TSP) is an important
combinatorial optimization problem that is used in several
engineering science branches and has drawn interest to several
researchers and scientists. In this problem, a salesman from an
arbitrary node, called the warehouse, starts moving and returns to
the warehouse after visiting n clients, given that each client is
visited only once. The objective in this problem is to find the route
with the least cost to the salesman. In this study, a meta-based ant
colony system algorithm (ACSA) is suggested to find solution to
the TSP that does not use local pheromone update. This algorithm
uses the global pheromone update and new heuristic information.
Further, pheromone evaporation coefficients are used in search
space of the problem as diversification. This modification allows
the algorithm to escape local optimization points as much as
possible. In addition, 3-opt local search is used as an
intensification mechanism for more quality. The effectiveness of
the suggested algorithm is assessed on a several standard problem
instances. The results show the power of the suggested algorithm
which could find quality solutions with a small gap, between
obtained solution and optimal solution, of 1%. Additionally, the
results in contrast with other algorithms show the appropriate
quality of competitiveness of our proposed ACSA.

Keywords: Travelling Salesman Problem; Ant Colony System
Algorithm; Global Updating; NP-hard Problems.

1. Introduction

The travelling salesman problem (TSP) is an
important combinatorial optimization problem (COP) in
services and industry because many problems can be
converted into a version of the problem and hence, the
algorithms for this problem can be applied to solve them [1].
Also, the problem is considered as a standard criterion for
new discrete algorithms, and thus, the effectiveness of the
algorithms can be evaluated in contrast with other
algorithms. In this important COP, the two-dimensional
specifications of a node called a warehouse and n other

nodes called customers are presented as input data.
Therefore, the Euclidean distance between the two nodes
can be obtained. Now, a salesman starts moving from the
warehouse node and returns to it at the end after visiting
each customer once. The purpose is to discover a
Hamiltonian cycle having the least Euclidean distance (Fig.
1) [2].

Fig. 1. Examples of sub-optimum solutions for different
TSPs

Exact and heuristic algorithms are two classes of
methods that can be used to solve this problem as well as
other COPs [3]. Using basic exact methods to solve this
problem, one can make a list of all possible permutations of
nodes, evaluate their costs, and select the best amongst them.
However, to use these basic methods, one has to perform
ሺ𝑛 െ 1ሻ!/2 computations for an undirected graph and ሺ𝑛 െ
1ሻ! computations for a directed graph. Thus, as the number
of nodes grows, problem size becomes bigger,
computations grow rapidly, and thus efficiency of the
methods decline drastically so that after some certain
problem size, the methods cannot find solution. That means,
these methods require very long computational time for
solving these problems, and since these problems need to be
solved within short time, these methods are not

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

56

recommended to use. Branch and cut algorithm [4], branch
and cut algorithm [5], lexisearch algorithm [6], and
Lagrangian algorithm [7] are some examples of this type of
algorithms.

Since the TSP, as mentioned above, has many
applications, finding solution to this problem is very
important in reducing the cost of industrial and service
companies and hence, has attracted a lot of attention. In
recent years, many methods were suggested to solve this
problem that have been dealt with seriously for almost three
decades, the solution to this problem is not achieved in most
cases, but the method can achieve a quality solution at an
acceptable time [8]. Heuristic methods are methods that can
provide solutions to any COP in a limited time and are
mainly based on counting methods, except that they use
additional information to guide the search. These methods
are completely general in terms of application and can solve
complex problems. However, in heuristic methods, unlike
metaheuristic methods (another version of heuristic
methods) a constant solution is obtained for the problem in
each repetition of the method. So, it is unjustified to repeat
the method to find a better solution and this is an advantage
of the method, but in contrast, these methods cannot escape
from the local optimal points (Fig. 2) and thus, easily get
stuck in these points [9].

Fig. 2. Local and Global points in a compound optimization
problem

One of the most important and promising versions of
heuristic methods that do not have problems with complete
counting methods are metaheuristic methods that have
recently focused more on them. These methods have
similarities with social or natural systems and their
application is derived from continuous methods of research
which has had very good results in solving the complex
problems. In these methods where the performance of the
method, different from heuristic methods, controlled by the
client, solutions are found within a reasonable time. Even
though obtained solutions are better than the solutions using
heuristic methods and the methods possibly do not get stuck
in local optimizations, but there are numerous parameters
which must be set by the user, may be experimentally.
However, the parameters setting is also a difficult job.
Different values of the parameters cause the methods to

obtain different solutions in similar iterations. Therefore,
these methods do not have a rigid process for finding the
solutions and random parameter setting play an important
role in these methods. Tabu search (TS) [10], genetic
algorithm (GA) [11], scatter algorithm (SA) [12], ant
colony system (ACS) [13] bee colony optimization (BCO)
[14], memetic algorithm (MA) [15], and neural network
(NN) [16] are examples of metaheuristic algorithms.

