
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

147

Manuscript received June 5, 2023
Manuscript revised June 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.6.18

SYN Flood DoS Detection System Using Time Dependent Finite
Automata

Noura AlDossary, Sarah AlQahtani, Reem Alzaher and Atta-ur-Rahman

Department of Computer Science (CS), College of Computer Science and Information Technology (CCSIT), Imam
Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia

Abstract
Network intrusion refers to any unauthorized penetration or
activity on a computer network. This upsets the confidentiality,
integrity, and availability of the network system. One of the major
threats to any system's availability is a Denial-of-Service (DoS)
attack, which is intended to deny a legitimate user access to
resources. Therefore, due to the complexity of DoS attacks, it is
increasingly important to abstract and describe these attacks in a
way that will be effectively detected. The automaton theory is used
in this paper to implement a SYN Flood detection system based on
Time-Dependent Finite Automata (TDFA).

Keywords:
Denial of Service (DoS); Finite Automata (FA); Time-Dependent
Finite Automata (TDFA); SYN Flood; Intrusion Detection System

1. Introduction

In recent years, the services provided by many
sectors such as medicine, education, banking, and
transportation are being replaced gradually with
network-based applications. Consequently, the
availability of these services is critical. However, the
Internet and its services are vulnerable to attackers
who aim to breach its availability. One of the major
threats to any system’s availability is a Denial-of-
Service (DoS) attack, which is intended to prevent a
legitimate user from accessing resources and services
[1]. The DoS has many types, each of which targets
specific components of the network to achieve a
common goal, which is breaching the availability. The
SYN Flood attack is one of the common DoS attacks
that targets the three-way TCP communication
process by flooding the connection tables [2].
Ultimately, the service to legitimate clients is blocked
and the server may even malfunction or crash [3]
Due to the DoS nature, it should be detected in a timely
manner, as time plays an important factor in this attack.
To detect DoS attacks, many network intrusion
detection systems (NIDS) have been implemented

using different mechanisms. Basically, NIDS analyzes
the raw network data to discover any signs of possible
attacks [4]. One possible mechanism is to build NIDS
based on automaton theory. Finite Automata (FA) is
an abstract way of representing computations and
statues of computers [5], thus, it can be utilized in
security field by tracing and recording the attacks [6].
Time Dependent Finite Automata (TDFA) is a special
type of FA, which is concerned about the time factor.
Since the DoS is a temporal correlative, the TDFA can
be used to analyze the time series of network packets
to detect any suspicious motion, change, or
development in the network. Hence, make the proper
and timely response. In this paper, the concept of
TDFA is used to build the SYN Flood DoS Detection
System.

The remaining part of this work is organized as
follow: Section 2 contains a review of related
literature. Section 3 contains background information
about Deterministic Finite Automata (DFA), Time-
Dependent Finite Automata (TDFA), Denial of
Service (DoS) attacks, and finally how to represent
DoS using TDFA. Section 4 explains the proposed
system architecture and its components, while Section
6 contains the conclusion and recommendations
emanating from this work.

2. Literature Review

Recently, applying the concept of Finite
Automata (FA) in the information security field has
been proven to perform well in detection systems.
However, this concept lacks the interest of researchers
and professionals. Here are some related papers that
focus on applying FA in the security sector. Authors
in [7] have built a network-based intrusion detection
system (NIDS) to detect Denial of Service (DoS)
attack. This system is a misuse detection system, and

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

148

it is designed based on the Time Deterministic Finite
Automata (TDFA) approach. The authors stated that
the system can recognize seven DoS attacks in which
their signatures are known. For testing purposes, they
have used eight datasets to detect only five attacks. In
conclusion, the system has shown a good result in
detecting all attacks except SYN Flood. A similar
study [6] has proposed a misuse detection model using
Adaptive Time-dependent Finite Automata (ATFA) to
recognize the attacks’ signatures. The model
preprocesses the network data and extracts the
temporal sequence that is used later by ATFA.
Eventually, the model performs well in detecting DoS
and Probing attacks.

