
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

81

Manuscript received March 5, 2023
Manuscript revised March 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.3.8

AN EFFECTIVE SEGMENT PRE-FETCHING FOR SHORT-
FORM VIDEO STREAMING

Nguyen Viet Hung1,2 and Truong Thu Huong2
Corresponding author: huong.truongthu@hust.edu.vn

1Faculty of Information Technology, East Asia University of Technology, Hanoi, Vietnam
2School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam

Abstract
The popularity of short-form video platforms like TikTok has
increased recently. Short-form videos are significantly shorter
than traditional videos, and viewers regularly switch between
different types of content to watch. Therefore, a successful
prefetching strategy is essential for this novel type of video. This
study provides a resource-effective prefetching technique for
streaming short-form videos. The suggested solution dynamically
adjusts the quantity of prefetched video data based on user viewing
habits and network traffic conditions. The results of the
experiments demonstrate that, in comparison to baseline
approaches, our method may reduce data waste by 21% to 83%,
start-up latency by 50% to 99%, and the total time of Re-buffering
by 90% to 99%.

Keywords:
Video Sharing, Short Video Streaming, TikTok, Data wastage.

1. Introduction

Mobile video streaming has quickly become one
of the most popular types of online media in recent
years. According to [1], video traffic accounted for 69%
of all mobile data traffic, forecast to increase to 79%
in 2027. Fueled by the new popular services about
video sharing platforms such as TikTok [2, 3], Douyin
[4, 5, 6], YouTube Shorts [7, 8] and so on, streaming
short-form videos nowadays is widespread among
mobile users. Users can watch, upload, and share
various types of user-generated short-form videos
with a duration typically a few minutes or shorter.
Short-form video streaming has very different
characteristics compared to traditional video
streaming. The short-form video streaming platform’s
algorithm recommends individual video content based
on the user’s continued interaction with previous
videos [9]. Viewers have limited control over video
playback of the video material, originality in utilities,
and content. In particular, to review the
previous video or skip to the following video, a user
can scroll the screen whenever he wants because a

handy design facilitates finding the content that
interests him most.

However, if a viewer scrolls the screen (i.e.,
video switching) before the current video has been
completely played, the downloaded but unwatched
video data will be discarded [10]. This mechanism
utilizes the HTTP-based protocol, which enables data
transfer as quickly as TCP permits. Videos will be
continuously downloaded in a list, but it does not
allow using more buffers or bitrates than allowed.
As the cached video data can withstand bandwidth
fluctuations, such a buffering system could
successfully prevent rebuffering events. But,
buffering would result in significant mobile data loss
when users switch short videos frequently. Moreover,
recent measurement studies have revealed that
commercial short-form video platforms adopt a
straightforward streaming strategy in which videos are
downloaded one after another to a user’s device.
Unfortunately, this approach causes a significant
waste of network resources [11]. Therefore, several
buffer approaches have been proposed in work [12, 13,
14, 15, 16, 17, 18] with the main idea to limit the
amount of prefetched video data. This reduces data
waste as a user scrolls to the following video.
Practically speaking, when a user scrolls a video, to
lose the least amount of data during video playback,
he only needs to pre-download up to 1 second of video
data. Having to pre-download a video is essential as it
can help reduce buffer reloading so that the video
playback can be sustained in poor network conditions.
But if the number of the prefetched segments is too
small, it can lead to many reverse events, thus
significantly reducing the overall Quality of
Experience (i.e., QoE) of viewers. Previous studies
used deep learning to find the optimal value of the
required buffer size to adapt to the current network
bandwidth. The main issue with these methods is the

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

82

need to collect a lot of user data to train the deep
learning model. Collecting user data is not an easy task
when there are more and more user data protection
laws are applied, such as GDPR [19].
In this paper, we propose a new resource-efficient pre-
fetching scheme for short-form video streaming over
the mobile networks with assumed bandwidth
fluctuations. Our proposed scheme has the main ideas
that can be summarized as follows.

• Firstly, our method adapts and automatically
adjusts to network conditions to minimize data waste
and re-caching time.

• Secondly, our method dramatically reduces
the startup delay when the user scrolls the video with
prefetching segments of videos, not only the current
video but also the following videos in the playlist.

• Thirdly, we export the algorithm to predict
segments in advance, automatically terminating video
streams not used by the user, thereby limiting wasted
time.
The proposed solution is proven to be able to
significantly reduce data wastage, re-buffering time,
and startup latency. The remaining of our paper is
structured as follows. Section 2 discusses the related
work. Section 3 includes some basic concepts and
related entity models. Section 4 elaborates the
proposed scheme. Section 5 describes the performance
evaluation. Finally, Section 6 concludes our findings
and future work.