Hybrid metaheuristic and heuristic methods are new
methods that are highly considered by researchers and
scientists today, because the combination of these methods
makes the advantages of each method as best as possible
and obtains appropriate and good quality solutions within
very short time [17-20]. The combination of such methods
also includes the benefits of heuristic method, which obtains
a good solution within a shorter time and has good
efficiency to escape the optimal local points based on
metaheuristic methods [21]. In other words, such
algorithms have a more suitable structure for searching in
the space of solutions and have a more regular procedure
for finding elite solutions. In these algorithms, first, the
space is searched as much as possible at an acceptable time,
and the susceptible areas with elite solutions are obtained,
then the search process is pushed from the global to the local
state, and the algorithm searches for the neighborhoods of
elite solutions with a more exact procedure [22].

The TSP is NP-hard, meaning that no polynomial
algorithm is available to obtain optimal solution, and the
computing time to find solution grows exponentially
through its size. Therefore, these kinds of problems are
often solved with heuristic and metaheuristic techniques.
Also, because the TSP has numerous industrial and service
applications, an efficient metaheuristic algorithm equipped
with diversification and intensification mechanisms is
suggested. We propose an efficient ant colony system
algorithm (ACSA) that uses 3-opt local search as
intensification mechanism. Several sets of benchmark
instances are considered in this paper for comparing results
by our algorithm with the results by several other
metaheuristic algorithms. The experimental results indicate
that our algorithm can provide better solutions for almost all
instances within an acceptable computational time.

This paper is arranged as follows. The components of
the proposed ACSA to solve the TSP are described in
section 2 and the parameters setting are considered in
section 3. Section 4 reports comparative study of our
suggested algorithm with other metaheuristic algorithms
tested on some standard instances from the literature.
Finally, the conclusions are summarized in Section 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

57

2. The Proposed ACS Algorithm

ACS is one of the oldest ant colony optimization (ACO)
methods which can find sub-optimum solutions within a
short time. This algorithm has been an improvement over
ant system (AS) due to the introduction of new mechanisms.
In this method, the ant that is capable of finding the best
solution, releases pheromone on its path in every iteration
[23]. Alternatively, the best solution in the current iteration
is encouraged to improve its usefulness. After some time,
all ants in AS build similar paths. If the path is not found
good, means that the algorithm fails to find better solutions,
then the searching and extracting procedure is terminated.
Thus, the algorithm fails to find efficient solutions for large
sized problem instances.

In this paper, we propose to use an algorithm to
examine the space areas more accurately. So, a modified
ACS algorithm is used here. The ACS, introduced in [24],
was largely inspired by the ant system method. In addition,
the algorithm has attained some improvements due to the
introduction of new mechanisms in terms of efficiency in
comparison to other types of ACO algorithms. Here, due to
the weaknesses in the ACS algorithm, some modifications
are made to the algorithm.

2.1. Heuristic problem information

One of the coefficients that is of great importance in
ACS and has a very important role in selecting nodes, is the
heuristic information coefficient of the problem which is

shown by . This coefficient, in the beginning of the

algorithm’s iterations where the pheromone’s impact is less
important, has a key role and decides the position and side
of the search areas. In the conventional ACS algorithm, this
value is considered equal to the inverse of the cost between
the two nodes, like the nearest neighborhood method, the
lower the cost the more likely it is to be chosen. As the
nearest neighborhood algorithm is not obtaining well good
quality solutions, it can be replaced with some efficient
heuristic algorithms. For this reason, it is proposed to use
the idea of a saving algorithm, which is an efficient
innovative method that has more power to find good quality
solutions within lesser time. Therefore, this coefficient is
considered equal to

, where a, b,

c and d are fixed numbers which are adjusted by the user
and the cost is between ‘node i' and ‘node j’. Table 1 shows
the tested values and the best values found for these
parameters. In this table, by considering three parameters b,
c and d equal to 1, the best value a is obtained 1.5 by testing
instances and comparing the solutions. Then, by
considering value a, c and d to 1.5, 1 and 1 respectively, the

best value b is obtained. Finally, the best values c and d are
similarly found.

2.2. Pheromone evaporation coefficient

This parameter is used at the bottom of each iteration
of the ACS algorithm, which is shown as a constant value.
This coefficient decreases the pheromone quantity in all
edges to a certain value. In this study, this coefficient
changes due to the correct analysis of the ACS algorithm
and converts from constant coefficient to variable
coefficient. Therefore, by changing the state of the
algorithm, this coefficient changes and makes the algorithm
more efficient. The fixed coefficient of the pheromone does
not make any difference when implementing the algorithm
for any solution quality, in spite of the reality that the
solutions are less accurate at the starting of the algorithm
and the heuristic information of the instance has more
power to orientation of the algorithm. However, the number
of iterations is added, and the appropriate usage of the
pheromone quantity poured on the edges, the solutions will
reach a higher quality. So, it is well to consider this
coefficient as an ascending function from the starting of the
algorithm. Also, since the stopping condition for the
algorithm is defined by the multiple number of nodes of
each problem, this functional coefficient of iterations is
considered.