In addition, a comprehensive study [8] has
discussed different pattern matching techniques using
Finite Automata (FA) in NIDS. They are compared
based on various parameters, such as the used FA,
whether it is deterministic or not, space complexity,
time complexity, etc. Also, a possible solution has
been demonstrated to overcome memory and time
inefficiency. Also, authors in [9] have worked on
creating a pattern-matching engine called O3FA. This
engine is based on deterministic finite automata
combined with suffix and prefix FA. The main
purpose of this engine is to be able to detect the
packets before reordering them. This makes the
system invulnerable to DoS attack.
In [10] has described various network attacks using
Deterministic Finite Automata (DFA). Authors have
represented these attacks using state transition
diagram to detect whether the system status is normal
or not. Basically, the DFA model is used to trace the
packet flow through different states. It is responsible
of analyzing the data to catch any intrusion behavior.
This study shows two DFA models representing two
kinds of DoS attacks, which are SYN flooding and IP
spoofing. Another study [11] has built models to
represent social-technical attacks using timed
automata. As well as transform the attack trees, which
is a way of attacks representation into timed automata
models. For illustration, an IPTV case study is
elaborated using a timed automata model.

Almseidin et. al. [12] have proposed an
innovative mechanism to detect multi-step attacks
(e.g., Denial of Service attack). These kinds of attacks
occur after many steps, and they are usually harmful
and target the victim’s security without being detected.
The proposed method is built using two concepts:
fuzzy systems and automaton theory. Eventually, the

system successfully achieves a detection rate of
97.84%. Although Finite Automata is an ideal method
for representing and dealing with security attacks, the
scientific community lacks relevant research. In this
study, an intrusion detection model is build based on
Time Dependent Finite Automata (TDFA) to detect
Denial of Service (DoS) attack, particularly SYN
Flood attack.

3. Background

This section provides the background regarding the
application of the finite automata.

3.1 Deterministic Finite Automata

The deterministic finite automaton (DFA) is the
simplest version of the finite automata in the Chomsky
hierarchy of formal grammars [13]. Theoretically, a
DFA is an abstract computational model used to
represent modern computers. Just as a computer
changes states of processes and generates some
outputs given certain inputs, so does a DFA. DFAs are
constructed to identify member strings of a specified
language. Specifically, they identify those languages
that belong to the class of regular languages [14].
DFAs hold two important properties. First, they
represent a finite number of states. Second, they are
deterministic meaning that on each input there is only
one state to which the automaton can transition from
its current state (could be same state or new one).

Fig. 1. A Representation of DFA Using State-

Transition Diagram

A state-transition diagram is used to represent
DFAs. It is a structure containing a set of states and
transitions between them. Normally, final states are
double circled, which accepts the entirety of an input
string. In addition, a transition must be defined for

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

149

every symbol in the language alphabet. Figure 1 shows
an example of a DFA that accepts strings ending with
“ab” over the alphabet {a,b}. In this example, q1 is the
start state and q3 is the final accepted state. If the DFA
is in state q1 and gets an input “a”, then it transits to
state q2. On the other hand, if the DFA is in state 2 and
gets an input “a”, it remains in the same state. The
correct pattern of an input string (i.e., “abab”) will be
accepted in q3, the final state. An analysis of Fig 1
shows that any input disrupting the pattern “ab” takes
the DFA to its starting state. Moreover, the illustrated
example has only one final state, which is not a
requirement for DFA in general. A DFA can have
multiple final states.

3.2 Time-Dependent Finite Automata

A time-dependent finite automaton (TDFA) is
very similar to DFAs. When it comes to modeling
real-time systems, a DFA might not be sufficient.
Hence, it is crucial to extend the classical finite state
machines with some capabilities to be able to reason
about time constraints.

Fig. 2. A Representation of TDFA Using State-
Transition Diagram

Figure 2 demonstrates an example TDFA. It is

observed that this machine recognizes the pattern “b,a
< $”. In other words, the “a” must occur within four
seconds of the initial “b”. All transitions shown
without the four second times are default transitions.
If the desired input does not occur within the required
time restraints, then the default transition directs the
TDFA back to the appropriate state where it continues
monitoring.

