
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

193

Manuscript received July 5, 2023
Manuscript revised July 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.7.22

Creation of High-Quality Abstractions in Software Engineering

Alexey Razumowsky 1†,

Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Russia

Abstract
Abstraction is the cornerstone of ideal software engineering
(SWE). This paper discusses a problem of forming reasonable
generalizations, representations and descriptions in various
software development processes through the prism of poor-
quality (rash, unconsidered, uncertain and harmful) abstractions.
To do this, emphasis is made on an induced strategic connection
between the required abstraction and its compact specific
formulation based on existing research and the author's
introspective experience. A software aim point and characteristic
preservation of the solution integrity is the subject of the best
formulation and a program module or code associated with it.
Moreover, a personal attitude expressed by personal interest,
motivation and creativity, is proclaimed to be a fundamental
factor in successful software development.
Keywords:
abstraction; purposefulness; integrity; software engineering.

1. Introduction

The real essence of the problem in software
(SW) analysis and design is expressed using
abstraction. Any model is based on generalization of
the structure of an object, abstraction from its
unimportant or unknown details, and sufficient
distraction from detailed physical content of
processes occurring inside it or of elements of its
context.

Abstraction is one of the main principles of the
object-oriented programming (OOP) to software
development. However, inept abstractions are often
obtained of data, types or libraries in case of
insufficiently thoughtful study of the problem. Using
low-quality abstractions, it is impossible to obtain a
reliable result both for a software project itself, and
even more so at the level of its functioning and
application.

When using computing devices, it is impossible
to do without abstraction and translate an individual
idea of an object into a description “understandable”
by a computer. In addition, the very process of
obtaining abstraction is considered to be the main
means of addressing the complexity of software.
Such complexity appears in two forms: first,

objective complexity associated with the multiplicity
of program elements, as well as their interweaving
with each other. Secondly, difficult perception of
information which is rooted in the cognitive
processes of a person. In this Article, we will focus
on the problem of the information perception
complexity in software development. The complexity
of perception, correlation, understanding or
association is practically not given any attention, and
yet this is a fundamental problem in achieving any
satisfactory engineering solution. In addition, this
Article was conceived as a starting point in the
development of a new software engineering
methodology backed by individual creative activity
of a person to create non-deterministic software and
hardware solutions. For the best creative effect,
special comfortable conditions should be provided
that take into account such individual cognitive
characteristics as attention, assimilation,
understanding, speed and quality of intellectual
reaction. The main barrier of cognitive complexity is
a small amount of a person’s short-term memory; it is
only 7+-2 elements according to Miller [34]. This
means that if there is, for example, a larger amount of
data in the field of view, the development and
adoption of a decision by a person becomes much
more difficult, and sometimes completely stops.

Thus, abstraction should be implemented by
continuously reconciling the source information and
its abstract expression. It is important to ensure that
the number of coordinated information elements is
small and does not exceed the Miller number. For
this purpose, decomposition is used which helps the
abstraction process by extracting parts from the
whole. Each part can then be considered separately.
Abstraction and decomposition replace each other
until the original task is reduced to a set of subtasks,
the solution for which is known [31]. It should not be
forgotten that the final design stage needs to get a full
and complete model, that is, all its parts must be
combined and well coordinated. The problem of
creating high-quality software possibly lies in this

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

194

need for mandatory final consistency of abstractions
among themselves. A reliable, high-quality program
will not develop by itself, as if easily, by chance. On
the contrary, consistent, detailed abstraction based on
clear, individually easily perceived and specific
descriptions and definitions can lay a firm foundation
for development success.

Historically, the development of approaches to
information abstraction goes with attempts to reduce
software complexity and development. Different
attitudes to abstraction are known that differ in the
emphasis of the idea of abstractions, as well as the
ways to obtain them:
 “abstraction is manifested in finding similarities” [18];

 highlight some properties and omit others [46];

 separate abstraction from the implementation method
[8];

 separate narratives [2];

 define conceptual boundaries from the point of view
of the observer [10].