Therefore, it is suggested that the pheromone
evaporation rate at the starting of the algorithm is low and
with increasing iterations this value increases. This method
triggers the algorithm to use a logical process to search and
find better solutions locally and globally initially and finally
by the algorithm respectively. Because the accuracy of the
solutions at the starting is low and the low evaporation
pheromone quantity causes the difference in the pheromone
on the met and unsealed manes in the algorithm's iteration
to increase until the chances of being selected by the
unsealed edges increase. This also triggers the algorithm for
searching globally at the starting of the process, but when
iterations increase and more high-quality solutions are
produced, searching is better to tend from global to local to
search for the same as elite solutions. Therefore, increasing
the evaporation of the fermion with an ascending function
causes this goal to be realized because by increasing the
pheromone coefficient, the difference between the met and
unsealed mane is increased and the chances of unsealed
edges being selected in previous iterations are close to zero.
Therefore, the algorithm is more likely to consider
previously met edges along with their neighbors.

Therefore, the objective of this study is to present a
function that is ascending and always has a range [0,1]
based on the conditions of the problem parameters (formula
(1)). In this process and in the searches performed, an

()ij t

0 0 0 0()i j i j i j i jt a c b c c c d c c     

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

58

ascending trigonometric function instead of constant
coefficient is suggested in formula (1), which makes it
possible to obtain better results for the algorithm, which is
dealt with in the next section.

 (1)
 loop: The total number of algorithm loop repetitions

which is considered as the final condition of the algorithm.

 t: Represents the repeat number of the algorithm,
which is at least equal to 1 and maximum.

 𝜌௧: The evaporation rate is new, which increases with
time.

 𝜌: Fixed evaporation rate for algorithms that is always
considered from the interval [0,1].

Since t changes from 1 to n, the value (𝜋𝑡/3𝑛) changes
between zero and (𝜋/3ሻ consequently has a descending
function between [0.5, 1] and [1 െ 𝜌 𝑐𝑜𝑠ሺ 𝜋𝑡/3𝑛ሻሿ
ultimately is based on the ascending functional

coefficient in [0, 1].

2.3. The 3-Opt algorithm

In obtaining higher quality solutions, our proposed
ACSA algorithm is merged with the 3-opt local search
improving algorithm. This local search method is enabled
once a better quality solution is obtained for the algorithm
than in the previous iterations. The reason why local search
is activated in the situation is that once a better quality
solution is obtained than in the previous iterations, there
may be another better quality solution in the neighbor,
which can be achieved by more searches in the neighbor.
This method, as presented in Fig. 3, works based on
removing three edges from the solution and re-connecting
those three edges in a different way. There are several ways
to re-create the tour, but only if it applies to the problem
constraints and the recent tour gets a better quality solution
than in the previous iteration. The operation of removing
three edges and re-connecting again continues continuously
to the point that no new improver movements are found for
the algorithm.

Fig. 3. The 3-Opt local search

3. Parameters Analysis

Premature convergence causes a search to be
concentrated prematurely around sub-optimum solutions,
which will bring about the abandonment of the search for
new solutions in the algorithm. Search stagnation refers to
a situation in which all ants follow a single path and
construct a single solution a few times. In such cases the
system will stop discovering new and good routes and
cannot generate better solutions. In other words, premature
convergence occurs when the algorithm prematurely
focuses only on one part of the solution space and its
neighbors instead of doing an adequate global search all
over the search space. In contrast, most successful meta-
heuristic methods first conduct an adequate global search in
order to identify potential points for good solution and then
move toward these points for finding near-optimum
solutions. One of the best ways to prevent premature
convergence is to use parameter setting for the algorithm,
which allows the algorithm to perform appropriate global
and local searches in the problem space with the appropriate
number of parameters.

Parameter setting is very important for meta-heuristic
algorithms because it causes the algorithm to achieve values
for its parameters, which makes it likely to obtain its best
values for the test instances. However, due to time limits, it
cannot investigate all the possible values of the parameters.
For this reason, in addition to using efficient methods such
as Taguchi, one should also use the experience of others. In
other words, it is better to get the minimum and maximum
efficiency of these parameters from other articles and based
on these values, consider some of them as candidates and
then use other methods to find their best values. Note that
due to time constraints, there is no guarantee that all of these
parameters will be optimal, but it is likely that the parameter
values will be among the best values found for them.

A number of parameters of our algorithm, which have
a significant impact on our algorithm’s convergence, are
considered and analyzed in this section. For this purpose,
different values are tested for each parameter in order to
find values close to their normal values. Then, Taguchi
method is utilized for finding the best parameter values and
the final parameter values are shown in the Table 1. Note
that for this setting the parameter instance eli76 is
considered and for each candidate value in Taguchi method,
each problem is examined ten times and the best of these
values are reported. Also, for each parameter test, the other
parameters are considered constant so that the best value
can be found for it. Four parameters of this algorithm
including initial pheromone on edges, 𝛼, 𝛽 and loop are
considered separately to investigate the effect of parameters
of the ACSA on the solution. It should be noted that
𝛼 𝑎𝑛𝑑 𝛽 are the ability of the effect of the pheromone and
the heuristic information of the problem in the next mane

t 1 cos()
3

t

loop

  

,

,

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

59

by ants and loop is the repetition rate of the algorithm,
respectively.

