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Abstract 
Hyperspectral imaging technology is one of the most efficient and 
fast-growing technologies in recent years.  Hyperspectral image 
(HSI) comprises contiguous spectral bands for every pixel that is 
used to detect the object with significant accuracy and details. 
HSI contains high dimensionality of spectral information which is 
not easy to classify every pixel.  To confront the problem, we 
propose a novel RGB channel Assimilation for classification 
methods. The color features are extracted by using chromaticity 
computation. Additionally, this work discusses the classification 
of hyperspectral image based on Domain Transform Interpolated 
Convolution Filter (DTICF) and 3D-CNN with Bi-directional-
Long Short Term Memory (Bi-LSTM). There are three steps for 
the proposed techniques: First, HSI data is converted to RGB 
images with spatial features. Before using the DTICF, the RGB 
images of HSI and patch of the input image from raw HSI are 
integrated. Afterward, the pair features of spectral and spatial are 
excerpted using DTICF from integrated HSI. Those obtained 
spatial and spectral features are finally given into the designed 
3D-CNN with Bi-LSTM framework. In the second step, the 
excerpted color features are classified by 2D-CNN. The 
probabilistic classification map of 3D-CNN-Bi-LSTM, and 2D-
CNN are fused. In the last step, additionally, Markov Random 
Field (MRF) is utilized for improving the fused probabilistic 
classification map efficiently. Based on the experimental results, 
two different hyperspectral images prove that novel RGB channel 
assimilation of DTICF-3D-CNN-Bi-LSTM approach is more 
important and provides good classification results compared to 
other classification approaches. 
Keywords:                                                                                         
Bi directional-Long Short Term Memory; Deep Learning; 
Domain Transform Interpolated Convolution Filter 
 

I. INTRODUCTION  

Normal RGB image has bands of bands such as 
red, green, and blue but HSI has several bands. For 
example, HSI contains three dimensions. The first two 
dimensions of the height and width are spatial (x, y-axis) 
while the third dimension of the spectral (z- axis) is the 
wavelength. Wavelength is acquired by electromagnetic 
spectrum [17]. The human eyes see color over wavelength 
ranging roughly from 400 nm (violet) to 700nm (red) but 

wavelength range from 700nm-2500nm in HSI. HSI 
contains continuous spectral bands which are procured by 
hyperspectral sensors. There are many applications used in 
HSI such as medical imaging, microscopy or endoscopy, 
precision agriculture, mineralogy, and food inspection. 
Many researchers commonly used machine learning and 
deep learning methods for hyperspectral images. However, 
HSI is more difficult compared to the normal RGB image. 
In the last few years, many HSI classification methods are 
proposed [7], [9] such as spectral-based approaches and 
spectral-spatial-based approaches [31]. Spectral features 
are first extracted by some feature extraction methods [4] 
such as Principal Component Analysis (PCA) [5], 
Independent Component Analysis (ICA) [18], and Linear 
Discriminant Analysis (LCA) [1]. Then, the obtained 
features are applied to learn the classifier [3]. In spectral-
spatial-based methods, texture features [14] and structure 
features [6] are extracted and combined by utilizing 
composite kernels [11]. However, the obtained features are 
hand-crafted. 
 Recently [3], [23-24], many researchers utilized a 
deep learning approach  for image processing such as 
image classification [33], image segmentation [21] and 
object detection [34]. Among deep approaches, CNN [12] 
has been utilized for capturing the features of spectral and 
spatial for HSI classification. Yushi Chen et al. [35] 
introduced the deep learning concept for HSI classification 
for the first time. Konstantinos Makantasis et al. [16] 
utilized deep learning methods for the HSI classification 
method which exploits features using CNN and this work 
utilized a Multi-Layer Perceptron for a classification task. 
Shaohui Mei et al. [30] introduced new classification 
techniques namely a novel five-layer CNN such as batch 
normalization, dropout, Parametric Rectified Linear Unit 
(PReLu) activation function. Spatial context and spectral 
information are elegantly integrated into the framework 
that is used to extract the features. Haokui Zhang et al. [8] 
proposed an end-to-end 3-D lightweight CNN which has a 
deeper network structure, fewer parameters, and lower 
computation cost, resulting in better classification 
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performance. Qin Xu et al. [28] designed multiscale 
convolution from 3D-CNN which is used to obtain the pair 
of spectral-spatial features and also reduce the spatial 
redundancy. Radhesyam Vaddi et al. [29] proposed new 
classification techniques based on data normalization and 
CNN. In this work, Probabilistic Principal Component 
Analysis (PPCA) and Gabor filtering are used for obtaining 
the features which are used to reduce the computational 
time. In Jia et al. [13], a 3-dimensional (3-D) Gabor-
wavelet was developed for hyperspectral classification. It 
helps to predict the features via 3-D. Kang et al. [15] 
acquired the spectral features by Gabor filtering to form the 
fused features for Gabor filtering-based deep network 
(GFDN). In particular, CLSTM is used for obtaining the 
spectral features of HSIs which improve the extraction of 
spatial features using convolutional operators [32].  
 The main contributions are stated below: 
Compared with machine learning techniques, Deep 
learning methods obtain good performance for HSI 
classification.   