It is clearly seen that such an understanding of
abstraction is beyond the bounds of associating
objective and, moreover, cognitive complexity with a
person's ability to overcome it. Next, let's try to trace
what such lack of foresight led and continues to lead
researchers who are struggling with complexity while
increasing the power of technological engineering
with no regard for the general and especially
individual human perception, recognition and
understanding of things.

2. Literature review and analysis

Surprisingly, there is no evidence in the vast
software development literature about negative
impact of abstraction on software analysis, design,
and programming. Even more surprising that there
are almost no studies on inept abstraction by
psychologists or educators. One of the rare materials
on related topics is the paper [27]. It studied a social
aspect of an abstract view of morality. It is argued
that a more abstract view of the moral issue increases
intellectual deviousness. In other words, an increase
in the abstraction level can lead to a distortion of
view of the subject both in terms of knowledge about
it and reduction of responsibility for the abstraction
result.

We were also able to find evidence of the negative
impact caused by inept abstraction in multi-agent
enterprise environment [26]. This paper draws
attention to the fact that those at different levels of
management in a multi-level enterprise environment
are guided by rules of different abstraction levels,
which creates a correspondence problem, namely,
rules are more vague and inaccurate at a high level,
and requirements are specific at a low level. To
translate this conclusion into the language of
software analysis and design, we note the importance
to maintain specific descriptions, rules, and
requirements in the project which include more
complete and purposeful content.

The paper [41] proposes a method of joint visual
representation of abstractions and non-abstract data.
It is argued that such visualization will allow analysts
to significantly simplify understanding of
information through smooth semantic zoom, that is, a
controlled process of simplifying original
information.

The very fact that it is necessary to use a special
data visualization technique for their better analysis
and understanding indicates the need for careful
handling of initial information in choosing ways and
methods of abstraction.
When analyzing the problem, it is important to
understand the classification order before initiating
the abstraction process. The paper [48] proposes a
classification system that defines the main criteria to
choose an abstraction method for subsequent
visualization and support of analysis tasks. The
authors present a summary table to select appropriate
abstraction methods depending on data attributes, a
desired form of their presentation, behavior, accuracy
and level of detail.

The paper [24] studies the essence of abstraction
from the point of view of its practical manifestation
in technology, mathematics and everyday life, as well
as in software development. The need for multiple
abstraction is emphasized which focuses on some
details of the subject by ignoring others.

This paper proposes a different approach to
abstracting a solution to the problem using specific
and closest to everyday life simple words and
expressions. Such approach will minimize risks of a
poorly organized software development process
resulted from inept or inappropriate abstraction.
As noted above, we cannot completely abandon the
abstract view of the subject matter of the problem,

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

195

since the data must ultimately be transferred to the
computer to perform necessary calculations: and the
computer will only perceive such formally expressed
data as clothed in an “understandable” form.
However, we can avoid a complex and highly
distributed abstraction, postpone the moment of
abstraction, and use clear, informative and specific
descriptions and images. It is also important to
position specific descriptions together [41] with their
abstraction in a single visualization context.

At the time of ancient Babylon, its inhabitants
used verbal descriptions of unknown quantities, long
before symbolic mathematics was invented, and
mathematicians used Boolean statements before
Boole formalized the laws of thought [9]. This
testifies to the naturalness of abstraction from reality
in an attempt to describe and understand it. Moreover,
this indicates the effectiveness of simplification
while reducing a certain generality, uniformity or
plurality to a simple value and naming or depicting it
clearly and distinctively. Historically, a significant
number of works are generally devoted to the study
of abstractions and their application both in
information science and cognitive science. First of all,
it is necessary to highlight papers cited by many
researchers of software development, programming
languages, artificial intelligence algorithms and
approaches to decision making [16,23,42,49,52,54].
The papers [1,3,5,15,22,25,29,32,44,45,55] are
devoted to abstractions formed and used in the
algorithm development and software engineering. To
study abstractions from the point of view of the
cognitive approach, we can refer to the papers
[14,19,35,47,57]. Not all of these studies directly
address the complexity of objects or solutions, but
abstraction is needed as a means of simplification
and concentration, so there is often evidence of a
superficial understanding of the ways and goals of
abstraction. For example, in a quite popular book [7],
there is a tendency for reuse based on the existing
abstraction. It is a mistake to think that old
abstractions are always well suited to new solutions.
This is an illusion of similarity. Later in this book,
we find the authors’ assurances that hidden
implementation details and a formed "black box" are
a natural architectural solution. Perhaps, it looks like
this from the point of view of impersonal technology,
but the question arises: how to interpret the “black
box” elements at the right time to restore specifics?
The authors have no answer to it. We can agree with

the authors that software architecture is primarily an
abstraction that "suppresses" details of the elements.
However, it would then be necessary to determine
possibilities to combine parts into a whole, but the
authors fail to mention this again.