2. Related Work

Several previous studies have delved into the
features of short-form video platforms, e.g. [20, 21,
22]. However, they did not offer specific solutions to
improve short-form video services. The methods are
all limited in terms of fetching data. Previously, in
some studies on conventional VoD streaming
platforms (e.g., YouTube)., some authors proposed a
method to limit the client’s buffer capacity to save data
usage. According to the theoretical research, the
client’s request to download the following segment
will be put on hold when the client’s buffer capacity
hits the threshold. That is the way the work [12]
recommended the SARA algorithm by setting the
buffer threshold value equal to 20s. Besides, in [13],
they use the buffer threshold value equal to 30s.
Although limiting cached data is an excellent way not
to waste too much user data when using video
streaming platforms, if you continue reducing the

number of downloads before the threshold is 1 second,
the user’s QoE will be adversely affected. So,
challenges still exist for short-form video services, e.g.,
network [23], data wasted when scrolling through
video, or waiting time for the following video to load.
And the biggest problem that needs to be solved is
how to avoid wasting data and still guarantee the QoE.
Up till now, there have been several studies to handle
the mentioned issue with positive results. To the best
of our knowledge, some academics who had studied
commercial short-form video sharing sites discovered
that solutions [11], and [24] still waste a lot of video
data. Because in [24] said, short-form video streaming
platforms such as Douyin use a simple type of video
download method (called Next-One strategy). Then
videos are downloaded sequentially, and the download
of the following video only starts after the download
of the current video is complete. Like the Next-One
method, WaterFall will only download the next video
when the download is finished with the current video,
but this method allows downloading the next two
videos. Accordingly, we propose a technique called
NPM (Network a resource-efficient Prefetching
Method) based on deep reinforcement learning. We
refer the interested readers to the studies [24, 25, 10,
16, 26, 27, 28], to understand more clearly about DRL
and compare similar streaming algorithms.

Research in [24] proposed LiveClip, an adaptive
streaming strategy employing the deep reinforcement
learning (DRL) technique. They design their
algorithms to work in time-varying scenarios based on
predictions of the user’s interaction with the
environment and network conditions. They also
estimate the watch duration of subsequent videos. In
another study, Ran el at. designed an algorithm called
SSR, namely the short-form video streaming and
recommendation system, which consists of a
Transformer-based recommendation module and a
reinforcement learning (RL) based bitrate adaptation
streaming module [17]. Their design also includes
user behavior, which they allocate to each short-form
video to optimize the given QoE objectives. We
understand the two examples above that have
produced excellent results, but their methods still have
some weaknesses. As stated, their systems often rely
on predictions of user behavior to suggest a direction
for improvement, and this is, in our opinion, very
difficult to do precisely. Many other factors, such as
the viewers’ interests in the video content, the
smoothness of playback, and others, affect when

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

83

viewers switch between videos [29]. Whereby they
improve QoE very well but have not entirely solved
the problem of data waste.

Furthermore, in [10], the authors propose a
wastage-aware short-form video streaming method
(WAS). In the WAS approach, the following
segment’s download is planned so that the buffer
occupancy is never higher than a predetermined
threshold at any given time. It can help reduce data
wastage in case of the user switches from one video to
another during the playback process. In addition,
borrowing the idea of Bitrate Adaptive Streaming,
WAS dynamically adjusts the video bitrate based on
the available throughput. Multiple versions with
different bitrates of a video are prepared and stored in
the server in advance.

(a) System Architecture

(b) User Session

FIGURE 1: System architecture of the proposed
system

In another study [16], a more improved version
of the WAS system called DUASVS is a deep
learning-based short-form video streaming method. In

DUASVC, once the prefetch duration of the current
video reaches a threshold, the video player will shift
to fetching the following video. They incorporate two
models: Integrated Learning, which trains/outputs a
set of candidate adaptation models where differ-
ent members are specialized for different network
conditions. The Online Model Selection model
chooses the most suitable trained model to be used for
each video in the streaming videos online. The
common point of these studies is that they all require
a large amount of user data. In [16], collecting such a
large amount of data set in practice needs to contact an
anonymous (short video) streaming vendor to
provide datasets collected from their commercial
video servers. We are concerned that with today’s
many laws protecting user data, such data collection is
almost impossible to do.
A network-aware prefetching method for short-form
video streaming [30] (we called it NaSP), they’re
trying to find the segment and segment for the video.
The selected value is the fixed interval they try to set
according to the given network condition. However,
this choice is not reasonable in our opinion. Because
of constantly changing requirements and changing
human behavior, the selection of values to consider is
not good. Using the NaSP method, they tried to find
the 𝐵𝑓𝑠𝑒𝑔 and 𝐾 values according to the segments.