3.3 DoS Attack (SYN-Flood)

A DoS attack, also known as a denial-of-service
attack, it a sort of attack on a networking structure that
prevents a server from providing services to its clients.
By flooding a server with massive packets of invalid
data to send requests with a forged or faked IP address.
Moreover, there are many different types of attacks
that can be used against a server to slow it down, so it
is unable to serve any requests [15]. There are several
types of DoS attacks such as Ping of Death, TCP SYN
Flood, and Smurf. The TCP three-way handshake
process is performed during the establishment of a
TCP connection between a client and a server. First,
clients start sending SYN packets to the server with a
random sequence number. Then, the server replays
with a SYN-ACK packet that includes a random
sequence number as well as an ACK number that
acknowledges the client's sequence number. Finally,
the client sends an ACK packet by acknowledging the
server’s sequence number. After the connection is
established, the client and server can communicate
and share messages as shown in Figure 3 [16].

Fig. 3. TCP Three-Way Handshake Process

A SYN Flood is the most common type of Dos

attack in which the attacker sends many SYN requests
to the target system. It is ineffective against most
modern networks. But, once the SYN has been
received, the server must allocate resources before the
ACK has been received. If a client does not send an
ACK packet, the allocated memory cannot be recycled
or utilized by other clients before the timeout. If a
server receives a significant number of SYN packets
from many other clients but no SYN-ACK packets, the
server's resource limit is exceeded, and the server
becomes unavailable to clients [17].

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

150

3.4 DoS using TDFA

The TDFA models are a preferred option for
demonstrating DoS attack because of their inherent
simplicity. In another way, a DoS attack consists of a
specific sequence of network packets that could
disable a specific target. However, the incremental
conditions of an attack are represented by TDFA states.
A TDFA's final state represents the points at which the
attack has been successfully completed [7].

4. Proposed System Architecture

Now, in the upcoming subsections, we will
discuss the overall architecture of our proposed system.
Four main components make up our proposed system
as shown in Figure 4: (1) Data Source Component, (2)
Picket Filtration, (3) Token Generator, (4) TDFA.

Fig. 4. Proposed System Architecture

4.1 Data Source

Before proceeding, it is important to note that our
system detects SYN Flood attack, which occurs in
TCP network traffic. It is an industry standard network
protocol for communication [18]. Our proposed IDS
collects the traffic from different data sources,
primarily real-time traffic, and historical data. The
best level of protection is offered by real-time
monitoring because it may prevent ongoing attacks.
Yet, adding historical datasets allows the site security
officer (SSO) to check whether an attack might have
occurred while the IDS was down for maintenance.
Also, with the use of pre-recorded datasets, SSO can
test and tune the system for newer attacks. Next, it is
important to highlight the significant impact of TDFA
in our proposed system. Earlier, we discussed how
TDFA serves as a logical choice for representing
DDoS attacks. Yet, the additional advantage of
TDFAs for site security officer is that they allow the
storage of an attack’s-based signature. Also, the use of

time-based information in attack signatures enhances
the accuracy of detecting DoS attacks.

4.2 Packet Filtration

It is well known that network packets carry a lot
of information (i.e., header length, sequence number,
checksum, etc.), most of which is not necessary for the
objectives of all networks based IDSs. Since our aim
is a SYN Flood DoS attack, we consider the packet
data fields relating to such attacks. For instance,
source and destination IP addresses in addition to a
variety of flag fields (i.e., ACK and SYN). The role of
the packet filtration unit is to process important
network information for the successive components of
the system. As discussed in the data source section,
data is originated from either a real time data source
or a historical data source. The Tcpdump [19] tool is
used to analyze network activity and produce a record
of a specific node in ASCII text format. The following
are the fields parsed by PFC: (1) Timestamp, (2)
Source IP address, (3) Destination IP address, (4)
Destination port number, (5) SYN-flag, (6) ACK-flag.

In the stored data source, data is usually located
in a log file and may or may not be in ASCII format,
but in binary format. Since the PFC processes packet
information in ASCII format only, any binary
information must be converted to ASCII text format
before it can be processed. The end output is a bound
message which comprises specific network event
information.