• We propose a novel RGB channel Assimilation for 
color classification methods. The RGB color space is 
the most efficient color representation method on HSI 
classification. 

• Additionally, we have introduced a new HSI 
classification framework. This framework is analyzed 
how to integrate the Domain Transform Interpolated 
Convolution Filter (DTICF) and 3D-CNN with 
BiLSTM. 

•  The proposed method is divided into two processing: 
• In the First processing, HSI data is converted to RGB 

image. 
•  RGB image and patch-wise input image with spectral 

information is integrated. 
• Then, the excerpted features of spectral and spatial 

are obtained using DTICF by RGB image with spatial 
features and spectral bands from HSI data. 

•  The excerpted features are provided in the 3D-CNN 
framework. 

•  The extracted deep features are again fed in the Bi-
LSTM network. 

•  In the second step, the color features are extracted 
using chromaticity computation, and extracted 
features are classified by 2D-CNN. 

• The probabilistic classification map of 3D-CNN-Bi-
LSTM and 2D-CNN is fused. 

• Finally, additionally Markov Random Field (MRF) is 
utilized for improving the fused probabilistic 
classification map efficiently. The proposed novel 
RGB channel Assimilation of DTICF-3D-CNN-
BiLSTM-MRF shows good classification accuracy 
with low computational time.  

 The paper is assembled in the following ways. 
Proposed methods are debated in section 2. The 
methodology is reported in section 3. The technical 
description is delineated in Section 4. The 
experimental results for the proposed method are 
elucidated in section 5. Section 6 is presented with the 
conclusion.  

 
II. PROPOSED METHOD 

In this portion, the proposed novel RGB Channel 
Assimilation of DTICF-3D-CNN-Bi-LSTM HSI 
classification is discussed.  First, the HSI data is converted 
to an RGB image with spatial features. RGB images with 
spatial features are converted to gray-level images. These 
spatial-based features are integrated with patch-wise input 
data from HSI images. Further, the patch-wise spectral-
spatial features are acquired using DTICF by a gray level 
image with spatial and spectral bands. The hyperspectral 
data with features is provided to newly developed 3D-CNN 
architecture for classification. In this section, 3D-CNN 
with Bi-LSTM based classification method is explained 
and discusses how to train the network with deep learned 
features from HSI. 3D-CNN configuration substantially 
consists of three blocks of Convolution ሺ𝑐ଵ, 𝑐ଶ, 𝑐ଷሻ and 
ReLU (𝑅ଵ, 𝑅ଶ, 𝑅ଷሻ layers. The filters used in three sets are 
𝑘ଵ = 20, 𝑘ଶ= 20 and 𝑘ଷ = 35 respectively.  

 
 The extracted features of the HSI (𝑥ଵ, 𝑦ଵ ,1) are 
given as input to 3D_CNN. In 3D-CNN, the first 
convolutional layer 𝑐ଵ with 𝑘ଵ filters data becomes 
( 𝑥ଵ, 𝑦ଵ , 𝑘ଵ ሻ  and ( 𝑥ଶ, 𝑦ଶ , 𝑘ଵሻ.  The second convolutional 
layer 𝑐ଶ  with 𝑘ଶ filters the data becomes (𝑥ଶ, 𝑦ଶ,𝑘ଶሻ. and 
(𝑥ଷ, 𝑦ଷ,𝑘ଶሻ.  Finally we obtain the data (𝑥ଷ, 𝑦ଷ,𝑘ଷሻ by using 
third set of Convolution and ReLU layers. The ReLU 
features are given into Bi-LSTM network to extract 
features. In the last stage of Bi-LSTM model, we take the 
input of the ReLU features obtained by 3D-CNN. The final 
data is categorized by applying a soft-max function. At the 
same proposed architecture, RGB images with spatial 
features are classified using 2D-CNN. The probability map 
of 3D-CNN with Bi-LSTM and 2D-CNN is fused. The 
fused probability map can also be improved by MRF 
efficiently. 
 

