
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023 
 

 

207

Manuscript received May 5, 2023 
Manuscript revised May 20, 2023 
https://doi.org/10.22937/IJCSNS.2023.23.5.22 

 

Distributed Incremental Approximate Frequent Itemset Mining Using 
MapReduce 

Mohsin Shaikh†1,Irfan Ali Tunio†2, Syed Muhammad Shehram Shah††3, Fareesa Khan Sohu†4 Abdul Aziz †††5, 
Ahmad Ali†††4 

 

 

†Quaid-e-Awam University of Engineering, Science & Technology Campus Larkana, 77150,Pakistan 
††Department of software Engineering,MUET Jamshoro, Pakistan 

†††IBA University, Sukkur, Pakistan 
 

 
Abstract 
Traditional methods for datamining typically assume that the 
data is small, centralized, memory resident and static. But this 
assumption is no longer acceptable, because datasets are growing 
very fast hence becoming huge from time to time. There is fast 
growing need to manage data with efficient mining algorithms. 
In such a scenario it is inevitable to carry out data mining in a 
distributed environment and Frequent Itemset Mining (FIM) is 
no exception. Thus, the need of an efficient incremental mining 
algorithm arises. We propose the Distributed Incremental 
Approximate Frequent Itemset Mining (DIAFIM) which is an 
incremental FIM algorithm and works on the distributed parallel 
MapReduce environment. The key contribution of this research 
is devising an incremental mining algorithm that works on the 
distributed parallel MapReduce environment. 
Keywords: 
Frequency Itemset minings, distributed Incremental 
Approximation, MapReduce. 

 
1.  Introduction 
 

The knowledge discovery and data mining (KDD), 
encouraged by the advancements in the technology of 
data collection. KDD is concerned with the retrieval of 
useful and interesting information from large datasets, 
Frequent Itemset Mining (FIM) was proposed in the early 
90s which aims to find frequently occurring subsets of 
items in a given set of transactions. Finding useful 
frequent item sets plays a valuable role in numerous real-
life applications such as customer relationship 
management, e-commerce, DNA analysis and network 
Intrusion detection. FIM is also employed in the 
discovery of diverse patterns such as sequential patterns 
[1], trees, graphs and so on. The task of finding frequent 
item sets requires a lot of CPU and I/O resources. 
Apriori[2] is the first FIM algorithm and it needs to scan 
a dataset multiple times. To generate level-wise item sets 
of different length and to overcome the drawback of 
Apriori, several algorithms such as FP-Growth [3] have 
been proposed. FP-Growth overcomes the drawback of 

Apriori by introducing a new and compact data structure 
called a frequent pattern tree(FP-tree). 

In a typical application domain, a number of new 
transactions are generated daily, so that its dataset is 
incrementally extended. When the most updated set of all 
the frequent itemsets for such an incremental dataset 
needs to be found, then anaïve method would be re-
executing a FIM algorithm on the entire set of 
transactions generated so far. This method not only 
ignores its previously discovered knowledge but also 
require a huge amount of computation and I/O resources. 
To cope with such a problem, many incremental FIM 
algorithms have been proposed. In order to find the most 
up-to-date set of frequent itemsets, the common idea of 
incremental FIM algorithms [4][5][6] over a dynamic 
dataset is to combine the mining result of new 
transactions with the mining result of the old transactions 
previously processed. Many problems arise in merging 
the newly obtained results with the previously obtained 
knowledge. When a set of new transactions is added, 
some previously identified frequent item sets in the 
previous transactions may no longer be frequent or vice 
versa. When one of the above two cases arises, these 
algorithms try to minimize the evaluation of old 
transactions [7][8]. 

Over the past decade, researchers endeavor to explore 
significance and importance of data in software systems 
extensively [9][10][11]. However, most of these parallel 
algorithms suffer from the issues of network 
communication and I/O overheads. Implementing a 
parallel system raises several other problems like load-
balancing, fault-intolerance and scalability. To overcome 
these problems, a new parallelization framework called 
MapReducewas introduced. To utilize the benefits of 
MapReduce framework, Hadoop is used, which uses 
hadoop distributed file system (HDFS) that can support, 
transform and analyze a very huge dataset effectively. A 
Hadoop clustercan contain a large number of nodes 
which can scale the computation, storage and IO capacity 
by simply using commodity computers. The run-time 
system of the MapReduce framework takes care of the 
details of partitioning the input dataset., scheduling the 
parallel execution of tasks, handling node failures, and 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023 
 

 

208

 

managing inter-node communication. The MapReduce 
framework partitions the workload of a given task into a 
number of independent smaller sub-tasks each of which is 
assigned to a node in parallel environment. It can be 
scaled out to hundreds or even thousands of nodes 
effectively, offers a simplistic programming model, 
handles parallel job scheduling automatically, manages 
network communication with guaranteed robustness and 
fault tolerance and it also benefits the application 
programmer to easily perform large scale data processing 
in a distributed environment. 