Table 1: Parameter setting for our proposed ACSA.
Parameter Candidate values The best value
Initial pheromone on edges 10, 20, …, 100 20

𝛼 1-5 1

 1-5 4
Number of iterations based on number of
instance nodes (loop)

1-5 2

4. Computational Experiments

First, various standard problem instances are studied,
and the solutions by our proposed ACSA algorithm are
evaluated against the solutions by elitist-ant system (EAS)
and common ACS. These metaheuristic algorithms are
executed ten times for each instance due to weaving

different solutions in each execution. Then the obtained best
solutions are displayed in Table 2. Further, the results of
ACSA are compared with other metaheuristic algorithms
with the same conditions as Table 1 which are also shown
in Table 2. In other words, their best solutions is compared
in this table. The instances are provided on the website:
http://www.iwr.uni-heidelberg.de/groups/comopt/software
/TSPLIB95/tsp.

Table 2: Results by the three algorithms for some instances.

Instance n
ACSA

EAS ACS BKS
Tbest WS AS BS

1 GR48 48 10 5046 5046 5046 5075 5046 5046
2 ATT48 48 10 10628 10628 10628 10701 10641 10628
3 Eil51 51 10 426 426 426 429 429 426
4 Berlin52 52 10 7542 7542 7542 7591 7542 7542
5 ST70 70 10 690 682 675 684 684 675
6 Eil76 76 10 538 538 538 545 538 538
7 KroA100 100 10 21982 21462 21282 21456 21362 21282
8 KroB100 100 10 22141 22141 22141 22304 22301 22141
9 Eil101 101 10 662 636 629 642 642 629
10 Lin105 105 10 14401 14384 14379 14703 14421 14379
11 KroA150 150 10 28563 26726 26524 26821 26821 26524
12 KroB150 150 10 27602 26352 26130 26439 26439 26130
13 KroA200 200 10 31028 29883 29451 30098 29743 29368
14 KroB200 200 10 31651 29802 29506 30672 29761 29437

In Table 2, the number of nodes in each instance (n),
number of execution required to find the best solution
(Tbest), worst solution (WS), average solution (AS) and
best solution (BS) found by our ACSA, and the best
solutions obtained by common EAS and ACS, and the best
known solution (BKS) are reported. According to the results
reported in the table, the weakest algorithm among the three
presented algorithms is the EAS algorithm, which could not
achieve BKS for any of the 14 instances in the table.
Therefore, this algorithm does not have the required
performance for these instances. Alternatively, the
conventional ACS algorithm that is a modification to EAS,
is able to find better solution than the EAS algorithm. To be
precise, the ACS algorithm is able to find BKS for three

instances and so, for nine out of fourteen instances it
obtained better quality solution than by the EAS algorithm.
However, the results by these two algorithms are equal for
the remaining five instances and the EAS algorithm has not
performed well than the ACS algorithm for any instance.
Therefore, in general, the ACS algorithm has shown better
performance than the EAS algorithm in every respect. By
comparing our proposed ACSA with other two algorithms,
it is found that our algorithm has a great performance to
solve the instances and is able to find the BKS for twelve
out of fourteen instances. In addition, for the remaining two
instances, the algorithm has obtained better solutions than
the previous two algorithms. These results find that the
revisions made in our proposed algorithm caused the



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

60

algorithm to avoid local optimizations and found better
solutions.

We have calculated the solution gap between the
obtained solution and the BKS by the formula:
Gap=100*(d1-d2)/d2, where d1 and d2 are the solution by
an algorithm and BKS, respectively. Fig. 4 compares the
worst, best and average solution Gaps for the instances by
our proposed algorithm based on the results reported in
Table 1. In this figure, X-axis represents the instances and
Y-axis represents the Gaps. It is found in the figure that
among the ten repetitions of the algorithm for the six
instances - 1, 2, 3, 4, 6 and 8, there is no difference among
three results. In addition, it is showed that for the instance
10, the Gap is very low. In general, since the Gap for the
remaining instances is less than 8%, it can be concluded that
for this group of instances, our algorithm has a worthy
ability to find quality solutions and various execution of the
algorithm do not produce very different solutions. In other
words, the algorithm retains the ability to find quality
solutions in different executions for almost every instance.

Fig. 4. The Gap comparison among WS, AS and BS by our
proposed ACSA.