III. METHODOLOGY   

A. RGB Channel Assimilation   
 

 The proposed RGB channel assimilation is the 
most efficient classification method. The RGB images are 
produced by a digital representation which is categorized 
by the intensity value of a pixel.  The 3-dimensional vector 
is calculated by intensity value. RGB color space is utilized 
for image display. All camera, printer, or other devices 
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provides direct RGB signal as input and output. The 
transformation of RGB space is proposed for extracting 
efficient color features. The RGB space is computed by rgb 
chromaticity value which yields higher classification 
accuracy than the direct use of R, G, and B value. 
B. Computation of chromaticity 
In RGB space, the chromaticity value is calculated for 
chromaticity coordinates. The chromaticity coordinates are 
the average value of RGB color space.  Fig 1 shows the 
structure of RGB channel Assimillation and summarize the 
RGB color space in algorithm 1. 
 
r(R, G, B)= R, 

ீାோ

ଶ
, 

஻ାோ

ଶ
    

    (1) 
 

g(G, R, B)= G, ோାீ

ଶ
, 

஻ାீ

ଶ
    

    (2) 
 

b (B, G, R)= B, 
ீା஻

ଶ
, 

ோା஻

ଶ
    

    (3) 

 
 
 
Figure 1: Structure of RGB channel Assimilation 

 
Algorithm1: RGB Channel Assimilation for HSI 

Classification 
 

Input: HSI data H ∈ 𝑅୦ൈ୵ൈୢ, Number of diagonal value K 
 

Output : RGB channel Patches 
 

1. Set rpatch to Red channels; 
2. Set gpatch to Green channels; 
3. Set bpatch to Blue channels; 
4. For diagonal value is 5  % Red channels 
5.  If k is equal to 1 
6.   Set fm to rpatch; 
7.   Set sm to rpatch; 
8.  Elseif k is equal to 2 
9.   Set fm to rpatch; 
10.   Set sm to gpatch; 
11.  Elseif k is equal to 3 
12.   Set fm to rpatch; 
13.   Set sm to bpatch; 
14.  Elseif k is equal to 4 
15.   Set fm to rpatch; 
16.   Set sm to rpatch; 
17.  Elseif k is equal to 5 
18.   Set fm to rpatch; 
19.   Set sm to gpatch; 
20.  End if 

21. End for 
22. Initialize j to one; 
23. For i=k-1:1 
24.  Rpatch(i,j)=(fm(i,j)+sm(i,j))/2.0; 
25.   j= j+1; 
26. End for 
27. Repeat step 4 to 26 for Green and Blue Channels  

 

C. Domain Transform Interpolated Convolution Filter 
(DTICF)  

DTICF was proposed by Oliveria [27] for image 
filtering, which utilizes for enhancing spatial features. It is 
a spatially invariant feature and used to decrease the pixel 

distance. If any find the distance between the pixel, we 
have to use the spatially invariant performance. It is the 

edge-preserving filter. It is calculated in the following ways: 
𝑍௜ሺ𝑢ሻ ൌ ʃΩೢ

𝑃௪𝑄ሺℎሺ𝑢ሻ, 𝑥ሻ𝑑𝑥 𝑖 ൌ 1,2, … , 𝑛; 𝑢 ∈ Ω௪  
     (4)  

 In Equation (1) [27], Filtering 𝑃௪ is evaluated by 
the consecutive convolution, where Q is a normalized box 

kernel and r is the filter radius.  
Q (h (u), x) = ଵ

ଶ௥
𝛿ሼ|𝑔ሺ𝑢ሻ െ 𝑥| ൑ 𝑟ሽ     

        (5) 
(E)=ሼ଴               ௢௧ℎ௘௥

ଵ            ா ௜௦ ௧௥௨௘      
        (6) 
Substituting Equations (5), [27] and (6) into (4): 