4.3 Token Generator

After network event data is filtrated by the packet
filtration unit, the data is passed to the token generator.
The token generator is then responsible for
transforming the messages, each of which represents a
specific network event, into unique tokens. The
information contained in a single message may cause
the token generator to generate a "sequence" of tokens.
These preconfigured tokens, each of which is a string
of one or more ASCII characters, provide a language
that our system uses to recognize DoS attempts. The
token generator provides all the required event details
to the TDFA to decide. After reading messages from
the packet filtration unit, the token generator
determines the sequence number of the TCP
connection, source IP address, and packets and time-
interval between SYN requests to generate an event
that is sent to TDFA.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

151

4.4 TDFA

There is a distinct core component in most
intrusion detection systems that is responsible for
identifying attacks. In this architecture, TDFA is
designed to detect DDoS attacks. With this approach,
the TDFA can determine whether a host is at danger
of attack by analyzing data included in tokens. The
following TDFA in Figure 5 designed to detect SYN
Flood attack by examining network packet attributes.
As shown, there are three states in the TDFA q0 safe,
q1 critical, and q2 DoS attack. The q0 Safe is the initial
state. This state represents the first line of defense in
this system. Furthermore, the q0 state performs three
checks on the generated event. Start by checking the
source IP address, then move to checking the number
of SYN requests that were sent from the source
address. After that, q0 calculates the interval time
between SYN requests. In the case of a higher number
of SYN requests than 10 requests, q0 will jump to q1
Critical. In the next state, q1 will check the interval
time that was calculated by q0. If the interval time is
greater than 10 seconds, this is an indicator of a DoS
attack. q1 will move to the final state q2.

Figure 5. TDFA for SYN Flood Detection

For proof of concept, python code has been
implemented to design the proposed TDFA to detect
DoS attacks for full code see Appendix A. First,
TDFA states and inputs should be provided by the user
to create a new TDFA. Then, as shown in Fig 6, initial
and final states must be specified to ensure the
correctness of the created TDFA.

After that, the code provides two options to
recreate the TDFA or start testing a DoS attack as
shown in Fig. 7. If the second option is selected, it will
ask you to enter the time interval between SYN
requests that were sent by outsiders. Then, the code
starts analyzing all the required input data to make the
decision if this case is a DoS attack or not. If the time
interval between SYN requests exceeds 10 seconds,

the system will treat this as a true DoS attack, and a
security alert should be sent to system administrator as
a detection action. Otherwise, if the time interval is
less than 10 seconds, the event will go back to critical
status.

Fig. 6. TDFA Code Implementation – 1

Fig. 7. TDFA Code Implementation – 2

5. Conclusion

 The DoS attack is one of the most dangerous and
serious attacks that affect network availability.
Detecting the attack properly and in timely manner
will help significantly in reducing the damage it
causes. In this paper, a proposed detection system
based on Time Dependent Finite Automata (TDFA) to
detect potential SYN Flood attacks. The system
components are explained in detail with a code
implementation of TDFA component. For future
work, the system can be widened to detect multiple
network attacks by the help of TDFA concept [20-50].

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

152

References

[1] T. Penttinen, “Distributed Denial-of-Service Attacks in the
Internet,” 2005.

[2] M. Bogdanoski, T. Shuminoski, and A. Risteski, “Analysis of
the SYN Flood DoS Attack,” Computer Network and
Information Security, vol. 8, pp. 1–11, 2013, doi:
10.5815/ijcnis.2013.08.01.

[3] R. Tandon, “A Survey of Distributed Denial of Service
Attacks and Defenses,” Aug. 2020, Accessed: May 18, 2022.
[Online]. Available: http://arxiv.org/abs/2008.01345

[4] J. W. Branch, “EXTENDED AUTOMATA-BASED
APPROACHES TO INTRUSION DETECTION,” 2003.

[5] A. A. Sharipbay, Z. S. Saukhanova, G. B. Shakhmetova, and
N. S. Saukhanov, “Application of finite automata in
cryptography,” Jun. 2019. doi: 10.1145/3330431.3330452.

[6] Z. F. Han, J. P. Zou, H. Jin, Y. P. Yang, and J. H. Sun,
“Intrusion detection using adaptive time-dependent finite
automata,” in Proceedings of 2004 International Conference
on Machine Learning and Cybernetics, 2004, vol. 5, pp.
3040–3045. doi: 10.1109/icmlc.2004.1378554.