3. Short-form video streaming background
and problems

In short-form video streaming, videos are kept on
an HTTP server and transmitted to the user’s device.
Each video is encoded into one or more variations with
various levels of quality. Each version is divided into
identical-long-play segments that are separated in time.
Users can scroll while watching a video to view
another one they like. The system must promptly show
the user the video.

Figure 1a shows the general architecture of the
short-form video streaming system. We consider a
scenario where users watch videos on a short video
platform on their mobile devices and over wireless
networks (e.g., Wifi, 4G/5G). Short videos are stored
in an HTTP server where each video is encoded and
split into multiple segments with the same playback
duration.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

84

To download a video from the server, the user device’s
segment downloader sends HTTP requests for the
individual video segments to the HTTP server. When
requests are received, the HTTP server responds with
the requested segments to the client via HTTP
response messages. A decision engine decides which
segments should be downloaded. After sending the
request, the downloader receives the requested video
segment and stores it in the buffer. The user/player
then decodes the incoming video segments and
displays them on the user’s device screen.

Figure 1b shows a typical user session in our
design. Generally, in a current video streaming system,
each video is divided into multiple segments at the
server side. But the content of those videos are
independent and unrelated to each other. However, in
our design, whenever a client requests to download
segments of next videos, next videos are sorted in the
order of related content. For example: if the current
video content is about football, then the next video
will have football-related content too. A video, after
being downloaded, will be removed from the sorted
download list, thereby saving the cache and limiting
the possibility of a second download when previously
downloaded.

There are two critical challenges in short video
streaming. First, the system should ensure high
Quality of Experience (QoE). For that, the system
should be able to maintain high video quality and, at
the same time, avoid playback rebuffering. Playback
rebuffering occurs when a video segment is after its
playback deadline. This problem has usually caused
by significant drops in available network throughput
and harms the user’s QoE [11]. Startup delay is
another critical factor of QoE in fast video streaming.
Startup delay refers to the time from the user clicks
a video to the time the playback of the video begins.
Because users often change the content to watch,
providing low startup delay is especially important to
ensure a satisfactory user experience.

The system must reduce data waste as the second
problem. Data is wasted when a user switches the
video they are watching since all the video data that
has already been downloaded for that video is thrown
away. Recent research [24], [11] indicated that on
commercial short video streaming sites, roughly 45%
of the downloaded video material is eventually lost.
Therefore, it is crucial to minimize data loss when
streaming quick videos.

Finally, this suggests the following explanation for the
problem with fast video streaming. Choose the best
time for the videos in the current playlist to download
to enhance user viewing enjoyment and reduce data
usage under varied network circumstances and
dynamic user behaviors.

In order to estimate the number of prefetching
segments, our method must intake the following
parameters, which are defined by work [30], including:
average throughput, buffer size, and start-up delay.
The average network throughput (𝛾) is given by:

𝛾 ∑ 𝑇ℎ𝑟𝑝 𝑡

 (1)

Where:

 𝑇ℎ𝑟𝑝 𝑡 : network throughput at time 𝑡

 𝑡 = 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑊: a time point within the
range from the current time to the past 𝑊
seconds.

 𝑊: monitoring window of 𝑊 seconds.

The buffer size 𝐵𝑓 𝑣 , 𝑙 of video 𝑣 after
downloading segment 𝑙𝑡 is given by:

𝐵𝑓 𝑣 , 𝑙 𝜏 max 𝐵𝑓 𝑣 , 𝑙 1

𝜏𝑇ℎ𝑟

𝑇ℎ𝑟𝑝 𝑡
, 0 2

Where:

 max 𝐵𝑓 𝑣 , 𝑙 1 , 0 :

Rebuffering time at segment 𝑙 of video 𝑣 .
 𝜏: the duration of one segment.

Start-up delay (𝐷𝑒𝑙𝑎𝑦(𝑖)) of video 𝑣 :
𝐷𝑒𝑙𝑎𝑦 𝑖 max 𝑡 𝑖, 𝐵𝑓 𝑡 𝑖 , 0 3

Where:

 max 𝑡 𝑖, 𝐵𝑓 : time when the first

𝐵𝑓 segments of video 𝑣𝑖 are downloaded
completely.