To handle a large, potentially infinite amount of an 
incremental dataset, a distributed and incremental mining 
algorithm must be used. For this purpose, this paper 
proposes an efficient parallel and distributed incremental 
approach namely Distributed Incremental Approximate 
Frequent Itemset Mining (DIAFIM), which works in a 
distributed parallel MapReduce environment. Compared 
with other MapReduce-based FIM algorithms, the 
performance of the proposed scheme is significantly 
enhanced by introducing an efficient approximation 
method while sacrificing its accuracy. Given an error 
bound parameter called significant support, our key idea 
is to approximate the support of frequent item sets within 
the error bound parameter of significant support, avoid 
multiple scans over a dataset and to speed up the mining 
process using a distributed and parallel environment of 
MapReduce using Hadoop. 

The rest of the paper is organized as follows: Section 
2 highlights related work in parallelization of frequent 
itemsetmining algorithms. Section 3 proposes 
DIAFIMand its details using Mapreduce over Hadoop. 
Experimental results are presented in Section 4. Finally, 
Section 5 concludes the paper. 

 
2.  Ease of Use 
 

Diverse parallelization schemes for association rule 
mining are discussed [12]. Based on various trade-offs 
among computation, communication, synchronization and 
memory consumption, Agrawal and Shafer classified three 
different parallelizing strategies, namely Count 
Distribution, Data Distribution, and Candidate 
Distribution [13]. The count distribution is a simple 
distributed implementation of Apriori[14]. All distributed 
sites produce the entire set of candidate item sets, and each 
site can thus; independently get local support counts from 
its partition. In each iteration, this algorithm performs a 
sum-reduction operation, to obtain the global support 
counts by exchanging local support counts with all other 
remaining sites. Since only the support counts are 
exchanged among the sites, the communication overhead 
is reduced. However, it performs one round of 
communication per iteration. The data distribution 
algorithm generates a set of disjoint candidate item sets on 
each distributed site. However, to generate global support 

counts, each site has to scan the entire database (its local 
as well as all remote partitions) in each iteration of the 
algorithm. Hence, this approach suffers from high I/O 
overhead. During each iteration, the candidate distribution 
algorithm partitions its candidates disjointly, so that each 
site can generate disjoint candidates independently of the 
other sites, but it still requires one round of 
communication per iteration [15]. 
 
3.  Proposed Algorithm 

In this section an incremental algorithm for finding 
frequent item sets in a fast growing dynamic dataset is 
proposed. The proposed algorithm avoids multiple dataset 
scans and significantly enhances its performance by 
introducing an efficient approximation method while 
sacrificing the output accuracy. The proposed algorithm 
consists of three major phases: incremental Data (ΔDt), 
sharing (partitioningΔDt), distributed FIM and profile 
integration. The distributed FIM phase is achieved by 
chaining two consecutive MapReducejobs: Local Itemset-
Mining and Approximate Global-Itemset Mining.  
 

Table 1: Pseudo Code- Itemset Mining 
class MAPPER 

Method MAP (key, value = a set of 
transactions) 

Input: a dataset shard 
for all shard sh_i∈(ΔDt) do 

EMIT<random_key,FIM(sh_i,s_sig)> 
class REDUCER 

method REDUCE(key=random_key, 
value=concatenated_output) 

for all key ydo 
for all value vinysvaluelistdo 

EMIT(null,value.set(output.append(v))) 

 
 
In given Table 1, pseudo code can be explained through 
following steps: 

1. Method mapper maps the keys an values of 
transaction and further distributing it into shared 
architecture. Mapping of data continues until 
particular threshold. Here, EMIT represents the 
point of data processing, mapping of data 
continues.  

2. Shared architecture of local and global itemset 
mining takes place for randomly selected sigmoid 
function.  

3. Class Reducer further reduces the data to 
transform and complete the mining process. 
REDUCE function is based on concatenation of 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023 
 

 

209

 

all the output being generated from MAPPER 
function.  

4. REDUCER function processes the transaction for 
all the values of until EMIT point is satisfied.  

 
 

 
Fig.1 Profile Integration– Example 

 
Figure 1 simple real world example experimental 

scene where incremental approach is applied to data in 
order to mine relevant set. Additionally, it reflects how 
machines in cloud based architecture mines the data and 
perform profiling of integrating relevant transactions. 
 