[7] J. W. Branch, A. Bivens, C. Y. Chan, T. K. Lee, and B. K.
Szymanski, “Denial of Service Intrusion Detection Using
Time Dependent Deterministic Finite Automata,” 2002.

[8] P. M. Rathod, N. Marathe, and A. v. Vidhate, “A survey on
Finite Automata based pattern matching techniques for
network Intrusion Detection System (NIDS),” Jan. 2015. doi:
10.1109/ICAECC.2014.7002456.

[9] X. Yu, W. C. Feng, D. Yao, and M. Becchi, “O3FA: A
scalable finite automata-based pattern-matching engine for
out-of-order deep packet inspection,” in ANCS 2016 -
Proceedings of the 2016 Symposium on Architectures for
Networking and Communications Systems, Mar. 2016, pp.
1–11. doi: 10.1145/2881025.2881034.

[10] Q. W. Shang, K. Cao, and F. Wang, “The study on network
attacks based on automaton theory,” in Procedia Engineering,
2011, vol. 23, pp. 653–658. doi:
10.1016/j.proeng.2011.11.2561.

[11] N. David et al., “Modelling social-technical attacks with
timed automata,” in MIST 2015 - Proceedings of the 7th
ACM CCS International Workshop on Managing Insider
Security Threats, co-located with CCS 2015, Oct. 2015, pp.
21–28. doi: 10.1145/2808783.2808787.

[12] M. Almseidin, I. Piller, M. Al-Kasassbeh, and S. Kovacs,
“Fuzzy automaton as a detection mechanism for the multi-
step attack,” International Journal on Advanced Science,
Engineering and Information Technology, vol. 9, no. 2, pp.
575–586, 2019, doi: 10.18517/ijaseit.9.2.7591.

[13] G. Kim, “the Relationship Between the Chomsky Hierarchy
and Automata,” pp. 1–10, 2019.

[14] P. Grachev, I. Lobanov, I. Smetannikov, and A. Filchenkov,
“Neural network for synthesizing deterministic finite

automata,” Procedia Computer Science, vol. 119, pp. 73–82,
2017, doi: 10.1016/j.procs.2017.11.162.

[15] K. M. Elleithy, D. Blagovic, W. K. Cheng, P. Sideleau, A. "
Et, and W. Cheng, “Denial of Service Attack Techniques:
Analysis, Implementation and Comparison,” 2005. [Online].
Available:
http://digitalcommons.sacredheart.edu/computersci_fac

[16] F. H. Hsu, Y. L. Hwang, C. Y. Tsai, W. T. Cai, C. H. Lee,
and K. W. Chang, “TRAP: A Three-way handshake server
for TCP connection establishment,” Applied Sciences
(Switzerland), vol. 6, no. 11, Nov. 2016, doi:
10.3390/app6110358.

[17] S. Deore and A. Patil, “Survey Denial of Service
classification and attack with Protect Mechanism for TCP
SYN Flooding Attacks Atul Patil,” International Research
Journal of Engineering and Technology, 2016, doi:
10.1109/TC.2003.1176986.

[18] M. W. Jeter, Network Programming, vol. 1. 2018. doi:
10.1201/9780203749333-6.

[19] “tcpdump(1) man page | TCPDUMP & LIBPCAP.”
https://www.tcpdump.org/manpages/tcpdump.1.html
(accessed May 18, 2022).

[20] Fahd Alhaidari, Nouran Abu Shaib, Maram Alsafi, Haneen
Alharbi, Majd Alawami, Reem Aljindan, Atta-ur Rahman,
Rachid Zagrouba, "ZeVigilante: Detecting Zero-Day
Malware Using Machine Learning and Sandboxing Analysis
Techniques", Computational Intelligence and Neuroscience,
vol. 2022, Article ID 1615528, 15 pages, 2022.
https://doi.org/10.1155/2022/1615528.