Some ideas about abstractions are highly
questionable. For example, in the book [10], it is
stated with reference to Descartes that people usually
have an object-oriented view of the world. This is
apparently a gross exaggeration since the very
activity of a person including his thinking is
consistent and therefore cannot afford to disperse
over objects. A wish is also typical to allegorically
anthropomorphize the abstraction. For example, in
the paper [30] there is a following definition: links
between modules are their representations of each
other. Such a substitution which seems to serve to
better understand the interdependence of modules or
objects leads to a direct deception of an
inexperienced software engineer. Again, by giving
specific content to an abstract connection, it will not
be easy for a person to refuse such a stereotype in the
future, that is, to put his own interpretation of
resulting interdependence.

Nevertheless, the understanding is gradually
emerging today that abstraction is not only a
technology problem where it can be difficult to return
to a specific view of the subject. Along with papers
[26,41], a tendency to combine an abstraction process
with interpretation is already clearly manifesting
itself. The paper [56] presents the “Model-with-
Example” approach, which combines the modeling of
abstract interaction with given visualization, which,
according to the authors, increases the development
efficiency.

Today, understanding the importance of a clear
abstraction leads to the unification of textual
representations and metaphors [51]. There are also
papers related to the direct interpretation of
abstractions [43]. This suggests that it is not enough
today to simplify the idea of the problem, but
important to ensure the ease of adequate reverse
interpretation.

A very remarkable thing to understand the
abstraction was discovered in the paper [33]. It
compares reactions to two concepts: "triangle" and
"three-sided polygon". The authors emphasize that
individual experience that determines understanding
of the subject is associated with specific, and not
abstract (prototype) representations.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

196

A serious error, in our opinion, is abstraction for the
purpose of reuse. We have already pointed out this
error made by the authors of the book [7]. As the
conviction is strong that reuse is the essential
panacea of software development, so the frustration
is with reality. In the paper [37], the authors
empirically come to the conclusion that it is
impossible to reuse abstractions for projects of
different types. Creators of business components also
face the challenge when reuse is required. Design
patterns should also be separately noted as a
sublimating abstraction of the mode of action. Such
abstraction encounters resistance when understanding
details as parts of a whole, software architecture and
difficulty of software maintenance. Even when
software is discussed for mechanical machines, it is
noted that in general, the results obtained for a
mechanical system cannot be reused by other
systems” [12]. In this paper, the authors give away
that the choice of certain characteristics depends on
human knowledge. The data reuse when creating
humanoid robots is excluded in the paper [50], since
a specific movement chosen from the database is
associated with large resource costs. A similar
conclusion is drawn in the paper [39]: «most of the
proposed architectures are special-purpose
implementations that lack modularity or
standardization, and cannot be reused».

Finally, in the paper [4], one can see
understanding of the best abstraction as the
representation of a specific, direct, associative and
not pre-planned solution. This surprisingly
emphasizes the need to focus on human knowledge,
skills, experience, features of thinking, perception
and creativity in general when choosing an
abstraction.

Thus, we are now ready to express the concept
of the abstraction complexity in terms of its
relevance (confidence), and then to propose a way to
harmoniously combine specific and abstract
descriptions.

3. Methodological principles

In At first, we will define the abstraction
complexity somewhat superficially, as a quantitative
set of information details correlated with a
subjectively perceived or observed object, as well as
links between them. The more such elements in the

abstract representation, the more complex the
abstraction is.