𝐹௜ሺ𝑢ሻ ൌ
ଵ

ଶ௥
׬ 𝑃௪ሺ𝑥ሻ𝑑𝑥

௚ሺ௨ሻା௥
௚ሺ௨ሻି௥                      

        (7) 
G (u)=׬ 1 ൅ ఙೞ

ఙೝ
∑ |𝐼௞

ᇱ௖
௟ୀଵ ሺ𝑥ሻ𝑑𝑥

௨
଴                      

         (8) 
𝜎௥ ൌ ඥ3𝜎௝      

         (9) 

𝜎௝௡ ൌ 𝜎௦√3
ଶಾష೙

√ସಾିଵ
      

       (10)  
 

D. CNN Operation 
 Nowadays, many researchers utilize the deep 
learning method for image classification for excellent 
performance [5].  CNN is employed to capture the spatial 
and temporal dependencies in the input image. This 
algorithm is used for image data set due to the reduction of 
dimensionality. CNN doesn’t care about the large size of 
data but it is manipulated to perceive parameters of the 
image. 
E. 3D Convolution  
  3D-CNN is employed to extract the features of 
spatial and spectral information simultaneously. In 3D data 
cube, 3D convolution is computed by the weighted sum of 
pixels as: 
𝐶௣௤௥=f (∑ 𝑤௜௝௞௜,௝,௞ 𝑎ሺ௣ା௜ሻሺ௤ା௝ሻሺ௥ା௞ሻ+b)  (11) 
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F.  Bi-Long Short Term Memory (BILSTM) 
 

Bi-LSTM network LSTM was established by 
Hochreiter and Schmidedhuber [10]. This network 
structure overcomes the problems of RNN [25].  

  
 

    Figure 2: HSI Classification procedure 

 
 

   Figure 3: Network Structure of DTICF-3D-CNN-Bi-LSTM 

 
 
 

In Bi-LSTM, there are three memory gates such as input, 
forget and output. The high frequency Intrinsic Mode 

Function (IMF) is 𝐶௧௦௛  that is given as an input and ℎ௜ିଵ is 
the output. 𝐶𝑆௧ିଵ  is the input of cell state determined by 

forget gate 𝑓௧ using a sigmoid function. It is written in Eq. 
10 [10]:  

𝑓௧ = (𝑤௙ሾℎ௜ିଵ, 𝐶௧௦௛ሿ ൅ 𝑏௙)        (12) 
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Input gate 𝑖௧ is used to determine the values that are to be 
updated to 𝐶𝑆௧ as in Eq. 12 [10]: 

𝑖௧ = (𝑤௜ሾℎ௜ିଵ, 𝐶௧௦௛ሿ ൅ 𝑏௜)           
(13) 

The output gate 𝑜௧ are equated in Eq. 13 [10]: 
𝐶𝑠௧ =𝑓௜ʘ 𝐶𝑆௧ିଵ ⊕ 𝑖௧ʘ 𝐶𝑆௧ିଵ             

(14) 
Consequently, the output of LSTM memory cell is written 

in Eq. 14[10]: 
ℎே=𝑜௧ʘ𝐶𝑠௧           

(15) 
𝑦ௗ= softmax(𝑊௢ꞏℎே.  + 𝑏௢)           (16) 

 
IV.  HSI CLASSIFICATION WITH DTICF-3D-CNN-

BILSTM-MRF  
   

In this portion, the proposed method DTICF-3D-
CNN-BiLSTM-MRFis discussed. First, HSI data is 
converted to RGB image and RGB image with spatial 
features and spectral information with original HSI is 
integrated. DTICF is applied in integrated information. 
Those obtained spatial and spectral features are finally 
given into the designed 3D-CNN-BiLSTM framework. The 
proposed method is discussed in Fig. 2. 
A. Extracting Spatial Features by DTICF 
 
  First, we convert the HSI image into 
RGB image. Then, DTICF is applied to RGB image with 
spatial and spectral bands from original HSI Data.  For 
dataset D = { 𝑑ଵ, 𝑑ଶ, . . 𝑑௦  }, we utilized the DTICF to 
capture the features.  
[𝑔ଵ, 𝑔ଶ, . . , 𝑔௦ሿ= RGB (D)    
                 (17) 