 𝑡 𝑖 : a time a user scrolls to video 𝑣 .

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

85

4. Proposed Network-aware Prefetching
System - NPM

FIGURE 2: Our proposed recommendation system for content conversion models

FIGURE 3: Gaussian-distributed User’s watching time parameter

4.1. Overall system operation
Figure 2 depicts our proposed design for

TikTok’s video scrolling system. The overall
operation can be described as follows:

 The Client (Creator) uploads the video. And
at the same time, there will be a provision for

them to upload the video for the client.
Uploaded short videos will go through the
load balancer, effectively distributing the
traffic to the server to improve the best speed
and performance and ensure the server not to
work with excessive movement.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

86

 Next, the short videos are passed through the
upload service and saved to the database. To
playback the short videos for the clients to
watch, the server divides the video into
several segments. Those video segments
continue to be passed through the load
balancer. Still, before the clients can enjoy
those short videos, they will go through one
processing step called - NPM. NPM is
designed to significantly reduce the start-up
delay for users when scrolling videos
(described in the following subsection).

 Finally, the video reaches the Client (Viewer),
who can experience the short-form videos
without interruption.

4.2. Network resource-efficient Prefetching
Method – NPM

NPM - Network resource-efficient Prefetching
Method is designed for short-form video streaming to
improve the quality of user experience by optimizing
the resource network.

4.2.1. Selection of number of pre-fetched
segments

Intuitively, to reduce the waiting time for a user in
each specific interval, we need to find a good way to
buffer (or prefetch) fewer data. It leads to the fact that
we should specify 𝐵𝑓𝑠𝑒𝑔 - the threshold of the number
of segments that can be pre-fetched. 𝐵𝑓𝑠𝑒𝑔 is to be the
function of the present network bandwidth, bit rate,
user’s watching time, since downloading the videos in
the current playlist is influenced by variable network
throughput conditions, user’s bitrate conditions, and
dynamic user behaviors. Although, the smaller the
value of 𝐵𝑓𝑠𝑒𝑔, the lower the loss. But choosing 𝐵𝑓𝑠𝑒𝑔
too small can lead to re-buffering under a reduced state
of the network throughput condition.
Therefore, we suggest dynamically adjusting the
number of prefetched segments based on current
network conditions. The whole process will finally

result in a certain data waste, rebufferings, and start-
up delays that, in turn, have a certain impact on the
overall service experience of users. 𝐵𝑓𝑠𝑒𝑔 is fitted by
Polynomial Regression from the 3 variables:
Let 𝐵𝑊𝑥 denote the bandwidth variations trace, 𝑇ℎ𝑟𝑦
denote the throughput variation trace, and 𝑈𝑇𝑧 denote
the user’s watching time trace.

The bandwidth trace is used from [31], while the
throughput trace is taken from [30]. The throughput
trace files can be illustrated in Figure 4. For the user
watching time, because identifying user behavior is
very challenging [32], a classical strategy to deal with
the situation of having no prior information in the
implementation is to use a Gaussian distribution for
the parameters of interest. Therefore, we use Gaussian
distribution to create user behavior traces for user
scrolling behaviors, as illustrated in Figure 3.
The resulted 𝐵𝑓𝑠𝑒𝑔 is then fitted to the function as
follows:

𝐵𝑓𝑠𝑒𝑔 = 𝐵𝑊𝑥 + 4.5523𝑇ℎ𝑟𝑦 + 2.072𝑈𝑇𝑧 − 2 (4)

with: confidence interval of 95% and constant of 0.13.
The found 𝐵𝑓𝑠𝑒𝑔 will be, then, used in the NPM
algorithm in next step.

4.2.2. NPM algorithm

Finding a new video to load into the system is essential
because it affects the overall experience of users over
the service. For example, downloading a new video
with different content will take us a long time to reload
the new video.
In general, if a new video with different content is
prefetched to the buffer, it may be likely not the
content a user desires to watch. So it will take time for
this user to find another video of the same content type
and reload it to the system (i.e. long video switching
time). As the result, the long video switching time will
badly affect on the user’s satisfaction while using the
video streaming service.
Therefore, NPM automatically finds videos with the
same content as the current videos and downloads
them based on user behavior. Those found videos will

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

87

be saved to the counter before being displayed on the
client’s device. When a user scrolls to the next video,

NPM automatically ends the previous video stream to
release the buffer for the following video.

FIGURE 4: Throughput variation on each throughput trace file.