Next, we will see how the process of abstraction
affects subjective reality. The method of our research
will be based on Poincaré's principle of convenience
proposed by him for geometry: “one geometry cannot
be more true than another; one or another geometry
can only be more convenient” [36]. The original
subject is transformed into a certain idea about it
under the influence of the need for its naming, design,
description or explanation. A car can thus become a
parallelepiped, a railway can become a spline, an
industrial plant can become a set of clusters, and a
machine tool can become a sequence of executive
programs.

3.1 Purpose tracking

Every meaningful activity has a purpose. It
organizes, often implicitly, the direction of thought
by linking it to meaningful action and intended
outcome.

The original essence of the subject, its implicit
completeness (incompleteness) and indefinite
integrity (fragmentation and misconceptions) turns
into something fundamentally different under the
influence of attraction or striving for a specific goal
which a person observes (thinks, imagines) or loses
sight of (forgets, changes significance of, or blurs). In
other words, this is where the source of a
misconception about the subject lies. Consequently,
the abstraction process requires special supporting
elements introduced into it which contribute to a
verified correlation of created abstractions with their
real images.

It is also necessary to point out the fact of strict
individualization of abstraction, since any
convenience is purely subjective. And finally, in
abstracting, we should strongly avoid secondary
stereotypization processes or correlating the study
subject with a certain prototype or pattern. This is
necessary due to the inadmissibility of missing
important individual nuances and roughness. A
person can only use such patterns for himself or
within a narrow group of allied specialists while
acting very carefully. In addition, care and
responsibility are required so that the idea of reality
is not distorted by such pattern.

For the initial description of the problem, as
well as its features and relationships with the

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

197

environment, it is important to use concise and, at the
same time, understandable and specific natural
language expressions aimed at identifying the
ultimate essence of the subject. Such expressions
may, at their best, contain two or three terms by
conforming to their everyday use, while indicating
the main goal of the solution. A representation of a
goal-oriented abstraction scheme is shown in Figure
1.

Fig.1 Schematic illustration of purposive abstraction

Consider the following example.

To formulate the main goal of an algorithm for a
robot courier required to move from point A to point
B, we should highlight the limiting fact of the
impossibility of such a move. The algorithm main
goal will then receive the following expression:
"avoid collision". A corresponding functional
abstraction might look like this:
bool avoid(){
 if(delta_x(distance) || delta_y(distance))
 return false;
 return true;
}
where, distance is the distance that characterizes
occurrence of the limiting collision situation, and
delta_x and delta_y are approximation measures
along the X and Y axes.
It is also possible to improve the abstraction by
refining the original wording: "avoid collision". Then
the semantics of negation is easily converted to a
comparison operator. The comparison operator
combined with the logical choice operator will
instantly complete the abstraction:
bool avoid(){
 if(delta_x< distance || delta_y< distance)
 return false;
 return true;
}

One more abstraction which turned out as if by itself
also attracts attention. It is about expressing the
change in the robot’s state (position) not by a
velocity vector but by the path increment. The
language of the route or the action plan is used by a
person confidently and every day. By using everyday
expressions while abstracting from reality, we get rid
of another problem of incorrect abstraction, namely,
what is typical for natural behavior will become more
adequately correlated with the study subject of the
problem, which means it will be of great benefit,
even if the price is an excess resource (for example,
software-based and technical computing).

In the above example, we can observe how an
accurate and concise formulation of the problem
requirements that is consistent with the actual goal
can reduce the search for an algorithm or software
engineering solution to elementary and clear
(understandable in ordinary sense) details. And vice
versa, false identity of concepts to real subjects (for
example, a velocity vector to a robot’s movement)
from which an abstraction is formed is ready to
destroy a solution or seriously complicate it, which
often happens in real projects.

The example also demonstrates how a
developed program code “covers” the pursued goal
and includes it in a solution. Such an abstraction can
be called purposeful, an abstraction that coordinates
at each moment of time the fact of achieving the goal
with the means to achieve it. Such agreement makes
an abstraction acceptable.

Another example of a purposeful abstraction is
redundant data structures used to develop algorithms
for complex computer graphics, such as for finding
equidistant curves and surfaces or shading complex
contours. Redundancy as a means of goal setting is
important and applicable to improve cognitive
capabilities of information perception or diverse but
related content, as well as to increase attention to
critical details [40].

