
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

9

Manuscript received July 5, 2023
Manuscript revised July 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.7.2

Hints-based Approach for UML Class Diagrams

Sehrish Abrejo1†, Amber Baig2††, Adnan Asghar Ali3†††, Mutee U Rahman4††††, and Aqsa Khoso5†††††

1†,2††,3†††,4††††,5††††† Isra University, Hyderabad, Pakistan

Abstract
A common language for modeling software requirements and
design in recent years is Unified Modeling Language (UML).
Essential principles and rules are provided by UML to help
visualize and comprehend complex software systems. It has
therefore been incorporated into the curriculum for software
engineering courses at several institutions all around the world.
However, it is commonly recognized that UML is challenging for
beginners to understand, mostly owing to its complexity and ill-
defined nature. It is unavoidable that we need to comprehend their
preferences and issues considerably better than we do presently to
approach the problem of teaching UML to beginner students in an
acceptable manner. This paper offers a hint-based approach that
can be implemented along with an ordinary lab task. Some
keywords are highlighted to indicate class diagram components
and make students understand the textual descriptions. The
experimental results indicate significant improvement in students'
learning skills. Furthermore, the majority of students also
positively responded to the survey conducted in the end
experimental study.
Keywords:
Software Modeling, Unified Modeling Language, Class diagrams,
ill-defined domain.

1. Introduction

The process of creating software is intricate and
frequently surprising. Multiple teams must collaborate and
plan together to create complex software; thus they must be
able to communicate with each other clearly and succinctly.
For this purpose, Unified Modeling Language (UML) was
released by Object Management Group (OMG) back in the
late twentieth century. One of UML's objectives was to give
the development community a table and a standard design
language for making and maintaining business applications
[1]. UML is a graphical language rather than a
programming language and is linked with object-oriented
concepts.

The use of UML provides fundamental guidelines and
conventions for visualizing and comprehending large
software systems. Students will benefit from being taught
how to design complicated requirements that software
developers can understand if they follow the rules and
provide the artifacts [2]. This is the rationale for why UML
is now included in many software engineering curricula at
universities all around the world [3][4]. However, UML

poses challenges in the classroom and is rather controversial.
UML is categorized as an ill-defined domain [5-7] because
there are many model solutions to one scenario/requirement
as compared to the well-defined domain, where one
scenario can be solved in only one way, i.e., there is only
one solution to a problem. Furthermore, students are not
experts, and they need to practice lots of examples to
become successful analysts. Lastly, students also face
problems while modeling a solution for a scenario that
could be incomplete and ambiguous [8].

Numerous research has been undertaken to look at the
difficulties that undergraduate students have when
comprehending and creating OO models [9-11], which are
explained in subsequent sections. This research attempts to
specifically look into the issues students have when creating
class diagrams and providing them hints along with textual
descriptions of the system. The following section describes
difficulties students encounter while modeling class
diagrams followed by object-oriented modeling. The
evaluation method is discussed before the results.
Conclusions are presented at the end.

2. Literature Review

While the conventional learning method of UML
modeling in a classroom setting can suffice as an
introduction to the concepts of OO analysis and design,
students cannot acquire expertise in the domain by simply
attending lectures. Human tutors try to provide individual
help to each student by providing them with different
tutorials; still, human tutors must meet the demands of the
entire class, and students may only receive modest personal
assistance. Many resources, textbooks, and UML tutorials
are available for students. Despite these resources, students
fail to understand the development of high-quality OO
modeling [9].

Researchers have conducted several studies to
investigate the problems undergraduate students face while
understanding and designing OO models. [10] in their study,
they found errors in students' class diagrams which include:
missing operations in class diagrams, the misconception of
relationship multiplicities, and incorrect use of inheritance.

[11] concentrated on the assignment of attributes to
classes in class diagrams. In their investigation, they found
that adding a class to represent an entity in the class diagram

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

10

without connecting it to the other existing classes using
instance variables was the most frequent design mistake.

The authors in [12] study investigated that 31% of
diagrams were incomplete with missing classes, attributes,
and missing or inappropriately defined associations. [13]
investigated different categories of difficulties perceived by
the learners and found that many students face problems
while constructing UML diagrams due to insufficient
course material, crowded classrooms, lack of good
textbooks, and user-unfriendly CASE (Computer-Aided
Software Engineering) tools.