In order to compare our ACSA and simple ACS,
instance Eil51 has been used. Fig. 5 shows the solutions
obtained by the algorithms throughout their executions. In
the figure, X- axis denotes iteration numbers and Y-axis
denoted best solutions in an iteration throughout the
execution of an algorithm. In this test, the stopping
condition of an algorithm is equal to the number nodes of
the instance. The figure shows that at the beginning of the
iterations, ACS shows very good improvement in the
solution, however, after 18 iterations, there is no
improvement. So, there is a premature convergence of
solution. On the other hand, ACSA is not only capable of
improving the solution quickly in every iteration, but it is
also capable of escaping the local optima and is achieving
the BKS of 426 within 20 iterations.

Fig. 5. Comparison between ACS (left) and ACSA (right) for Eil51.

We further, picked solutions of six instances obtained
by the proposed algorithm that are reported in Table 2, and
showed in Fig. 6. As previously mentioned in these
instances, the two-dimensional coordinates of the depot and
customers are presented as data, which is specified in these
figures on the X and Y axes. As seen in these figures, for

each instance, a tour is found in which each customer is met
exactly once, and the salesman returns to the depot at the
end. For these six instances, our algorithm could obtain
excellent solutions and hence, achieved BKS values.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

61

 Berlin52 Eil51 Att48

 Eil76 KroA100 St70

Fig. 6. Solutions obtained by our ACSA for some instances.

Table 3 presents the best solution found for 14
instances by four metaheuristic algorithms. The left column
for each algorithm shows the best solution by the
algorithm(s) and the right column indicates its percentage
of improvement compared to the BKS (Gap). Columns 2
and 3 in the table present the results by BCO [25]. The

algorithm belonging to particle swarm optimization (PSO)
[26] is presented in columns 4 and 5. The effective ACO
(EACO) has been presented in columns 6 and 7 [27].
Columns 8 and 9 contain the solutions of the ACSA. Further,
the BKS has been reported in column 10 to compare
solutions obtained by the algorithms. Finally, N/A means
that the result is not reported for the instance.

Table 3: Comparing four algorithms for standard TSP instances.

Instance
BCO PSO EACO ACSA

BKS
Gap Sol Gap Sol Gap Sol Gap Sol

GR48 N/A N/A N/A N/A 5072 0.52 5046 0.00 5046
ATT48 10661 0.31 N/A N/A 10701 0.69 10628 0.00 10628
Eil51 428 0.47 427 0.23 429 0.70 426 0.00 426
Berlin52 N/A N/A 7542 0.00 7591 0.65 7542 0.00 7542
ST70 N/A N/A N/A N/A 686 1.63 675 0.00 675
Eil76 539 0.19 540 0.37 545 1.30 538 0.00 538
KroA100 21763 2.26 21296 0.07 21456 0.82 21282 0.00 21282
KroB100 22637 2.24 N/A N/A 22304 0.74 22141 0.00 22141
Eil101 635 0.95 N/A N/A 643 2.23 629 0.00 629
Lin105 15288 6.32 N/A N/A 14703 2.25 14379 0.00 14379
KroA150 27858 5.03 N/A N/A 26829 1.15 26524 0.00 26524
KroB150 26535 1.55 N/A N/A 26439 1.18 26130 0.00 26130
KroA200 29961 2.02 29563 0.66 30111 2.53 29451 0.28 29368
KroB200 30350 3.10 N/A N/A 30771 4.53 29506 0.23 29437
Average 2.22 0.27 1.49 0.04

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

62

Comparing BCO with PSO, it is seen that out of four
instances whose results are reported, PSO obtained better
solutions than the solutions obtained by BCO for three
instances whereas BCO obtained better solution for only
one instance. So, PSO is better than BCO. Comparing PSO
with EACO, it is seen that out of five instances whose
results are reported, PSO obtained better solutions than the
solutions obtained by BCO for all instances. So, PSO is
better than EACO also. Comparing ACSA with PSO, it is
seen that out of five instances whose results are reported,
ACSA obtained better solutions than the solutions obtained
by PSO for four instances whereas both obtained same
solution for only one instance. For these instances, PSO
could find solutions with less than 1% Gap. Despite being
able to obtain the BKS for Berlin52, it failed to achieve
these results for the remaining four instances. One can
conclude that ACSA is capable to obtain better quality
solutions compared to PSO and is capable to escape from
the local optima. Comparing BCO with ACSA, BCO has
produced close solution only for Eil76 and Eil101, while
ACSA has obtained better solutions for the remaining nine
instances. In general, BCO showed low performance and
could not obtain best solution for any instance. Comparing

ACSA with EACO, one can conclude that the ACSA can
find better solutions that shows an acceptable enhancement
of our algorithm. EACO is the weakest algorithm like BCO
could not converge to best solution for any of fourteen
instances. According to the performance of the algorithms
from worst to best, one can list as: BCO, EACO, PSO and
ACSA.