It should always be remembered and understood
that the fight against complexity for which an
abstraction is used must be in the context of the
"principle of preserving complexity including infinite
complexity of any reality" [6].

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

198

3.2 Integral abstraction

The decision-making process that is consistent
with responsibility for such a decision requires the
completeness of a visible picture. However, this
picture should be described. The process of searching
and selecting such a description is strongly affected
by the language a person speaks. There are studies on
the difference in the perception of time between
native speakers of Chinese and English [11]. This
also indirectly confirms the cognitive basis of any
correct decision, since the affluence of a language
affects the color range of representations and
possibilities of the subject. Accordingly, the same
thing can be expressed with a significant difference
using terminological and phraseological techniques
depending on language forms, vocabulary and
intonations.

Linking words into phrases and sentences,
highlighting main and key expressions, dividing into
details and inverse associations, or searching for
analogies and examples - this is all determined by
functions of our brain and nervous system as a whole.
In this regard, today's ideas about brain functions are
not very comforting. Thus, according to the paper
[28], the brain is engaged in forecasting. Human
perception depends on “hierarchical predictive
coding” [13,20,53]. As A. Clark writes [17]: “We
structure our worlds and actions so that most of our
sensory predictions come true.” Doesn't this mean
that we create an error and then justify it? Is it even
possible to minimize our errors? How to correct
them?

There is a whole layer of studies devoted to
answering the question: how to solve problems. Let's
point out the important ones. First, this is the
bestseller by G. Polya [38] which details the order
and context of solving mathematical problems. One
of his main ideas is that generalization simplifies
implementation. Or, to put it differently, seeing the
whole picture, to catch its detail. Second, this is the
book by A. Goldman [21] which proposes a
simulation theory stating that special mental states
are created in the mind during thinking processes that
resemble or tend to resemble those that are their
goals. These states are then assigned or projected to
goals. A holistic space of a goal and paths to it are
formed as various contexts (Fig. 2). Thus, it is
important to regularly align formed and implemented

right abstractions with their goals, especially as goals
can independently or intentionally change.

Fig.2 Schematic illustration of holistic abstraction

Consider an example that illustrates the
representation integrity of an abstracted subject with
the principles of solving mathematical problems by G.
Poya [38]: understand, plan, execute and look back.
We assume that a text array of structured data is
given, that is, data that carry certain information, and
not meaningless bits. Then it can be argued that
syntactic information is comprehended into a single
emergent quality. In the case of incompletely defined
data with a lack of important details, the lack of
information is subject to causal circumstances that
are often overlooked. Then a valuable meaning arises
when information space is expanded. The resulting
abstraction becomes complete. Such a holistic
abstraction is stable both for new elements added to
the algorithmic and structural content and in the
perception of holistic data. The complexity of such a
decision is dependent on the meaningfulness of each
action taken by a software engineer: when acting
according to a template, the complexity can increase
uncontrollably, and on the contrary, the complexity
will be under control in conditions of individual
decisions. Thus, complexity is subject to individual
control.

4. Results and Discussion

Abstraction as a process of implementing
software and hardware solutions has two orthogonal
directions: any action according to a technological
template, for example, in line with SADT standards
or flexible Agile methodology; or an activity
associated with searching for individual
characteristics of the problem and considering
available resources or other exceptional
circumstances and restrictions.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

199

Our study has shown, firstly, that researchers of
formed abstractions bypass or only casually mention
the significance of purposefulness in software
development processes. Secondly, there is no
importance directly related to interpretations to
maintain the integrity of development processes and
their outputs.

Based on the Poincaré convenience principle,
there are two main vectors of reliable software
development. Firstly, to meet the original goal (as
well as its subgoals). An observed clearly visible goal
will only allow using those resources and operations
that are best aligned with this goal, that is, more
comfortable for creative perception. Secondly: to
observe the integrity of the development and its
individual acts. The integrity, like purposefulness, is
able to equalize and balance unjustified subjective
assessments and abstractions created from them.
Since there is a direct connection between insight
into the subject and its successful definition, striving
for integrity and tracking the goal will also correct
unsuccessful descriptions and plans using mobile
corrections or replacements.