4.  Paragraphs and Itemizations 

If you would like to itemize some parts of your 
manuscript, please make use of the specified style 
“itemize” from the drop-down menu of style categories  

In the case that you would like to paragraph your 
manuscript, please make use of the specified style 
“paragraph” from the drop-down menu of style categories  

 

5.  Experimental Setup 

To evaluate the overall performance of the proposed 
DIAFIM algorithm, several experiments are conducted. 
Most of the experiments related to the speedup and 
scalability of DIAFIM were performed using FP-Growth 
as FIM algorithm for local itemset mining phase on 
Hadoop 1.0.3 cluster of four nodes. Each node contains an 
Intel Quad core processor with4GB memory and Ubuntu 
12.04. The algorithm was implemented in Java with the 
JDK 1.7. Amazon Elastic Compute Cloud (Amazon EC2) 
Hadoop cluster comprised of 20 M1 Medium Instances 
[16] is used to measure the speedup of the proposed 

algorithm. Design of algorithms has been always subject 
to multiple dimension of data sciences [17][18][19]. 
 

We used several synthetic datasets for the evaluation 
process. The IBM Quest data generator was used to 
generate several datasets with diverse characteristics. Table 
1shows the average transaction length, total number of 
transactions and size of each dataset in Mega Bytes 
(MBs).Broad range of experiments is conducted to explore 
as many aspects of DIAFIM as possible. 

 

A.  Data Cleaning  
First experiment we conducted is the comparison 

between the processing time of DIAFIM and a traditional 
distributed non-Incremental FIM algorithm using a 4 node 
cluster of Hadoop. In this experiment four different datasets 
are used with the incremental size of 1Million transactions, 
as expected the processing time is directly proportional to 
the size of the increment. As shown in Figure 2 and Table 2, 
the processing time of a traditional distributed non-
Incremental FIM algorithm scales up almost linearly with 
the increasing size of a dataset. On the other hand Figure 2 
shows that the processing time of DIAFIM remains almost 
the same with the increasing size of the dataset[20][21][22]. 
This is because of the incremental mining method used in 
DIAFIM, which does not require the entire dataset to be 
processed again. 
 

Table. 2  DATA SETS 

Dataset  
Data configuration  

Table column 
subhead 

Subhead Subhead 

T10I4D10M 10 10Million 576.5 

T15I4D10M 15 10Million 768.5 

T20I4D10M 20 10Million 962.5 

T20I5D1000K 20 1Million 130 

T30I5D1000K 30 1Million 184 

 

B. Map Reduce Scaling  
In a distributed environment, one of the most important 
criterion to exhibit the performance of an algorithm is to 
test the efficiency and speedup with the increase in 
number of distributed computational nodes i.e. increase in 
the size of the MapReduce cluster. 
For this experimental setup we used two different datasets 
with fixed size of 1Million transactions but with different 
average transaction length. Both datasets were processed 
using Hadoop cluster with increasing number of Amazon 
EC2 M1 Medium Instances. Number of nodes in Hadoop 
cluster was increased from 1 node up to 20 nodes. Figure 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023 
 

 

210

 

2 shows the relation between processing time and the 
number of nodes, i.e. processing time decreases with the 
increase in the number of nodes. 
While Figure 2 shows the speedup percentage with respect 
to the number of nodes and it can be observed that the 
proposed algorithm speeds-up almost linearly with the 
increased number of nodes in a cluster. 

 

 

6. Conclusion 

 
In this paper we have considered the problem of a 
traditional non-incremental FIM algorithm. We proposed 
the distributed and incremental FIM algorithm using 
MapReduce framework. MapReduce and its open-source 
Hadoop implementation can handle many difficult 
problems that are inherent to the parallel process, such as 
concurrency control, fault control, communication over a 
network. 
In this paper the notion of approximation method is 
introduced that doesn’t require any additional step for 
checking the exact support of the item sets, which in turn 
helps the user to decide the trade-off between accuracy 
and performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
References   

[1] CláudiaAntunesandArlindoL.Oliveira, Sequential Pattern 
Mining Algorithms: Trade-offs between Speed and Memory, 
InstitutoSuperiorTécnico/INESC- 

[2] Ming-Yen Lin , Pei-Yu Lee , Sue-Chen Hsueh, Apriori-
based frequent itemset mining algorithms on MapReduce, 
Proceedings of the 6th International Conference on 
Ubiquitous Information Management and Communication, 
February 20-22, 2012, Kuala Lumpur, Malaysia 

[3] Ming-Yen Lin , Pei-Yu Lee , Sue-Chen Hsueh, Apriori-
based frequent itemset mining algorithms on MapReduce, 
Proceedings of the 6th International Conference on 
Ubiquitous Information Management and Communication, 
February 20-22, 2012, Kuala Lumpur, Malaysia 

[4] D. Cheoung, J. Han, V. Ng, and C. Y. Wong, “Maintenance 
of discovered associated rules in large databases: An 
incremental updating technique,” in Proc. 12th Int. Conf. 
Data Engineering, Feb. 1996, pp. 106-114 