[14] looked at the difficulties associated with creating
and modeling UML diagrams from the standpoint of
diagrammatic representation and reasoning. Their findings
demonstrate that students' abilities to quickly recognize
graphical symbols and see and link pertinent visual
components are hindered by UML notational features with
low perceptual discriminability. Students (novices) cannot
distinguish UML notational components that are
excessively similar, in contrast to specialists who can,
with practice, make much finer differences [15]. Such
individuals experience learning difficulties, and their
perceptual processes slow down because they must work
harder and memorize elements.

In the literature, the focus is on identifying the students'
modeling problems by providing them with textual
descriptions of the system and then evaluating their models.
Our strategy is based on hints that come with textual
descriptions to create UML models so that the students
can comprehend the textual content.

3. Object-Oriented Modeling

An Object-Oriented approach is widely used in software
development [16-19], and learning how to create high-
quality OO software is a central subject in Computer
Science and Software Engineering curricula. When OO first
made its debut, it was used (only) as a programming
language in the mainstream of software engineering.
Following that, its influence grew to include Object-
Oriented Design (OOD) as a model for software design, and
it grew even further to include Object-Oriented Analysis
(OOA). The same OO principles for system structure are
applied when conducting requirements evaluation in OO
analysis to define the concepts, attitudes, and associations
in a problem domain.

OO systems are composed of Classes (including their
structures and behaviors) and relationships among them.
Relationships can have different names, multiplicities, and
types (association, aggregation, composition, inheritance,
or dependency). Since these constructs exist largely
independently of any programming language in OOA and
OOD, several notational systems for representing OO
models without the need for source code have been created.
Today, UML is the most commonly used notation. UML is

usually used in software engineering courses to teach OO
analysis and design.

There are several types of diagrams in the UML, but
class diagrams define the static structure of OO systems: the
classes and relationships, hence are the most important in
the learning of OO modeling. Class diagrams are
conceptually similar to ER (entity-relationship) diagrams
which are also used for data modeling, but class diagrams
correspondingly support OO features, including inheritance
and behaviors [20]. Given that defective specifications are
related to the failure of a large percentage of established
systems, it is crucial to ensure the consistency and quality
of conceptual models developed early in the system
development process. For several system analysts,
developing high-quality computational models is a difficult
task [21]. UML-ITS focuses on teaching students how to
create a UML class diagram to describe OO concepts found
in informal software requirement descriptions in textual
form. This form of exercise has been used consistently in
introductory software engineering courses for many years
with the assistance of human tutors. By posing additional
problems and offering automated tutoring, the system has
been designed to complement the current teaching program.

Let's use a basic illustration to demonstrate the method
of creating a class diagram. The following is a summary
of the targeted system given to the students:

Design a class diagram for a university. A University is
known by its Name, Address, and Phone Number and has
one or many Departments. Each department has a
department id and name and offers different courses.
Department has one or many persons, i.e., Students and
Teachers. A Person can have a Name, Phone Number,
Email Address, and Address (including House number,
Street, City, Postal Code, and Country name). If the
person is a Teacher, then it should contain Salary, and if
the person is a Student, then it should contain Student ID
and Average Marks. One teacher can teach one or more
courses, and each course can have one or more students.
Each course is known by its Course ID, Course Name, and
Credits Hours. A university can access information about
departments. The students can enroll or drop several
courses.

From the above descriptions, students can identify

different classes, such as universities, Departments,
Persons, Teachers, Students, Courses, and Addresses.
The students can also identify attributes and methods
related to each class. For example, class University has
Name, Address, and Phone-Number as attributes and
ShowDeptData() as the method. After all classes and their
relative attributes and methods have been identified,
students then identify the relationship types between all
classes. For example, University has one or more
departments, which is mentioned in the description. The

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

11

students can also define the name and multiplicity of each
relationship. The class diagram of the university system is
illustrated in Figure 1.

Figure – 1: University UML Class Diagram

It can be inferred from the above example description

that students must be familiar with various concepts before
developing a UML class diagram for any system. All
classes, attributes, methods, and relationships are explicitly
mentioned in the above example, but in real scenarios, the
description text is mostly longer, incomplete, and
ambiguous. Furthermore, UML modeling is not a well-
defined domain; UML modeling is an ill-defined domain,
which means that there are many possible and correct
solutions to a single problem. Students usually face many
issues while learning how to construct a good quality OO
model.