5. Conclusion

The abstraction process definitely consists of
two stages: removal from the study subject
specifying its essential properties, and then
formalization of the created information content as an
information model. However, the specification and
description of properties is unable in itself to form a
clear picture of the solution and certainly its step-by-
step implementation. Moreover, search for similarity
[18], differentiation of properties [46], separation of
meanings [2], or vice versa, finding conceptual
boundaries [10] will not also allow one to form a
clear and distinct picture of a solution. All of these
together and separately can give some superficial
tone to an attempt of software development.
Individual technological requirements will only make
the design solution heavier.

Therefore, we have proposed here a different
view of the problem of right abstractions as entities
that simultaneously combine the content capacity of
the subject and possibilities of a perspective view of
the subject by a software engineer. In other words, a
person must receive sufficient informational support
when looking at an abstraction. This means that the

right abstraction will allow us to "see" everything,
and to head for a goal without losing track of it.

The final conclusion is that a holistic and
purposeful abstraction does not fully ensure a
successful software development project, however it
will, in any case, allow us not to deviate from the
target path and not to waste energy on any unhelpful
technological attempt.

References

[1] Abbot, R. J. (1987). Knowledge abstraction.
Communications of the ACM, 30(8), 664-672.

[2] Abelson, H., Sussman, G. J., & Sussman, J. (1996).
Structure and interpretation of computer programs. Justin
Kelly.

[3] Aho, A., & Ullman, J. (2022). Abstractions, their algorithms,
and their compilers. Communications of the ACM, 65(2),
76-91.

[4] Aldalur, I., Winckler, M., Díaz, O., & Palanque, P. (2017).
Web augmentation as a promising technology for end user
development. In New Perspectives in End-User
Development (pp. 433-459). Springer, Cham.

[5] Amahan, P., & Sanqui, R. (2021). Syntax to Syntax:
Assessment of Orthogonality in the Design of Object-
oriented Programming Languages using Code Listing
Method. In 2021 The 4th International Conference on
Software Engineering and Information Management (pp.
52-55). DOI:10.1145/3451471.3451480.

[6] Babichev A.V., Butkovskiy A.G., Pohjolainen Seppo,
(2001), Towards Unified Geometrical Theory of Control.
Nauka, Moscow.

[7] Bass, L., Clements, P., & Kazman, R. (2003). Software
architecture in practice. Addison-Wesley Professional.

[8] Berzins, V., Gray, M., & Naumann, D. (1986). Abstraction-
based software development.

[9] Birkhoff, G. (1969). Mathematics and psychology. SIAM
Review, 11(4), 429-469.

[10] Booch, Grady (1997). Object-Oriented Analysis and Design
with Applications. Addison-Wesley. ISBN 978-0-8053-
5340-2.

[11] Boroditsky, L. (2001). Does language shape thought?:
Mandarin and English speakers' conceptions of time.
Cognitive psychology,43(1), 1-22.

[12] Cabrera, D., Sancho, F., Li, C., Cerrada, M., Sánchez, R. V.,
Pacheco, F., & de Oliveira, J. V. (2017). Automatic feature
extraction of time-series applied to fault severity assessment
of helical gearbox in stationary and non-stationary speed
operation. Applied Soft Computing, 58, 53-64.

[13] Carbajal, G. V., & Malmierca, M. S. (2018). The neuronal
basis of predictive coding along the auditory pathway: from
the subcortical roots to cortical deviance detection. Trends
in Hearing, 22. DOI:10.1177/2331216518784822

[14] Carden, T., Goode, N., & Salmon, P. M. (2019). Accounting
for memes in sociotechnical systems: extending the
abstraction hierarchy to consider cognitive objects.
Ergonomics, 62(7), 849-863.
DOI:10.1080/00140139.2019.1603403

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

200

[15] Cardone, F. (2020). From Curry to Haskell: Paths to
Abstraction in Programming Languages. Philosophy and
Technology. 34(1), 57 - 74. DOI:10.1007/s13347-019-
00385-4.