Provided a user scrolls to the next video while
watching the current video, in that case, 𝐵𝑓𝑠𝑒𝑔 - the
prefetched segments - is also considered waste data.
It can also be noted that the higher the value of 𝛾, the
lower the value of 𝐵𝑓𝑠𝑒𝑔 with a minimum buffer size
of two segments. This is to facilitate no startup delay

when the user scrolls from one video to another one.
Specifically, the algorithm considers the following 𝐾
videos to the current video in the playlist.
Let 𝑄𝑣 denote the play progress of the video, 𝑃𝑣 denote
the playback of the video, 𝑛 denote the total number
of videos users watch in a viewing session, and 𝑡𝑥𝑣 is
the current video watch time of video 𝑣.

Step 01:
NPM defines the average throughput 𝛾 according to
formula (1) and the buffer size or the max number of
prefetched segments 𝐵𝑓𝑠𝑒𝑔 according to formula (4).

Step 02:
In this step, during the viewing session, NPM
continuously compares the buffer size of the current
video with 𝐵𝑓𝑠𝑒𝑔. If the current buffer size is less than
𝑓𝑠𝑒𝑔, NPM will download 1 second of the following
segments of the current video until the buffer size
exceeds threshold 𝐵𝑓𝑠𝑒𝑔.
If the amount of video data 𝑣 left in the buffer is larger
than the segment 𝐵𝑓0, the video can continue to be
played back. After that, NPM will continue
prefetching B𝑓𝑠𝑒𝑔 segments of the next 𝐾 videos into
the current playlist.

Step 03:
In this step, before buffering, if the case of step 2 is
not satisfied, NPM will find new videos of similar
content to load into the list, continuing to segment and

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

88

to load these segments as specified Step 2, until the
end of the video is loaded into the buffer.
The pseudo-code of NPM can be found in Algorithm
1.

5. Performance Evaluation

(a) Waste (s)

b) Total time of Re-buffering (s)

(c) Start-up delay (s)

FIGURE 5: NPM vs. reference methods under trace #1

5.1. Experimental Settings
In our experiment, the experimented videos (or films)
are 15 seconds long and have a constant bitrate of
1Mbps (so that each video will have 15Mb in size),

(a) Waste (s)

b) Total time of Re-buffering (s)

(c) Start-up delay (s)

FIGURE 6: NPM vs. reference methods under trace #2

and the threshold of the number of next videos that can
be pre-buffered 𝐾 = 4. The videos are then each split
into 15 successive one-second chunks.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

89

In our evaluation, we do not address additional factors
like resolution. The performance of our solution and

(a) Waste (s)

b) Total time of Re-buffering (s)

(c) Start-up delay (s)

FIGURE 7: NPM vs. reference methods under trace #3

other existing methods are measured under various
network conditions (i.e., network throughput per
second) emulated by the three network traces shown
in Figure 3.

The experiment is written in Python and tested on a
computer running 64-bit Windows 10 with the
following configuration: 16384MB of RAM and an
Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz (4
CPUs), 2.6GHz processor.
NPM is compared with the three reference methods
with the main characteristics and operation briefly
described as follows:

 Next-one [33]: This method separately
buffers each segment of the video to be
viewed. The following video will not start
buffering until the previous one has finished
downloading. The maximum number of
subsequent videos that will automatically be
buffered and cached is 1.

 Waterfall [33]: The following videos will only
be downloaded if the current video has
finished downloading, just like the Next-one
technique. The main distinction is that two
additional videos can now be buffered, which
may cut re-buffering time but increase the
waste time.

 NaSP [30]: The suggested technique works
similarly to our method by prefetching
sections of the current video and the videos
that will follow it in the playlist. The
technique, however, also dynamically
modifies the number of buffered segments
following the current network circumstances
but with given conditions. Not suitable for
network fluctuations that change continuously.

In contrast to NPM, the Next-one and Waterfall
techniques have a set amount of segments and films
that will be buffered. This is unreasonable and cannot
be applied dynamically to the non-constant user and
network throughputs. Besides, NaSP uses a similar
strategy to ours. However, NaSP segmentation is
inefficient, and the video fetching is inconsistent
because this method uses a specific range of
conditions to deal with large bandwidth changes. At

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

90

TABLE 1: Performance of NPM vs. reference methods under different throughput traces

Method NetOne Waterfall NaSP NPM

Throughput trace #1
Waste 168.36 177.25 70.27 44.63

Total time of Re-buffering 10.21 9.43 0.93 0.24
Start-up delay 9.77 9.06 0.82 0.19

Throughput trace #2
Waste 126.66 130.29 65.47 47.14

Total time of Re-buffering 17.28 16.85 9.15 0.68
Start-up delay 14.89 14.65 8.24 0.43

Throughput trace #3
Waste 128.54 128.54 79.38 40.26

Total time of Re-buffering 16.2 16.2 1.47 1.08
Start-up delay 14.54 14.54 0.5 0.25

the same time, our approach will automatically adapt
to changing network conditions.
To simulate actual network conditions and verify how
NPM works in reality. We use three network
bandwidth traces from mobile networks [30], as
shown in Figure 4 with 250s.