 
B. Classifying HSI by 3D-CNN-Bi-LSTM 

 
  We obtain the image U = { 𝑢ଵ, 𝑢ଶ, … , 𝑢௦  } by 

DTICF filter. In the proposed method, 3D-CNN network is 
utilized to obtain the pair features of spectral-spatial using 
convolution, pooling and ReLU layers. Using the Equation 
(8), the extracted features of the HSI (𝑥ଵ, 𝑦ଵ, 1) is given as 
input to 3D_CNN. In 3D-CNN, first convolutional layer 
𝑐ଵ with 𝑘ଵfilters data becomes (𝑥ଵ, 𝑦ଵ,𝑘ଵ ሻ and (𝑥ଶ, 𝑦ଶ,𝑘ଵሻ.  
The second convolutional layer 𝑐ଶ  with 𝑘ଶ filters the data 
becomes (𝑥ଶ, 𝑦ଶ,𝑘ଶሻ. and (𝑥ଷ, 𝑦ଷ,𝑘ଶሻ.  Finally we obtain the 
data ( 𝑥ଷ, 𝑦ଷ , 𝑘ଷሻ  by using third set of Convolution and 
ReLU layers. Finally, we obtain the spectral-spatial 
features by ReLU. BiLSTM is applied to extract the 
sequence features from 3D-CNN. Next, a dropout layer is 
used to avoid the overfitting. Then, we adopt a softmax 
function for classifying the entire feature vector. Eventually, 
3D-CNN network provide the probabilistic classification 
map C. 

 
 

C. Fused DTICF-3D-CNN-BiLSTM and RGB Channel 
Assimilation 2D-CNN 
 

 At beginning, the probability classification map c 
= {𝑝ଵ, 𝑝ଶ, … , 𝑝௡} is defined and the number of categories is 

defined by n for classifying. Then we applied 2D-CNN 
using Equation (8) to RGB image with spatial features. The 

probability map of 3D-CNN-BiLSTM and RGB channel 
assimilation 2D-CNN are fused. Finally, MRF is utilized 
for enhancing the fused probabilistic classification map.  

 The proposed method analyze the output by using 
log-likelihood log P(ሺ𝑦௜|𝑦෤௜ሻ can be given by [11] 

 
𝑦ො = arg max

௬∈௄೙
൛∑  ∑ 1ሼ𝑦௜ ൌ 𝑘ሽ 𝑙𝑜𝑔𝑦෤௜௞

௄
௞ୀଵ ൅௡

௜ୀଵ

𝜇 ∑ ∑ 𝛿ሺ𝑦௜ െ 𝑦௝ሻ௝∈ேሺ௜ሻ
௡
௜ୀଵ ൟ                    

 (18) 
 

Algorithm 2.  RGB Channel Assimilation of Hyperspectral Image 
Classification 

 
Input: HSI data H ∈ 𝑅୦ൈ୵ൈୢ, D for Training Data,  patches y = 

{𝑦ଵ, 𝑦ଶ , . . . , 𝑦௡}, K for number of labels. 
Output: Labels 𝑦ො. 

1. For Each patches 𝑥௜ ∈ 𝑅୩ൈ୩ൈୢ in H do 
2.  Obtain spectral-spatial feature through DTICF 

using Eq. (4); 
3.     X = {𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡}; 
4.     While D: 1 → X 
5.   Compute the patch for training data;  
6.   Compute another patch for testing; 

7.                                       𝐷
௟ሺೖሻ
ሺ௞ሻ= {ሺ𝑥ଵ, 𝑦ଵሻ, … . , ሺ𝑥௟ሺೖሻ , 𝑦௟ሺೖሻሻ}; 

8.   Generate feature maps operation using        
   convolutionoperation Eq. 
(11) ; 

9.    ƒ(x) = max (0,x);  % ReLU operation 
10.   Sequence input by f(x) given Bi-LSTM 

network   using Eq. (12); 
11.   Perform forward and backward 

sequence using   Eq. (15)  to generate the 
feature; 

12.    Compute a = 
ୣ୶୮ ሺ௢ሻ

∑ ୣ୶୮ ሺ௢ೖሻೖ
;   % Soft-max 

activation   function 
13.     end while 
14. compute RGB channel assimilation patches; 
15. Obtain spectral-spatial feature through 2D-CNN; 
16. end for 
17. compute probabilistic classification map for 3D-CNN-

BiLSTM and 2D-CNN 
18.  Compute the classifiaction label  𝑦ො  using Eq. (18). 