[16] Clancey, W. J. (1983). The Advantages of Abstract Control
Knowledge in Expert System Design (No. STAN-CS-83-
995). STANFORD UNIV CA DEPT OF COMPUTER
SCIENCE.

[17] Clark, A. (2013). Whatever next? Predictive brains, situated
agents, and the future of cognitive science. Behavioral and
brain sciences,36(3), 181-204.

[18] Dahl, O. J., Dijkstra, E. W., & Hoare, C. A. R. (1972).
Structured programming. Academic Press Ltd..

[19] Demetriou, A. (2020). Abstracting abstraction in
development and cognitive ability. Behavioral and Brain
Sciences, 43. DOI:10.1017/S0140525X19002930

[20] Gilead, M., Trope, Y., & Liberman, N. (2020). Above and
beyond the concrete: The diverse representational substrates
of the predictive brain. Behavioral and Brain Sciences, 43.

[21] Goldman, A. I. (2006). Simulating minds: The philosophy,
psychology, and neuroscience of mindreading. New York,
NY, US: Oxford University Press.

[22] Han, L., Song, M., & Pedrycz, W. (2021). An Approach to
Determine Best Cutting-points in Group Decision Making
Problems with Information Granules. In 2021 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE)
(pp. 1-6). IEEE.

[23] Hayes-Roth, F., & McDermott, J. (1978). An interference
matching technique for inducing abstractions.
Communications of the ACM, 21(5), 401-411.

[24] Jackson, M. (2012). Aspects of abstraction in software
development. Software & Systems Modeling, 11(4), 495-
511.

[25] Kim, Y., Kim, J., Jeon, H., Kim, Y. H., Song, H., Kim, B.,
& Seo, J. (2020). Githru: Visual analytics for understanding
software development history through git metadata analysis.
IEEE Transactions on Visualization and Computer Graphics,
27(2), 656-666.

[26] King, T. C., De Vos, M., Dignum, V., Jonker, C. M., Li, T.,
Padget, J., & van Riemsdijk, M. B. (2017). Automated
multi-level governance compliance checking. Autonomous
Agents and Multi-Agent Systems, 31(6), 1283-1343.
DOI:10.1007/s10458-017-9363-y

[27] Lammers, J. (2012). Abstraction increases hypocrisy.
Journal of Experimental Social Psychology, 48(2), 475-480.

[28] LeDoux, J. E. (2020). How does the non-conscious become
conscious?. Current Biology, 30(5), R196-R199.
DOI:10.1016/j.cub.2020.01.033

[29] Lennon, B. (2021). Foo, Bar, Baz…: The Metasyntactic
Variable and the Programming Language Hierarchy.
Philosophy & Technology, 34(1), 13-32.
DOI:10.1007/s13347-019-00387-2

[30] Liskov, B. H. (1972, December). A design methodology for
reliable software systems. In Proceedings of the December
5-7, 1972, fall joint computer conference, part I (pp. 191-
199). ACM.

[31] Liskov, B., & Guttag, J. (1986). Abstraction and
specification in program development (Vol. 180).
Cambridge: MIT press.

[32] Liskov, B., & Zilles, S. (1977). An introduction to formal
specifications of data abstractions. Current trends in
programming methodology, 1, 1-32.

[33] Lupyan, G. (2017). The paradox of the universal triangle:
concepts, language, and prototypes. The Quarterly Journal
of Experimental Psychology, 70(3), 389-412.

[34] Miller, G. A. (1956). The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. Psychological review, 63(2), 81.

[35] Park, S. A., Miller, D. S., Nili, H., Ranganath, C., &
Boorman, E. D. (2020). Map making: constructing,
combining, and inferring on abstract cognitive maps.
Neuron, 107(6), 1226-1238.

[36] Poincaré, H. (1905). Science and hypothesis. Science Press.
[37] Pollo-Cattaneo, M. F., Pesado, P., Britos, P., & García-

Martínez, R. (2017). Process Model Proposal for
Requirements Engineering in Information Mining Projects.
In Colombian Conference on Computing (pp. 130-145).
Springer, Cham.