[21] M. Jamal, N.A. Zafar, A. Rahman, D. Musleh, M. Gollapalli,
S. Chabani, “Modeling and Verification of Aircraft Takeoff
Through Novel Quantum Nets,” Computers, Materials and
Continua, vol. 72, no. 2, pp. 3331-3348, 2022.

[22] A. Rahman, M. Mahmud, T. Iqbal, L. Saraireh, H. Kholidy et
al., “Network Anomaly Detection in 5G Networks,”
Mathematical Modelling of Engineering Problems, vol. 9, No.
2, pp. 397-404, 2022.

[23] F. Al-Jawad, R. Alessa, S. Alhammad, B. Ali, M. Al-Qanbar,
A. Rahman, “Applications of 5G and 6G in Smart Health
Services,” International Journal of Computer Science and
Network Security, vol. 22, no. 3, pp. 173-182, 2022.

[24] S.U. Rehman, M. Mahmud, A. Rahman, I.U. Haq, M. Safdar,
“Information Security in Business: A Bibliometric Analysis
of the 100 Top Cited Articles,” Library Philosophy and
Practice (e-journal), 5354, 2021.

[25] R. Zagrouba, A. AlAbdullatif, K. AlAjaji, N. Al-Serhani, F.
Alhaidari, A. Almuhaideb, A. Rahman, “Authenblue: a new
authentication protocol for the industrial internet of things,”
Computers, Materials & Continua, vol. 67, no.1, pp. 1103–
1119, 2021.

[26] A. Rahman, S. Dash, A.K. Luhach, N. Chilamkurti, S. Baek,
Y. Nam, “A Neuro-Fuzzy Approach for User Behavior
Classification and Prediction”, Journal of Cloud Computing,
8(17), 2019.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

153

[27] A. Rahman, “Memetic Computing based Numerical Solution
to Troesch Problem”, Journal of Intelligent and Fuzzy
Systems, 37(1):1545-1554, 2019.

[28] A. Rahman, “Optimum Information Embedding in Digital
Watermarking”, Journal of Intelligent and Fuzzy Systems,
37(1):553-564, 2019.

[29] A. Rahman, S. Abbas, M. Gollapalli, R. Ahmed, S. Aftab et
al., “Rainfall Prediction System Using Machine Learning
Fusion for Smart Cities,” Sensors, vol. 22, no. 9, pp. 1-15,
2022. https://doi.org/10.3390/s22093504.

[30] N. M. Ibrahim, D. G. I. Gabr, A. Rahman, S. Dash, A. Nayyar,
“A deep learning approach to intelligent fruit identification
and family classification,” Multimedia Tools and
Applications, 2022. https://doi.org/10.1007/s11042-022-
12942-9.

[31] M Gollapalli, A. Rahman, D. Musleh, N. Ibrahim et al., “A
Neuro-Fuzzy Approach to Road Traffic Congestion
Prediction,” Computers, Materials and Continua, vol. 72, no.
3, pp. 295-310, 2022.

[32] A. Rahman, K. Sultan, I. Naseer, R. Majeed, D. Musleh et.al.,
“Supervised Machine Learning-based Prediction of COVID-
19,” Computers, Materials & Continua, vol. 69, no.1, pp. 21-
34, 2021. DOI: 10.32604/cmc.2021.013453.

[33] S. M. Alotaibi, A. Rahman, M. I. Basheer and M. A. Khan,
“Ensemble machine learning based identification of pediatric
epilepsy,” Computers, Materials & Continua, vol. 68, no.1,
pp. 149–165, 2021.

[34] G. Zaman, H. Mahdin, K. Hussain, A. Rahman, J. Abawajy
and S. A. Mostafa, “An Ontological Framework for
Information Extraction from Diverse Scientific Sources,”
IEEE Access, vol. 9, pp. 42111-42124, 2021. doi:
10.1109/ACCESS.2021.3063181.

[35] A. Rahman, S. Dash, M. Ahmad, T. Iqbal, “Mobile Cloud
Computing: A Green Perspective,” Intelligent Systems,
Lecture Notes in Networks and Systems book series (LNNS,
volume 185), pp. 523-533, 2021.

[36] A. Rahman, “GRBF-NN based ambient aware realtime
adaptive communication in DVB-S2.” J Ambient Intell
Human Comput (2020). https://doi.org/10.1007/s12652-020-
02174-w.