[5] D. Cheoung, S. Lee, and B. Kao, “A general incremental 
technique for maintaining discovered association rules,” in 
Proc. 5th Int. Conf. Database System Advanced Application, 
Apr. 1997, pp. 1-4 

[6] V. Ganti, J. Gehrke, and R. Ramakrishnan, “Demon: Mining 
and monitoring evolving data,” in Proc. 16th Int. Conf. Data 
Engineering, San Diego, CA, 2000, p. 439-448 

[7] Otey, M.E., Parthasarathy, S., Wang, C., Veloso, A., Meira, 
W., Jr., Parallel and distributed methods for incremental 
frequent itemset mining. Systems, Man, and Cybernetics, 
Part B: Cybernetics, IEEE Transactions on, 34(6), 2439-
2450. 

[8] ID,DepartmentofInformationSystemsandComputerScience,
Av.RoviscoPais1,1049-001Lisboa,Portugal. 

Fig. 2 Speed and processing analysis



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023 
 

 

211

 

[9] Shaikh, Mohsin, Ki-Seong Lee, and Chan-Gun Lee. 
"Assessing the Bug-Prediction with Re-Usability Based 
Package Organization for Object Oriented Software 
Systems." IEICE TRANSACTIONS on Information and 
Systems 100.1 (2017): 107-117. 

[10] Shaikh, Mohsin, and Chan-Gun Lee. "Aspect Oriented Re-
engineering of Legacy Software Using Cross-Cutting 
Concern Characterization and Significant Code Smells 
Detection." International Journal of Software Engineering 
and Knowledge Engineering 26.03 (2016): 513-536. 

[11] Shaikh, Mohsin, et al. "Open-source electronic health record 
systems: A systematic review of most recent advances." 
Health Informatics Journal 28.2 (2022): 1460458222109982 

[12] M.J.Zaki, “Parallel and distributed association mining: A 
survey,” IEEE concurrency, vol. 7(4), pp. 14-25, 1999 

[13] R. Agrawal and J. Shafer. Parallel mining of association 
rules. Transactions of Knowledge and Data Engineering, 
8(6):962-969, 1996 

[14] AgrawalRakesh and RamakrishnanSrikant. Fast algorithms 
for mining association rules.In Proc. 20th Int. Conf. Very 
Large Data Bases, VLDB, 1994. 

[15] Otey, M.E., Parthasarathy, S., Wang, C., Veloso, A., Meira, 
W., Jr., Parallel and distributed methods for incremental 
frequent itemset mining. Systems, Man, and Cybernetics, 
Part B: Cybernetics, IEEE Transactions on, 34(6), 2439-
2450. 

[16] Amazon Elastic Compute Cloud (Amazon 
EC2)http://aws.amazon.com/ec2/ 

[17] Mohsin, Shaikh, and Zeeshan Kaleem. "Program slicing 
based software metrics towards code restructuring." In 2010 
Second International Conference on Computer Research 
and Development, pp. 738-741. IEEE, 2010. 

[18] Shaikh M, Jalbani AH, Ansari A, Ahmed A, Memon K. 
Evaluating Dependency based Package-level Metrics for 
Multi-objective Maintenance Tasks. International Journal of 
Advanced Computer Science and Applications. 2017;8(10). 

[19] Shaikh M, Ibarhimov D, Zardari B. Assessing Architectural 
Sustainability during Software Evolution using Package-
Modularization Metrics. International Journal of Advanced 
Computer Science and Applications. 2019;10(12). 

[20] Mujeeb-ur-Rehman Jamali, Abdul Ghafoor Memon, 
Nadeem A. Kanasro, Mujeeb-u-Rehman Maree. “Data 
integrity issues and challenges in next generation non-
relational document-oriented database outsourced in public 
cloud”, International Journal of Emerging Trends in 
Engineering Research, Volume 9. No. 4, April 2021- ISSN 
2347 – 3983. 

[21] Mashooque Ahmed Memon , Mujeeb-ur-Rehman       Maree 
Baloch , Muniba Memon , Syed Hyder Abbas Musavi,” A 
Regression Analysis Based Model for Defect Learning and 
Prediction in Software Development”, Mehran University 
Research Journal of Engineering and Technology, Vol.40, 
No. 3, 617- 629, July 2021, p-ISSN: 0254-7821, e-ISSN: 
2413-7219. 

[22] Memon Abdul Ghafoor, Jianwei Yin, Jinxiang Dong, Maree 
Mujeeb-u-Rehman, “Service-oriented Mobile Calculus 
Technology in M-Business interoperability between 
Customer and e-Shop”, Proceedings of the 2005 IEEE 
International Workshop on Service-Oriented System 
Engineering (SOSE’05). 

 

 