3. Methodology

This study's primary goal is to teach students to correctly
comprehend and develop UML models. To investigate
students' learning effects, the following study design was
created:

3.1. Participants

For the experiment, a total of 80 students who were
enrolled in software engineering courses in software
engineering and computer science discipline from a local
university participated. The students had little to no
understanding of UML modeling because the course is
offered to beginners. To obtain accurate findings, we picked
these research options with the maximum level of contrast.

3.2. Experiment design

For the experimental purpose, UML class diagrams
were selected as a domain. It was four weeks activity. The
3 hours experiment started with the lecture on UML class

diagrams modeling, followed by lab tasks to be performed
by students every week. In the lab tasks, students were
asked to carefully read the textual descriptions of some
software systems and were asked to draw model diagrams,
except for 3rd experimental lab task, which was based on
reverse engineering, in which students examined a model
diagram and wrote textual descriptions. The students were
seated in the same lab and were not allowed to interact with
each other without the instructor's permission. Students
were asked to respond to a survey on their awareness of
UML class diagrams at the end of lab session 4. Every
component of UML class diagrams was covered by the
survey's ten total items. The survey was based on 5 Likert
scale options from strongly disagree to strongly agree. The
survey can be seen in Figure 2.

Figure. 2 Class diagram Survey.

3.3. Types of lab tasks
For experimental purposes, four types of lab tasks for each
week were designed to investigate the learning skills of
students.
Week 1 lab task: consists of five textual descriptions of
different systems covering different aspects of class
diagrams. The text was plain and had no hint regarding class
diagram components, which is usually the case followed in
most institutes.
Week 2 lab task: the same task consists of five textual
descriptions with hints (underlined/italic/bold words) to
identify different components (class, attribute, method,
relationship) of class diagrams.
Week 3 lab task: different task with five model diagrams.
The students were asked to fill in the blanks with the help
of hints to write the textual description of the system.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

12

Week 4 lab task: different tab tasks with five textual
descriptions of different systems covering different aspects
of class diagrams. The text was plain and had no hint
regarding class diagram components. Table 1 shows one
task from each lab task.

Table 1: Types of Lab Tasks

Week Type of Task

Week 1 An Artist can compose one or more albums. Each
Album, with its Name and Downloading Link,
can contain many songs. Each song has a name
and length with it. A song can only belong to one
album.

Week 2 An Artist can compose one or more albums. Each
Album, with its Name and Downloading Link,
can contain many songs. Each song has a name
and length with it. A song can only belong to one
album.
Bold: Class
Underline: Attributes/methods
Italic: Relationships and multiplicities

Week 3 Fill in the blanks and Write a textual description
of the following diagram.

Classes 1: (Hint: See Bold names in rectangles)

Attributes 1: (Hint: See the second part of each
rectangle)

 (Similar blanks for methods and
relationships)

Week 4 E-document can be a simple Book, or it can be an
Email. They both have the author and date, but
the book has the title, whereas the email has the
subject and the sender's name.

4. Results & Evaluations

The main aim of this study was to investigate the effects
of manual hints provided in ordinary lab tasks on students'
learning. The investigation started with a comparison of
students' solutions to lab task 1 and lab task 4 to see the
difference in their learning skills. Furthermore, the survey
results also helped in evaluating the students' satisfaction
with hints based approach for UML modeling.

4.1. Difference in learning skills.

The most important evidence of the hints-based
approach's success is an improvement in students' ability to
learn. Figure 3 shows the average of correct and incorrect
class diagram components based on the solutions that
students modeled at the end of lab tasks1. It was found that
72% of students faced problems in locating class
components from the description, 65% of students failed to
assign correct attributes to their classes, and 82% of
students drew incorrect relationships among classes. On the
other hand, 60% of students correctly identified class
attributes from the textual description.

Figure. 3 Assessment results of students' models in lab task 1.

After the experimental treatment of lab tasks 2 & 3, the
learning skills of students improved, as shown in Figure 4.
It can be observed that students were able to find out classes,
attributes, methods, and relationships from textual
descriptions in lab task 4. Furthermore, the error rate of each
student also dropped which can be seen figure 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

13

Figure. 4 Assessment results of students' models in lab task 4.

Figure. 5: Difference among students' errors rate in lab tasks 1 & 4.

Furthermore, an independent sample-t test was
performed to observe the difference in mistakes made by
students in both tasks. The results shown in Table 2 indicate
a significant difference (t = 3.500, p = 0.013) in both
conditions.