[38] Polya, G. (2004). How to solve it: A new aspect of
mathematical method (Vol. 85). Princeton university press.

[39] Randelli, G., & Nardi, D. (2010). Introducing ontology best
practices and design patterns into robotics: USAREnv. In
Proceedings of the 2010 conference on Modular Ontologies:
Proceedings of the Fourth International Workshop (WoMO
2010) (pp. 67-80). IOS Press.

[40] Razumowsky, A. I. (2019). Creativity-oriented software
development. Amazonia Investiga, 8(22), 629-639.

[41] Rind, A., Wagner, M., & Aigner, W. (2019, October).
Towards a structural framework for explicit domain
knowledge in visual analytics. In 2019 IEEE Workshop on
Visual Analytics in Healthcare (VAHC) (pp. 33-40). IEEE.
DOI:10.1109/VAHC47919.2019.8945032

[42] Sacerdoti, E. D. (1974). Planning in a hierarchy of
abstraction spaces. Artificial intelligence, 5(2), 115-135.

[43] Sacha, D., Al.Masoudi, F., Stein, M., Schreck, T., Keim, D.
A., Andrienko, G., & Janetzko, H. (2017, June). Dynamic
visual abstraction of soccer movement. In Computer
Graphics Forum (Vol. 36, No. 3, pp. 305-315).

[44] Sakr, S., Bonifati, A., Voigt, H., Iosup, A., Ammar, K.,
Angles, R., ... & Yoneki, E. (2021). The future is big graphs:
a community view on graph processing systems.
Communications of the ACM, 64(9), 62-71.

[45] Shankar, K. (1984). Data Design: Types, Structures, and
Abstractions. C. Vick and C. Ramamoorthy New York: Van
Nostrand Reinhold.

[46] Shaw, M. (1984). Abstraction techniques in modern
programming languages. IEEE software, (4), 10-26.

[47] Shillcock, R. (2020). A modern materialist approach to
abstraction, concreteness, and explanation in cognition.
Behavioral and Brain Sciences, 43.
DOI:10.1017/S0140525X19003066

[48] Shurkhovetskyy, G., Andrienko, N., Andrienko, G., &
Fuchs, G. (2018, February). Data abstraction for visualizing
large time series. In Computer Graphics Forum (Vol. 37, No.
1, pp. 125-144).

[49] Stern, C. R., & Luger, G. F. (1997). Abduction and
abstraction in diagnosis: a schema-based account. J.
Expertise in context, 363-381.

[50] Takano, W., & Nakamura, Y. (2015). Symbolically
structured database for human whole body motions based on

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

201

association between motion symbols and motion words.
Robotics and Autonomous Systems, 66, 75-85.

[51] Viola, I., & Isenberg, T. (2017). Pondering the concept of
abstraction in (illustrative) visualization. IEEE transactions
on visualization and computer graphics, 24(9), 2573-2588.

[52] Vreeswijk, G. A. (1997). Abstract argumentation systems.
Artificial intelligence, 90(1-2), 225-279

[53] Xia, L., & Collins, A. G. (2021). Temporal and state
abstractions for efficient learning, transfer, and composition
in humans. Psychological review. 128(4), 643 - 666.
DOI:10.1037/rev0000295.

[54] Yang, Q. (2012). Intelligent planning: a decomposition and
abstraction based approach. Springer Science & Business
Media.

[55] Yin, H., Liu, P., Liu, K., Cao, L., Zhang, L., Gao, Y., & Hei,
X. (2020). NS3-AI: Fostering artificial intelligence
algorithms for networking research. In Proceedings of the
2020 Workshop on ns-3 (pp. 57-64)..

[56] Ziegler, D., & Peissner, M. (2018, July). Modelling of
Polymorphic User Interfaces at the Appropriate Level of
Abstraction. In International Conference on Applied Human
Factors and Ergonomics (pp. 45-56). Springer, Cham.

[57] van Houwelingen, G., van Dijke, M., van Hiel, A., & De
Cremer, D. (2021). Cognitive foundations of impartial
punitive decision making in organizations: Attribution and
abstraction. Journal of Organizational Behavior, 42(6), 726-
740. DOI:10.1002/job.2480