 Throughput trace #1 emulates a relatively
high throughput averaging close to 5000Mbps
with slight fluctuations.

 Throughput trace #2 emulates the condition in
which the network throughput fluctuates
considerably, with an approximate average
speed of about 3000Mbps.

 Throughput trace #3 emulates a network
condition with moderate fluctuation at a speed
of about 2000Mbps.

5.2. Experimental Results

In this paper, three evaluation metrics are taken into
account:

 Waste time: the time spent caching a video
that the user has never watched.

 Start-up delay: the interval between when a
user selects the following video and when that
video is ready for playback.

 Total time of Re-buffering: The time the user
must wait until the video starts playing.

The performance of NPM is measured in three
different network throughput conditions (i.e., three

different trace files), summarized in Table 1 and
visualized in Figure 5, Figure 6, and Figure 7.
As seen in Figure 5, with the Throughput trace #1,
NPM has waste time lower than NaSP by about 31 to
46%, and lower than NextOne and Waterfall by about
64 to 83%. The total time of re-buffering and Start-up
delay of NPM is reduced by up to 99% compared to
the three reference methods.
As seen in Figure 6, with the Throughput trace #2,
NPM has a Waste time lower than NextOne and
Waterfall by 55 to 72%, and lower than NaSP by about
21 to 35%. Furthermore, NPM shows a 90 to 97%
reduction in total buffer time compared to the three
methods. In this network condition, the start-up delay
is about 94 to 99% lower than the three reference
methods.
As seen in Figure 7, with the Throughput trace #3, the
first 20 seconds make the start-up delay inevitable.
However, NPM can still reduce start-up delay from 96
to 99% compared to NextOne and Waterfall, and 50%
compared to NaSP. Waste time of our NPM method is
still reduced by 65 to 73% compared to NextOne and
Waterfall method, 45 to 53% reduction compared to
NaSP method. The total Re-buffering time of NPM is
still 91 to 96% lower than NextOne and Wastefall
and 50% lower than NaSP.
As summarized in TABLE 1, we can conclude that
NPM is proven to outperform the referenced methods
under three typical network conditions in terms of
Waste time, Total time of Re-buffering, and Start-up
delay. The reduction of those 3 parameters will

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

91

improve the overall user satisfaction over the video
streaming service.
In addition, the findings prove two points:

 First, there is time wastage caused by the
buffered videos that users never watch
because they switch to the next video. If this
time wastage can be reduced, the user
satisfaction could be increased.

 The second is the re-buffering period, during
which the user must wait for the viewing
section to buffer fully. Therefore, this period
should be decreased as well.

6. Conclusion

In this paper, we have demonstrated the way to
send short videos to viewers via time-varying
networks. By pre-downloading portions of videos,
including the current video and the following videos
in the playlist, our suggested solution drastically
reduces startup delay when the user scrolls the video
and minimizes data waste and recaching time.
Compared to the 3 most recent reference methods, the
experimental results show that our method reduces
data waste by 21% to 83%, startup latency by 50% to
99%, and overall re-buffering time by 90% to 99%.
Although NPM has improved the three concerned
metrics significantly, the metric - quality of
experience (QoE) from clients’ perspective – has not
been fully considered. This metric opens a new
challenge for our future work when all methods should
finally receive a high QoE score ranked by users’
subjective experience.

Acknowledgment

This research is funded by Hanoi University of
Science and Technology (HUST) under Project
number T2022-PC-012. Also, we would like to thank
Mrs. Phan Thi Yen, Ms. Bui Anh Thu, Ms. Nguyen
Mai Cham of the East Asia University of Technology
for supporting us in the experiments.

References

[1] “Ericsson mobility report,”
ttps://www.ericsson.com/4ad7e9/assets/ local/
reports-papers/mobility-report/documents/2021/
ericsson-mobility-report-november-2022.pdf, June
2022.

[2] “Tiktok,” https://www.tiktok.com, accessed: 2022-08-
10.