Table 2: Difference between error rates in

Labtask1 and Labtask4.

 Test
Data

Mean S.D.
Statistical

Test
t-

value

Sig(2-
tailed)

p-
value

LabTask1 52.25 14.6 Independent
Sample t-test

3.500 0.013
LabTask4 23.5 7.4

4.2. Class diagram survey

 The satisfaction of the students with the hint-based
strategy was determined by a survey that was administered
at the end of the experimental activity. Survey responses are
shown in Figure 6. It can be observed that the majority of
students were able to comprehend class diagrams from

written descriptions. Except for items 6 and 10, up to 80%
of students responded positively in replies to most of the
survey items. Up to 40% of students faced problems in
identifying relationships among classes, as shown in survey
items 6 & 10.

Figure. 6: UML Class Diagram Survey Responses.

5. Conclusion and Future work

UML is one of the general-purpose modeling languages

that aims to provide a uniform method of visualizing system
design. UML is valuable content to learn in contemporary
courses on software engineering. Its intricacy makes it
difficult for beginners to understand. This research attempts
to investigate the effects on students' learning skills if
ordinary lab tasks are equipped with supporting material, i.e.,
hints. Students learning abilities improved after four weeks of
investigative work. When the students received suggestions
for their lab assignments, their mistake rate drastically
decreased. The survey that was administered as part of the
final activity received a favorable response from the students
as well. Thus, it may be inferred that students will learn more
effectively if routine lab exercises include hints.

In addition to the assistance given to students in
completing their tasks, it is important to carefully analyze the
issues they encounter. According to the survey results,
students continue to have difficulty modeling relationships
between classes in class diagrams. In the future, this research
will attempt to best help students to simulate linkages across
classes. In addition, our next research will also analyze the
difficulties students have modeling various UML diagrams,
such as use cases, state machines, etc. It is undeniable that a
substantial amount of research is being done to aid students
in understanding UML modeling diagrams, but this is still a
challenging task and an unexplored domain.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

14

References

[1] Bell, D. (2003). UML basics: An introduction to the

Unified Modeling Language.
[2] Reuter, R., Stark, T., Sedelmaier, Y., Landes, D.,

Mottok, J., & Wolff, C. (2020, April). Insights in students'
problems during UML modeling. In 2020 IEEE Global
Engineering Education Conference (EDUCON) (pp.
592-600). IEEE.

[3] "Computing curricula 2001," ACM, IEEE, Tech. Rep.
3es, 2001.

[4] "Computing Curriculum - Software Engineering," ACM,
IEEE, Tech. Rep. 0003263, 2004.

[5] Baker, M. M., New, A., Aguilar-Simon, M., Al-Halah, Z.,
Arnold, S. M., Ben-Iwhiwhu, E., ... & Vallabha, G. K.
(2023). A domain-agnostic approach for
characterization of lifelong learning systems. Neural
Networks, 160, 274-296.

[6] Gross, S., Mokbel, B., Hammer, B., & Pinkwart, N.
(2015). Learning Feedback in Intelligent Tutoring
Systems: Report of the FIT Project, Conducted from
December 2011 to March 2015. KI-Künstliche
Intelligenz, 29, 413-418.

[7] Lukyanenko¹, R., Parsons, J., & Storey, V. C. (2023,
May). Check for updates Principles of Universal
Conceptual Modeling Roman Lukyanenko¹ (), Jeffrey
Parsons², Veda C. Storey³, Binny M. Samuel, and
Oscar Pastor5 d. In Enterprise, Business-Process and
Information Systems Modeling: 24th International
Conference, BPMDS 2023, and 28th International
Conference, EMMSAD 2023, Zaragoza, Spain, June
12–13, 2023, Proceedings (Vol. 479, p. 169). Springer
Nature.

[8] Baghaei, N., Mitrovic, A. and Irwin, W. A., (2005),
"Constraint-Based Tutor for Learning Object-Oriented
Analysis and Design using UML", In Looi, C., Jonassen,
D. and Ikeda M. (Eds.), ICCE, 2005, pp.11-18

[9] Shen, Z., Tan, S. And Siau, K., (2018), "Challenges in
Learning Unified Modeling Language: From the
Perspective of Diagrammatic Representation and
Reasoning", Communications of the Association for
Information Systems, pp. 545–565

[10] Bolloju, N. and Leung, F., (2006), "Assisting Novice
Analysts in Developing Quality Conceptual Models with
UML", Communications of the ACM, 49, pp. 108–112.