 
 

V.  EXPERIMENTS 
 

 In this portion, the proposed RGB Channel 
Assimilation of DTICF-3D-CNN-BiLSTM-MRF is 
examined in two hyperspectral data set such as Indian pines 
data and Pavia University data. The experimentations are 
carried out on Matlab R2019a on a PC with 64 GB RAM. 
There are three measurements used for validation such as 
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[1]: Overall accuracy (OA), Average Accuracy (AA), and 
Statistically kappa measure (k).  

 
 

 Figure 4: Original image and Ground Truth of Pavia University 
dataset 

 
 

Figure 5: Original image and Ground Truth of Indian Pines 
dataset 

 In this portion, Indian pines data set was acquired 
by an Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) sensor. It defines the spatial dimension size of 
height and width as 145×145. It contains 220 spectral 
reflectance bands and it is measured by wavelength range 
0.4–2.5 µm.  
It contains 16 classes and displayed in figure 4. Pavia 
University dataset was accumulated by the Reflective 
Optics System Imaging Spectrometer (ROSIS) over the 
urban area of the University of Pavia, northern Italy. It 
defines the spatial dimension size of height and width 
610×340. It contains 103 spectral bands. There are 9 land 
cover classes in this dataset and the number of each class is 
displayed in figure 5. 
 
A.  The proposed RGB Channel Assimilation of 

DTICF-3D-CNN-BiLSTM-MRF HSI Classification on 
Indian pines data and Pavia University data   

  
 To examine the proposed RGB Channel 
Assimilation of DTICF-3D-CNN-MRF, we select the 50% 
of samples for   training data, and then another 50% of 
samples for testing. In this experiment, 3D-CNN-BiLSTM 
architecture is structured as follows (also shown in Table I) 
and validation accuracy is also displayed in Table II. 

 
 
 
 
 
 
 

Table I 
        Network structure of the proposed method in Indian 

pines dataset. 
 

 
Input 

Shape 
Function Output shape

3D-
CNN 

image3dInputLayer([5 5 200 
1],"Name","image3dinput") 

 

(5˟5˟
3) 

convolution3dLayer([3 3 3],20, 
"Name","conv1","Stride",[1 1 

1],"Padding",[0 0 1;0 0 1]) 

(3˟3˟20) 

(3˟3˟
20) 

Activation = ReLU 
 

(3˟3˟20) 

(3˟3˟
20) 

convolution3dLayer([1 1 3],20, 
"Name","conv2","Stride",[1 1 

2],"Padding",[0 0 1;0 0 1]) 

(3˟3˟20) 

(3˟3˟
20) 

Activation = ReLU 
 

(3˟3˟20) 

(3˟3˟
20) 

convolution3dLayer([3 3 3],35, 
"Name","conv3","Stride",[1 1 

1],"Padding",[0 0 1;0 0 1]) 

(3˟3˟35) 

(3˟3˟
35) 

 convolution3dLayer([1 1 
3],35, 

"Name","conv4","Stride",[1 1 
2],"Padding",[0 0 1;0 0 1]) 

(1˟1˟35) 

(1˟1˟
35) 

Activation = ReLU 
 

(1˟1˟35) 

(1˟1˟
35) 

Fully Connected Layer  1˟1˟910 
Weights 

540˟35 
Bias 540 ˟1

1˟1˟
540 

Activation = ReLU 
1˟1˟540 

1˟1˟540 

BiL
STM 

  

540 Dense 1 540 (input layer) 
Activation=ReLU 
Sequence input with 540 

dimension 

540 

540 BiLSTM 1 with 512 hidden 
units 

1024  
Input Weights 

(4096) 
1024 Dropout 50% 1024 
1024 BiLSTM 2 with 256 hidden 

units 
512 

Input Weights 
(2048) 

512 Dropout 50% 512 
512 Fully Connected Layer 9 Weight 9˟512

Bias 9˟1 
9 Activation =Softmax 9 
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Table II 
 Validation Accuracy and Validation Loss f 3D-CNN-

Bi-LSTM 
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Loss        
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13%. 

   ---- 1.9
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1
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721 
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1.0000e-04 

3 
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--- 0.5
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---      

1.0000e-04 

8 
3
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66.01
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0.5
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1.203
0 

     
1.0000e-04 
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3
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--- 0.4
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4
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00% 
64.54
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0.3
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1.0000e-04 

1 
4
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00% 
-- 0.3
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1.0000e-04 

6 
5

00 
94.

46% 
66.99
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0.2
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0 

     
1.0000e-04 

0 
5

50 
98.