[3] D. Klug, Y. Qin, M. Evans, and G. Kaufman, “Trick
and please. A mixed-method study on user assumptions
about the tiktok algorithm,” in 13th ACM Web Science
Conference 2021, ser. WebSci ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p.
84–92. [Online].
Available: https://doi.org/10.1145/3447535.3462512

[4] “Douyin,” https://www.douyin.com, accessed: 2022-
08-09.

[5] L. Sun, H. Zhang, S. Zhang, and J. Luo, “Content-
based analysis of the cultural differences between
tiktok and douyin,” in 2020 IEEE International
Conference on Big Data (Big Data), 2020, pp. 4779–
4786.

[6] T. Shao, R. Wang, and J.-X. Hao, “Visual destination
images in user-generated short videos: An exploratory
study on douyin,” in 2019 16th International
Conference on Service Systems and Service
Management (ICSSSM), 2019, pp. 1–5.

[7] “Youtube short,” ttps://www.youtube.com/shorts,
accessed: 2022-08-09.

[8] A. M. Putri, D. A. P. Basya, M. T. Ardiyanto, and I.
Sarathan, “Sentiment analysis of youtube video
comments with the topic of starlink mission using
long short term memory,” in 2021 International
Conference on Artificial Intelligence and Big Data
Analytics, 2021, pp. 28–32.

[9] M. E. D. Klug, Y. Qin and G. Kaufman, ““trick and
please. a mixedmethod study on user ssumptions about
the tiktok algorithm,” Virtual Event, United
Kingdom, p. 84–92, 2021.

[10] G. Zhang, K. Liu, H. Hu, and J. Guo, “Short video
streaming with data wastage awareness,” in 2021 IEEE
International Conference on Multimedia
and Expo (ICME), Shenzhen, China, 2021, pp. 1–6.

[11] Y. Zhang, Y. Liu, L. Guo, and J. Y. B. Lee,
“Measurement of a large-scale short-video service over
mobile and wireless networks,” IEEE Transactions on
Mobile Computing, pp. 1–1, 2022.

[12] H. K. Yarnagula, P. Juluri, S. K. Mehr, V. Tamarapalli,
and D. Medhi, “Qoe for mobile clients with segment-
aware rate adaptation algorithm
(sara) for dash video streaming,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 15, no. 2,
jun 2019. [Online]. Available:
https://doi.org/10.1145/3311749

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

92

[13] X. Chen, T. Tan, and G. Cao, “Energy-aware and
context-aware video streaming on smartphones,” in
2019 IEEE 39th International Conference on Dis-
tributed Computing Systems (ICDCS), 2019, pp. 861–
870.

[14] G. Huang, W. Gong, B. Zhang, C. Li, and C. Li, “An
online buffer-aware resource allocation algorithm for
multiuser mobile video streaming,” IEEE Transactions
on Vehicular Technology, vol. 69, no. 3, pp. 3357–
3369, 2020.

[15] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell,
and M. Watson, “A buffer-based approach to rate
adaptation: Evidence from a large video streaming
service,” in Proceedings of the 2014 ACM conference
on SIGCOMM, 2014, pp. 187–198.

[16] G. Zhang, J. Zhang, K. Liu, J. Guo, J. Lee, H. Hu, and
V. Aggarwal, “Du-asvs: A mobile data saving strategy
in short-form video streaming,” IEEE
Transactions on Services Computing, pp. 1–1, 2022.

[17] D. Ran, Y. Zhang, W. Zhang, and K. Bian, “Ssr: Joint
optimization of recommendation and adaptive bitrate
streaming for short-form video feed,”
in 2020 16th International Conference on Mobility,
Sensing and Networking (MSN), 2020, pp. 418–426.

[18] D. Ran, H. Hong, Y. Chen, B. Ma, Y. Zhang, P. Zhao,
and K. Bian, “Preference-aware dynamic bitrate
adaptation for mobile short-form video
feed streaming,” IEEE Access, vol. 8, pp. 220 083–220
094, 2020.

[19] P. Voigt and A. Von dem Bussche, “The EU general
data protection regu-lation (GDPR),” A Practical
Guide, 1st Ed., Cham: Springer International
Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017.

[20] S. McLachlan, “Instagram reels algorithm: Everything
you need to know,”
https://blog.hootsuite.com/instagram-reels-algorithm/,
2022-05-18.

[21] F. W. Lei Zhang and J. Liu, “Mobile instant video clip
sharing with screen scrolling: Measurement and
enhancement,” in IEEE Transactions on Multi-media
20. IEEE, 2018, p. 2022–2034.