Table 4 provides additional comparison between our
proposed ACSA and other seven algorithms. A total of
twelve instances are considered in this table, ten of which
are medium-sized and the other two are large-sized. Each
algorithm has two columns best Gap (BG) and mean Gap
(MG). In addition, each algorithm is executed ten times for
every instance, and the best solution Gap of these ten
solutions are shown in the first column and their average in
the second column. The seven algorithms used for
comparison with ACSA are as follows: PSO [28], multi-
agent reinforcement learning algorithm (MARLA) [29],
BCO [25], neural network (NN) [30], improved ACO with
pheromone correction strategy (ACO-SEE) [31],
generalized chromosome GA (GCGA) [32] and hybrid EAS
(HEAS) [33].

Table 4: Comparing eight algorithms for standard TSP instances.

Instance
MARLA PSO BCO NN ACO-SEE GCGA HEAS ACSA

BG MG BG MG BG MG BG MG BG MG BG MG BG MG BG MG
Eil51 0.23 1.07 0.23 2.58 0.47 0.85 0.24 2.69 0.23 0.23 0.23 0.94 0.00 0.70 0.00 0.00
Berlin52 0.00 0.71 0.00 3.85 N/A N/A 0.00 5.18 0.00 0.13 N/A N/A 0.00 0.11 0.00 0.00
St70 0.15 1.80 0.00 3.42 N/A N/A N/A N/A 0.00 1.36 0.00 0.44 0.00 0.00 0.00 1.04
Eil76 1.12 3.09 1.49 4.17 0.19 2.01 0.56 3.41 1.49 1.19 2.23 2.42 0.00 2.42 0.00 0.00
Pr76 0.86 2.38 0.11 3.82 N/A N/A N/A N/A 0.11 2.62 0.14 0.72 0.00 3.18 0.00 0.00
KroA100 0.00 0.98 N/A N/A 2.26 3.43 0.24 1.13 0.00 0.72 0.50 1.23 0.00 0.11 0.00 0.80
KroB100 0.43 1.27 N/A N/A 2.24 3.10 0.91 2.35 N/A N/A 0.24 1.81 N/A N/A 0.00 0.00
Eil101 0.64 4.17 N/A N/A 0.95 2.29 1.43 3.12 N/A N/A 1.59 2.70 N/A N/A 0.00 1.11
KroA150 1.27 3.10 N/A N/A 5.03 6.39 0.58 3.14 N/A N/A 1.40 2.92 N/A N/A 0.00 0.76
KroB150 2.28 2.86 N/A N/A 1.55 3.68 0.51 1.92 N/A N/A 1.63 2.11 0.21 1.63 0.00 0.85
Rl1323 5.51 6.40 N/A N/A N/A N/A 11.31 13.00 N/A N/A N/A N/A N/A N/A 1.85 3.55
Fl1400 2.59 3.85 N/A N/A N/A N/A 3.60 4.88 N/A N/A N/A N/A N/A N/A 1.75 2.98

Comparing the best solutions achieved by the
algorithms, one can conclude that BCO, NN and GCGA
algorithms have the worst solutions, and they could obtain
optimal solutions for only zero, one and one instances,
respectively. Besides, the three algorithms MARLA, PSO
and ACO-SEE have obtained better solutions in this view,
and they have achieved 2, 2 and 3 optimal solutions
respectively. Finally, HEAS and ACSA algorithms have
obtained high-quality solutions compared to the other
algorithms and have reached the BKS for more than half of
the instances. Alternatively, HEAS algorithm is able to find
the optimal solutions for six instances while our proposed

ACSA algorithm could achieve the optimal solutions for ten
instances. Therefore, one can conclude that ACSA
algorithm is the best algorithm among these eight
algorithms and is capable to obtain high quality solutions.

Another criterion based on which these eight
algorithms can be compared is the average of the solutions
in ten repetitions, so the proposed algorithm has found the
best solutions. With more details, five algorithms - MARLA,
PSO, BCO, NN, ACO-SEE and GCGA are different despite
the number of best results, but in this regard, they were the
same and none of them could achieve the optimal solutions.
As in the previous comparison, HEAS and ACSA

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

63

algorithms have produced the best solutions. The HEAS
algorithm could find optimal solution for only one instance,
but our proposed ACSA, in this comparison, by obtaining
the five best solutions, could find the best solutions
compared to other algorithms. Therefore, in general, from
all these comparisons reported in tables 2, 3 and 4, one can
conclude that the improvements done in our proposed
algorithm have produced the algorithm to produce better
quality solutions and hence, our proposed ACSA has
become one of the best algorithms.

5. Conclusion and Future Works

In this paper, an efficient ACS algorithm, called ACSA,
is developed for solving the TSP. In our proposed algorithm,
several important improvements were done. According to
the obtained results in comparison against other algorithms,
one can conclude that the productivity of the proposed
algorithm is very good, and the algorithm has obtained high
quality solutions. In addition, this efficient algorithm can be
combined with other innovative constructive algorithms
due to random solutions obtained at the beginning of the
execution to start working with better solutions. To further
increase the productivity of the algorithm, it can be
combined with local search or some heuristic algorithms
such as genetic algorithm, simulated annealing or tabu
search. Finally, this algorithm can be used in other versions
of the TSP, such as the general TSP or time-dependent TSP.
The execution of these ideas would be postponed to our
future articles. Further, we shall study this problem using
other metaheuristic algorithms, like genetic algorithms [34],
tabu search [35], etc.