81% 
71.12

% 
0.2

669 
1.110
6 

     
1.0000e-04 

  
 
In Table III, the propose method is compared to other 

classification methods such as SVM, SVM-GC, MLRsub, 
SVM-3D, SVM-3DG, CNN, CNN-MRF, 3D-CNN and 3D-
CNN-MRF respectively [22]. The original CNN is a plain 
network whose extraction layers consist of regular 
convolutional layers and max pooling layers. If we use raw 

HSI data, DTICF is applied. These features are used for 
reducing the computational time. Classification results are 
validated in terms of OA. In Figure 6, our RGB channel 
assimilation of DTICF-3D-CNN-BiLSTM-MRF approach 
provides the best result compared with other methods. 

 

 
 

Figure 6: Classification accuracy of proposed method and 
other classification methods on Indian pines dataset.  

 

 
   

Figure 7: Classification results obtained by DTICF-3D-CNN-
BiLSTM-MRF on the Indian Pines dataset 

Table III 
Overall, Average And Individual Class Accuracies (%) And Kappa Statistics Of All Competing Methods On The Indian Pines Image 

Test Set. 
C

lass 
SV

M 
SVM-

GC 
MLR
sub 

MLRsu
b 
MLL 

SV
M-3D 

SV
M-3DG 

CN
N 

CN
N_ 

MR
F 

3DC
NN 

3DC
NN_MRF 

IC_3
DCNN_ 

BiL
STM 

IC_3DC
NN_BiLST

M_MRF 

1 
46.3
4% 

47.12
% 

27.7
8% 22.22% 

19.5
1%

20.1
1%

34.1
5%

31.7
1%

69.6
9%

78.3
2% 

93.2
3% 91.05%

2 
69.0
3% 

86.23
% 

45.3
6% 56.22% 

82.9
6%

88.3
3%

89.5
7%

89.5
7%

89.1
1%

90.3
7% 

91.2
0% 96.81%

3 
53.4
1% 

55.82
% 

18.0
7% 73.80% 

69.2
1%

67.4
7%

88.6
2%

90.3
6%

91.9
8%

91.8
8% 

92.9
5% 98.76%

4 
15.9
6% 

13.15
% 

25.9
3% 51.85% 

61.5
0%

66.6
7%

95.1
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3% 
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8% 98.85%

5 
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3% 
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% 
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3%
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1%
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1%
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3%
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7%

95.2
9% 
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6 
97.7
2% 
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% 
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5% 99.49% 
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2%
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95.7
4%
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8% 
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0% 

36.00
% 
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56.5
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7%
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4% 
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0% 
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% 
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5%
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% 
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9% 
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8% 98.63%
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0.00

% 0.00% 
0.00
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28.1
2%
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00%
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4%

100.
00% 

98.3
8% 99.92%
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3% 
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% 

30.6
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4%

81.0
1%

91.9
9%

94.1
5%

93.8
4%

95.9
0% 

92.0
9% 98.64%

11 
84.1
6% 

95.02
% 

85.0
3% 97.05% 
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8%
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4%
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7%

96.4
2%
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3% 
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9% 97.72%
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8% 
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% 

23.8
4% 48.95% 
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5%
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1% 
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1% 
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5% 55.82% 
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9% 
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% 

56.4
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6%
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8%
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0%
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2% 

96.9
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Table IV 

Overall, average and individual class accuracies (%) and kappa statistics of all competing and proposed methods on the pavia 
university image test set. 
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8% 
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9% 
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3% 
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3% 
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8% 
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2 
69.7
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2% 
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1% 
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8% 
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87.6
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1% 
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5 
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6% 
97.4

7% 
99.1

6% 
99.5

4% 
94.7
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2% 
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2% 
98.3

8% 
99.0

7% 99.04% 99.27% 

6 
67.2

7% 
96.3

1% 
56.6

6% 
99.4

0% 
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0% 
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7% 
90.1

0% 
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0% 
95.7

% 
96.4

2% 97.17% 98.13% 

7 
75.4

3% 
91.4

0% 
86.2

0% 
94.5

0% 
87.3

6% 
90.6

2% 
84.4

2% 
85.2

7% 
89.1

4% 
89.7

2% 91.36% 94.81% 

8 
67.6

8% 
91.9

3% 
65.9

8% 
64.8

3% 
86.0

5% 
91.2

1% 
89.8

4% 
91.5

4% 
96.3

1% 
96.7

2% 97.74% 99.07% 

9 
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3% 
99.3

4% 
99.6

7% 
99.7

8% 
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00% 
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00% 
96.8