[37] F. Alhaidari, A. Rahman, & R. Zagrouba, “Cloud of Things:
architecture, applications and challenges.” J Ambient Intell
Human Comput (2020). https://doi.org/10.1007/s12652-020-
02448-3.

[38] A. Rahman, S. Dash, & A.K. Luhach, “Dynamic MODCOD
and power allocation in DVB-S2: a hybrid intelligent
approach.” Telecommun Syst, vol. 76, pp. 49–61, 2021.
https://doi.org/10.1007/s11235-020-00700-x.

[39] M. Ahmad, M.A. Qadir, A. Rahman et al., “Enhanced query
processing over semantic cache for cloud based relational
databases.” J Ambient Intell Human Comput (2020).
https://doi.org/10.1007/s12652-020-01943-x

[40] M. Mahmud, A. Rahman, M. Lee, J. Choi, “Evolutionary-
based image encryption using RNA codons truth table”,
Optics & Laser Technology, vol. 121:1-8, 2020.

[41] G. Zaman, H. Mahdin, K. Hussain, A. Rahman, N. Ibrahim,
N.Z.M. Safar, “Digital Library of Online PDF Sources: An
ETL Approach,” IJCSNS, vol. 20 (11), pp. 172-181, 2020.

[42] M. Ahmad, U. Farooq, A. Rahman, A. Alqatari, S. Dash &
A.K. Luhach, “Investigating TYPE constraint for frequent
pattern mining”, Journal of Discrete Mathematical Sciences
and Cryptography, 22:4, 605-626, 2019.

[43] K. Sultan, I.M. Qureshi, A. Rahman, B.A. Zafar, M. Zaheer,
“CSI Based Multiple Relay Selection and Transmit Power
Saving Scheme for Underlay CRNs Using FRBS and Swarm
Intelligence,” International Journal of Applied Metaheuristic
Computing (IJAMC) 10 (3), 1-18, 2019.

[44] A. Rahman, M.I.B. Ahmed, “Virtual Clinic: A CDSS
Assisted Telemedicine Framework”, Chapter 15,
Telemedicine Technologies, 1st Edition. Elsevier, 2019.

[45] L. Ajmi, Hadeel, N. Alqahtani, A. Rahman and M. Mahmud,
“A Novel Cybersecurity Framework for Countermeasure of
SME's in Saudi Arabia,” 2019 2nd International Conference
on Computer Applications & Information Security (ICCAIS),
2019, pp. 1-9, doi: 10.1109/CAIS.2019.8769470.

[46] A. Rahman, Maqsood Mahmud, Kiran Sultan, Nahier
Aldhafferi, Abdullah Alqahtani, Dhiaa Abdullah, “Medical
Image Watermarking for Fragility and Robustness: A Chaos,
ECC and RRNS Based Approach”, Journal of Medical
Imaging and Health Informatics, vol. 8(6), pp. 1192-1200,
July 2018.

[47] A. Rahman, "Efficient Decision Based Spectrum Mobility
Scheme for Cognitive Radio Based V2V Communication
System," Journal of Communications, vol. 13, no. 9, pp. 498-
504, 2018. Doi: 10.12720/jcm.13.9.498-504.

[48] A. Rahman, F.A. Alhaidari, “Querying RDF Data”, Journal
of Theoretical and Applied Information Technology
26(22):7599-7614, 2018.

[49] M.Z. Muzaffar, I.M. Qureshi, A. Rahman, F.A. Alhaidari,
M.A.A. Khan, “Compressed Sensing for Security and
Payload Enhancement in Digital Audio Steganography”,
Journal of Information Hiding and Multimedia Signal
Processing, 15(6):1506-1517, Nov. 2018.

[50] A. Rahman, S.A. Alrashed, A. Abraham, “User Behavior
Classification and Prediction using FRBS and Linear
Regression” Journal of Information Assurance and Security,
vol. 12, no. 3, pp. 86-93, 2017.