Data Availability

The data used to support the findings of this study is
available at the website:
http://www.iwr.uni-heidelberg.de/groups/comopt/software
/TSPLIB95/tsp.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgement

The authors extend their appreciation to the Deanship of
Scientific Research, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Saudi Arabia, for funding this research
work through Grant No. (221412020).

References
[1] Sedighpour, M., Ahmadi, V., Yousefikhoshbakht, M.,

Didehvar, F., and Rahmati, F. (2014). Solving the open

vehicle routing problem by a hybrid ant colony
optimization, Kuwait Journal of Science, 41(3), 139-162.

[2] Yousefikhoshbakht, M., Didehvar, F., and Rahmati, F.
(2015). A mixed integer programming formulation for the
heterogeneous fixed fleet open vehicle routing
problem, Journal of optimization in Industrial
Engineering, 8(18), 37-46.

[3] Ahmed, Z.H. (2018). A hybrid algorithm combining
lexisearch and genetic algorithms for the quadratic
assignment problem, Cogent Engineering, 5(1), 1423743.
doi: 10.1080/23311916.2018.1423743.

[4] Germs, R., Goldengorin, B., and Turkensteen, M. (2012).
Lower tolerance-based branch and bound algorithms for
the ATSP, Computers and Operations Research, 39(2),
291-298.

[5] Cordeau, J. F., Dell’Amico, M., Iori, M. (2010). Branch-
and-cut for the pickup and delivery traveling salesman
problem with FIFO loading, Computers and Operations
Research, 37(5), 970-980.

[6] Ahmed, Z.H. (2011). A data-guided lexisearch algorithm
for the asymmetric traveling salesman problem,
Mathematical Problems in Engineering. 2011, 750968. doi:
10.1155/2011/750968.

[7] Mak, V., and Boland, N. (2007). Polyhedral results and
exact algorithms for the asymmetric travelling salesman
problem with replenishment arcs, Discrete Applied
Mathematics, 155(16), 2093-2110. doi:
10.1016/j.dam.2007.05.014.

[8] Yousefikhoshbakht, M., Dolatnejad, A., Didehvar, F., and
Rahmati, F. (2016). A modified column generation to solve
the heterogeneous fixed fleet open vehicle routing
problem, Journal of Engineering, 2016, 5692792. doi:
10.1155/2016/5692792.

[9] Ahmed, Z.H. (2010). Genetic algorithm for the traveling
salesman problem using sequential constructive crossover
operator. International Journal of Biometrics and
Bioinformatics, 6(3), 96-105.

[10] Niu, Y., Yang, Z., Chen, P., and Xiao, J. (2018). A hybrid
tabu search algorithm for a real-world open vehicle routing
problem involving fuel consumption
constraints, Complexity, 2018, 5754908, 12 pages. doi:
10.1155/2018/5754908.

[11] Ahmed, Z.H. (2014). A Simple genetic algorithm using
sequential constructive crossover for the quadratic
assignment problem, Journal of Scientific and Industrial
Research, 73(12), 763-766.
http://nopr.niscpr.res.in/handle/123456789/30018.

[12] Liu, Y.-H. (2008). Diversified local search strategy under
scatter search framework for the probabilistic traveling
salesman problem. European Journal of Operational
Research, 191(2), 332-346. doi:
10.1016/j.ejor.2007.08.023.

[13] Yousefikhoshbakht, M., Malekzadeh, N., and Sedighpour,
M. (2016). Solving the traveling salesman problem based
on the genetic reactive bone route algorithm whit ant
colony system. International Journal of Production
Management and Engineering, 4(2), 65-73.
doi:10.4995/ijpme.2016.4618.

[14] Marinakis, Y., Marinaki, M., and Dounias, G. (2011).
Honey bees mating optimization algorithm for the
Euclidean traveling salesman problem. Information

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.2, February 2023

64

Sciences, 181(20), 4684-4698. doi:
10.1016/j.ins.2010.06.032.

[15] Wang, Y.-T., Li, J.-Q., Gao, K.-Z., and Pan, Q.-K. (2011).
Memetic algorithm based on improved Inver–over
operator and Lin–Kernighan local search for the Euclidean
traveling salesman problem. Computers and Mathematics
with Applications, 62(7), 2743-2754. doi:
10.1016/j.camwa.2011.06.063.

[16] Cochrane, E.M., and Beasley J.E. (2003). The co-adaptive
neural network approach to the Euclidean travelling
salesman problem, Neural Networks, 16(10), 1499-1525.
doi: 10.1016/S0893-6080(03)00056-X.

[17] Ahmed, Z.H., Hameed, A.S., and Mutar, M.L. (2022).
Hybrid genetic algorithms for the asymmetric distance-
constrained vehicle routing problem, Mathematical
Problems in Engineering, 2022, 2435002, 20 pages. doi:
10.1155/2022/2435002.