[22] Z. Chen, Q. He, Z. Mao, H.-M. Chung, and S. Maharjan,
“A study on the characteristics of douyin short videos
and implications for edge caching,” in
Proceedings of the ACM Turing Celebration
Conference-China, 2019, pp. 1–6.

[23] Y. Zhang, P. Li, Z. Zhang, B. Bai, G. Zhang, W. Wang,
and B. Lian, “Chal-lenges and chances for the
emerging short video network,” in IEEE INFO-
COM 2019 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS),
2019, pp. 1025–1026.

[24] J. He, M. Hu, Y. Zhou, and D. Wu, “Liveclip: Towards
intelligent mobile short-form video streaming with
deep reinforcement learning,” in Proceedings of the

30th ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video, ser.
NOSSDAV ’20, Istanbul, Turkey, 2020, p. 54–59.

[25] J. Guo and G. Zhang, “A video-quality driven strategy
in short video streaming,” in Proceedings of the 24th
International ACM Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems,
Alicante Spain, 2021, p. 221–228.

[26] S. Sengupta, N. Ganguly, S. Chakraborty, and P. De,
“Hotdash: Hotspot aware adaptive video streaming
using deep reinforcement learning,” in 2018 IEEE 26th
International Conference on Network Protocols (ICNP),
2018, pp. 165–175.

[27] A. Singh, N. Thakur, and A. Sharma, “A review of
supervised machine learning algorithms,” in 2016 3rd
International Conference on Computing for
Sustainable Global Development (INDIACom). Ieee,
2016, pp. 1310–1315.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.
Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A.
K. Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[29] G. Zhang, K. Liu, H. Hu, V. Aggarwal, and J. Y. Lee,
“Post-streaming wastage analysis–a data wastage
aware framework in mobile video streaming,” IEEE
Transactions on Mobile Computing, vol. 22, no. 1, pp.
389–401, 2021.

[30] D. Nguyen, P. Nguyen, V. Long, T. T. Huong, and P.
N. Nam, “Network-aware prefetching method for
short-form video streaming,” in 2022 IEEE
24th International Workshop on Multimedia Signal
Processing (MMSP), 2022, pp. 1–5.

[31] H. T. Le, N. P. Ngoc, A. T. Pham, and T. C. Thang, “A
probabilistic adaptation method for http low-delay live
streaming over mobile networks,” IEICE
TRANSACTIONS on Information and Systems, vol.
100, no. 2, pp. 379–383, 2017.

[32] D. Deshpande and S. Deshpande, “Analysis of various
characteristics of online user behavior models,”
International Journal of Computer
Applications, vol. 161, no. 11, pp. 5–10, Mar 2017.
[Online]. Available: http:
//www.ijcaonline.org/archives/volume161/number11/
27190-2017913127

[33] J. He, M. Hu, Y. Zhou, and D. Wu, “Liveclip: Towards
intelligent mobile short-form video streaming with
deep reinforcement learning,” in
Proceedings of the 30th ACM Workshop on Network
and Operating Systems Support for Digital Audio and
Video, ser. NOSSDAV ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p.
54–59. [Online]. Available:
https://doi.org/10.1145/3386290.3396937

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.3, March 2023

93

NGUYEN VIET HUNG
received the B.Sc.degree
in Bachelor of Informatics
pedagogy from the faculty
of Engineering Technology
of Ha Tinh University,
Vietnam, in 2012, the M.Sc.
degree Master of
Information Technology
from the Faculty
ofInformation Technology

of Ho Chi Minh City University of Technology,
Vietnam, in 2016, andhas been learning the Ph.D.
degree in Telecommunications Engineering from the
Hanoi University of Science and Technology,
Vietnam. His research interests include multimedia
communications, network security, artificial
intelligence, traffic engineering in next-generation
networks, QoE/QoS guarantee for network services,
green networking, and applications.

TRUONG THU HUONG
received the B.Sc.degree
in Electronics and
Telecommunications from
the Hanoi University of
Science and Technology
(HUST), Vietnam, in 2001,
the M.Sc. degree in
information and
communication systems
from the Hamburg

University of Technology, Germany, in 2004, and the
Ph.D. degree in telecommunications from the
University of Trento, Italy, in 2007. Her research
interests are oriented toward network security,
artificial intelligence, traffic engineering in next-
generation networks, QoE/QoS guarantee for network
services, green networking, and development of the
Internet of Things ecosystems and applications.