0% 
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3% 
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8% 
99.4

3% 99.49% 99.68% 
O

A 
73.4

1% 
90.3

6% 
66.5

2% 
91.1

3% 
90.5

0% 
92.3

5% 
90.5

0% 
95.6

8% 
94.3

7% 
97.3

3% 97.93% 98.67% 
A

A 
79.3

6% 
93.2

4% 
74.6

2% 
89.2

5% 
90.4

4% 
93.9

0% 
90.4

4% 
94.2

0% 
95.7

6% 
96.2

2% 97.03% 98.13% 
K

A 
66.2

3% 
87.5

2% 
57.7

5% 
88.1

9% 
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6% 
92.6

0% 
87.4

6% 
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6% 
93.2

6% 
96.6

9% 97.33% 98.01% 

 
 

In our proposed work, Indian Pines dataset is used. This 
dataset has high dimensionality that is difficult to classify. 
In Figure 7, shows the classification results compared by 
other different methods with help of OA scores. Compared 
to other classification accuracy, the proposed method 
DTICF-3D-CNN-BiLSTM with MRF has shown good 
classification performance. In Figure 4 of Indian pines, the 
classification accuracy of SVM-3D and SVM-3DG is 85.88% 
and 89.99%. The classification accuracy of CNN and 
CNN-MRF is 93.50% and 94.62%. The classification 
accuracy of 3D-CNN and 3D-CNN-MRF is 95.24% and 
96.75% larger than that of CNN and CNN-MRF. Finally, 
the classification accuracy of DTICF-3D-CNN-BiLSTM 
obtains second higher performance in the accuracy. 
Compared between other methods, the proposed method 
(98.82%) achieves the highest accuracy for HSI 
Classification.  
 
 To examine the proposed method, pavia university 
data is used. In Table IV, discuss the classification results 
compared to other 11 classification methods. The proposed 
approach of DTICF-3D-CNN-BiLSTM-MRF achieved the 
elegant result, with a 98.67% overall delicacy, 0.36% better 
than another one method (97.93%) achieved by DTICF-
3D-CNN-BiLSTM. Figure 8 show that our proposed 
method provides good classification accuracy. 

 
Figure 8: Classification Accuracy of Proposed method and 
other classification methods on Pavia University dataset.                

 
Figure 9: Classification Result by DTICF-3D-CNN-BiLSTM-

MRF on the Pavia University dataset  
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Classification result of different methods is 

illustrated in Fig. 9. The above figure shown that proposed 
methods achieve better classification performance 
compared approaches to other approaches. In Figure 6 of 
Pavia university data, the classification accuracy of SVM-
3D and SVM-3DG is 90.50% and 92.35%. In addition, the 
classification accuracy of CNN and CNN-MRF is 90.50% 
and 95.68% and the classification accuracy of 3D-CNN 
and 3D-CNN-MRF is 94.37% and 97.33%. Finally, the 
classification accuracy of DTICF-3D-CNN-BiLSTM 
obtains second higher performance in the accuracy. 
Compared between other methods, the proposed method 
(98.67%) achieves the highest accuracy for HSI 
Classification. 

VI. CONCLUSION 

 To improve the HSI classification, the proposed 
RGB Channel Assimilation of 3D-CNN-BiLSTM 
framework has been proposed that is employed to extract 
the features of spectral- spatial information in this work. 
HSI data is converted to RGB image with spatial features. 
DTICF is applied to the combination of the RGB image 
with spatial features and raw HSI data. The excerpted 
features are provided to the 3D-CNN-BiLSTM.  The color 
features are given to 2D-CNN. The probabilistic 
classification map of 3D-CNN-BiLSTM and 2D-CNN is 
fused.  Finally, MRF is utilized to improve the features map 
for smoothing the classification result. The proposed RGB 
Channel Assimilation of DTICF-3D-CNN-BiLSTM-MRF 
approach compared with other HSI classification methods. 
The experimental result clearly viewed that RGB Channel 
Assimilation of DTICF-3D-CNN-BiLSTM-MRF based 
HSI classification attained the welfare classification 
accuracy. In future work, we will concentrate on how to 
reduce computational time across a variety of HSI datasets. 
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