Appendix A

class TDFA:

 def __init__(self):
 self.Q = self.create_TDFA_states()
 self.SIGMA = self.create_TDFA_alphabet()
 self.DELTA = self.populate_TDFA()
 self.START_STATE, self.ACCEPT_STATES =
self.set_initial_state()
 self.CURRENT_STATE = None

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.6, June 2023

154

 def set_initial_state(self):
 while(True):
 start = input("Enter the
Initial_State: ")
 accept = input("Enter the
Final_State: ").split()
 if (start in self.Q) and
(set(accept).issubset(set(self.Q))):
 return start, accept
 else:
 print("Please re
enter".format(self.Q))

 def create_TDFA_states(self):

 Q_input = input("Enter TDFA
states").split()
 print("STATES : {}".format(Q_input))
 return Q_input

 def create_TDFA_alphabet(self):
 SIGMA_input = input("Enter TDFA
input").split()
 print("ALPHABET :
{}".format(SIGMA_input))
 return SIGMA_input

 def populate_TDFA(self):
 transition_dict = {el : {el_2 : 'REJECT'
for el_2 in self.SIGMA} for el in self.Q}

 for key, dict_value in
transition_dict.items():
 print("Enter transitions for state
{}. If required, use 'REJECT'.".format(key))

 for input_alphabet, transition_state
in dict_value.items():
 transition_dict[key][input_alphab
et] = input("CURRENT STATE : {}\tINPUT ALPHABET :
{}\tNEXT STATE : ".format(key, input_alphabet))

 return transition_dict

 def run_machine(self, in_string):

 if in_string > 10:
 return False
 else:
 return True

if __name__ == "__main__":
 check = True
 print("\n TDFA")
 machine = TDFA()
 while(check):
 choice = int(input("\nEnter Choice:\n1.
Re_create TDFA\n2. Test DoS Attack \nEnter Your
choice : "))
 if (choice == 1):
 machine = TDFA()
 elif (choice == 2):
 input_string = int (input("Enter the
value of a as time interval for DoS attack : "))
 print("It is not a DoS attack" if
machine.run_machine(input_string) else "DoS
attack, send alert to system admin")

 else:
 check = False

 Appendix A
class TDFA:

 def __init__(self):

 self.Q = self.create_TDFA_states()
 self.SIGMA = self.create_TDFA_alphabet()
 self.DELTA = self.populate_TDFA()
 self.START_STATE, self.ACCEPT_STATES =
self.set_initial_state()
 self.CURRENT_STATE = None

 def set_initial_state(self):
 while(True):
 start = input("Enter the Initial_State:
")
 accept = input("Enter the Final_State:
").split()
 if (start in self.Q) and
(set(accept).issubset(set(self.Q))):
 return start, accept
 else:
 print("Please re
enter".format(self.Q))

 def create_TDFA_states(self):

 Q_input = input("Enter TDFA states").split()
 print("STATES : {}".format(Q_input))
 return Q_input

 def create_TDFA_alphabet(self):
 SIGMA_input = input("Enter TDFA
input").split()
 print("ALPHABET : {}".format(SIGMA_input))
 return SIGMA_input

 def populate_TDFA(self):
 transition_dict = {el : {el_2 : 'REJECT' for
el_2 in self.SIGMA} for el in self.Q}

 for key, dict_value in
transition_dict.items():
 print("Enter transitions for state {}. If
required, use 'REJECT'.".format(key))

 for input_alphabet, transition_state in
dict_value.items():
 transition_dict[key][input_alphabet]
= input("CURRENT STATE : {}\tINPUT ALPHABET :
{}\tNEXT STATE : ".format(key, input_alphabet))

 return transition_dict

 def run_machine(self, in_string):

 if in_string > 10:
 return False
 else:
 return True

if __name__ == "__main__":
 check = True
 print("\n TDFA")
 machine = TDFA()
 while(check):
 choice = int(input("\nEnter Choice:\n1.
Re_create TDFA\n2. Test DoS Attack \nEnter Your
choice : "))
 if (choice == 1):
 machine = TDFA()
 elif (choice == 2):
 input_string = int (input("Enter the
value of a as time interval for DoS attack : "))
 print("It is not a DoS attack" if
machine.run_machine(input_string) else "DoS attack,
send alert to system admin")
 else:
 check = False