[18] Hameed, A.S., Mutar, M.L., Alrikabi, H.M.B, Ahmed,
Z.H., Abdul–Razaq, A.A., and Nasser, H.K. (2021). A
hybrid method integrating a discrete differential evolution
algorithm with tabu search algorithm for the quadratic
assignment problem: a new approach for locating hospital
departments, Mathematical Problems in Engineering,
2021, 6653056, 21 pages. doi: 10.1155/2021/6653056.

[19] Ahmed, Z.H., and Yousefikhoshbakht, M. (2023). A
hybrid algorithm for the heterogeneous fixed fleet open
vehicle routing problem with time
windows, Symmetry, 15(2), 486.

[20] Al-Furhud, M.A., and Ahmed, Z.H. (2020). Experimental
study of a hybrid genetic algorithm for the multiple
travelling salesman problem, Mathematical Problems in
Engineering, 2020, 3431420, 13 pages. doi:
10.1155/2020/3431420.

[21] Yousefikhoshbakht, M. (2021). Solving the traveling
salesman problem: a modified metaheuristic
algorithm. Complexity, 2021, 6668345, 13 pages. doi:
10.1155/2021/6668345.

[22] Ahmed, Z. H. (2013). A hybrid genetic algorithm for the
bottleneck traveling salesman problem, ACM Transactions
on Embedded Computing Systems (TECS), 12(1), 1-10. doi:
10.1145/2406336.2406345.

[23] Baltierra, S., Valdebenito, J., and Mora, M. (2022). A
proposal of edge detection in images with multiplicative
noise using the ant colony system algorithm, Engineering
Applications of Artificial Intelligence, 110, 104715. doi:
10.1016/j.engappai.2022.104715.

[24] Dorigo, M., and Gambardella, L. M. (1997). Ant colony
system: A cooperative learning approach to the traveling
salesman problem, IEEE Transactions on Evolutionary
Computation, 1(1), 53–66.

[25] Wong, L.-P., Low, M.Y.H., and Chong, C.S. (2008). A bee
colony optimization algorithm for traveling salesman
problem, 2008 Second Asia International Conference on
Modelling & Simulation (AMS), 818-823. doi:
10.1109/AMS.2008.27.

[26] Zhong, W., Zhang, J., and Chen, W. (2007). A novel
discrete particle swarm optimization to solve traveling
salesman problem, 2007 IEEE Congress on Evolutionary
Computation, 3283-3287. doi:
10.1109/CEC.2007.4424894.

[27] Yousefikhoshbakht, M., and Darani, N.M. (2019). A
combined metaheuristic algorithm for the vehicle routing
problem and its open version, Journal of AI and Data
Mining, 7(1), 169-179. doi:
10.22044/jadm.2018.7116.1840.

[28] Geem, Z.W., Kim, J.H., and Loganathan, G.V. (2001). A
new heuristic optimization algorithm: harmony search,
Simulation, 76(2), 60–68. doi:
10.1177/003754970107600201.

[29] Alipour, M.M., and Razavi, S.N. (2015). A new multiagent
reinforcement learning algorithm to solve the symmetric
traveling salesman problem, Multiagent and Grid
Systems, 11(2), 107-119. doi: 10.3233/MGS-150232.

[30] Masutti, T.A.S., and de Castro, L.N. (2009). A self-
organizing neural network using ideas from the immune
system to solve the traveling salesman problem,
Information Sciences, 179(10), 1454–1468. doi:
10.1016/j.ins.2008.12.016.

[31] Tuba, M., and Jovanovic, R. (2013). Improved ACO
algorithm with pheromone correction strategy for the
traveling salesman problem, International Journal of
Computers, Communications and Control, 8(3), 477-485.

[32] Wu, C., Liang, Y., Lee, H.P., and Lu, C. (2004).
Generalized chromosome genetic algorithm for
generalized traveling salesman problems and its
applications for machining, Physical Review E, 70(1),
016701. doi: 10.1103/PhysRevE.70.016701.

[33] Jaradat G.M. (2018). Hybrid elitist-ant system for a
symmetric traveling salesman problem: case of
Jordan, Neural Computing and Applications, 29, 565-578.
doi: 10.1007/s00521-016-2469-3.

[34] Ahmed, Z.H., Al-Otaibi, N., Al-Tameem, A., and
Saudagar, A.K.J. (2023). Genetic crossover operators for
the capacitated vehicle routing problem, Computers,
Materials & Continua, 74(1), 1575-1605. doi:
10.32604/cmc.2023.031325.

[35] Ahmed, Z.H., and Yousefikhoshbakht, M. (2023). An
improved tabu search algorithm for solving heterogeneous
fixed fleet open vehicle routing problem with time
windows, Alexandria Engineering Journal, 64(1), 349-363.
doi: 10.1016/j.aej.2022.09.008.