[11] Thomasson, B., Ratcliffe, M. and Thomas, L., (2006),
"Identifying Novice Difficulties in Object Oriented
Design", ACM SIGCSE Bulletin, 38, pp. 28–32.

[12] Ven Yu Sien, V. Y., (2011), "An Investigation of
Difficulties Experienced by Students Developing Unified
Modelling Language (UML) Class and Sequence
Diagrams", Computer Science Education, 21(4), pp.
317–342.

[13] Siau, K., and Loo, P. P., (2006), "Identifying Difficulties
in Learning UML", Information Systems
Management, 23(3), pp. 43-51.

[14] Shen, Z., Tan, S. and Siau, K., (2018), "Challenges in
Learning Unified Modeling Language: From the
Perspective of Diagrammatic Representation and
Reasoning", Communications of the Association for
Information Systems, pp. 545–565.

[15] Britton, C. and Jones, S., (1999), "The untrained eye:
How Languages for Software Specification Support
Understanding by Untrained Users", Human Computer
Interaction, 14(1), pp. 191-244.

[16] Sommerville, I., (2004). Software Engineering.
Pearson/Addison-Wesley, 7th ed.

[17] Kalinga, E. A. (2021). "Learning Software Development
through Modeling Using Object Oriented Approach with
Unified Modeling Language: A Case of an Online
Interview System". Journal of Learning for
Development, 8(1), 74-92

[18] Al-Msie’deen, R. F., and H Blasi, A. (2021). "Software
Evolution Understanding: Automatic Extraction of
Software Identifiers Map for Object-Oriented Software
Systems". Journal of Communications Software and
Systems, 17(1), 20-28.

[19] Kaur, S., Awasthi, L. K., and Sangal, A. L. (2021). "A
review on software refactoring opportunity identification
and sequencing in object-oriented software". Recent
Advances in Electrical & Electronic Engineering
(Formerly Recent Patents on Electrical & Electronic
Engineering), 14(3), 252-267.

[20] Booch, G., Rumbaugh, J. and Jacobson, I., (1999),
"The Unified Modelling Language User Guide", Reading:
Addison-Wesley.

[21] Bolloju, N. and Leung, F., (2006), "Assisting Novice
Analysts in Developing Quality Conceptual Models with
UML", Communications of the ACM, 49, pp. 108–112.

 Sehrish Abrejo received her Bachelor
of Computer Science degree from Isra
University, Hyderabad. She continued
her further studies in the same discipline
and received MSCS, M.Phil, and Ph.D.
degrees from the same institute. She is
currently working as an Assistant
Professor in the Department of Computer
Science at Isra University, Hyderabad,
Pakistan. Her research areas are Mobile
ad hoc Networks, Artificial Intelligence,

and Natural Language Processing.

Amber Baig received the BS and MS
degrees in Computer Science from IMCS,
University of Sindh, Jamshoro, and the
M.Phil and Ph.D. degrees in Computer
Science from DCS, Isra University,
Hyderabad. She is currently working as
an Associate Professor in the Department
of Computer Science at Isra University,
Hyderabad, Pakistan. Her research
interest includes Artificial Intelligence,

Natural Language Processing and Human Computer Interaction.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

15

Adnan Asghar is currently pursuing his
Ph.D. degree in Information Technology
at the University of Sindh, Jamshoro,
Pakistan, presently working as a Senior
Lecturer in the Department of Computer
Science at Isra University, Hyderabad,
Pakistan. His research interests include
the Internet of Things (IoT), Network
Science, Technology and Innovation

Management.

Mutee U Rahman received the B.Sc.
and M.Sc. degrees in Computer Science
from the University of Sindh in 1997 and
1999, respectively. He received the Ph.D.
In Computer Science degree from Isra
Univ. in 2017. He is working as a
Professor in Computer Science at Isra
University, Hyderabad, Pakistan. His
research interests include Natural
Language Processing, Computational

Linguistics, and Artificial Intelligence.

Aqsa Khoso is an accomplished
Teaching Assistant and a dedicated
student currently pursuing a Master's
degree in the Department of Computer
Science at Isra University, Hyderabad.
Throughout her academic journey, she
has developed a profound interest in the
captivating field of Natural Language
Processing (NLP).

