
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

202

Manuscript received July 5, 2023
Manuscript revised July 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.7.23

Android Malware Detection using Machine Learning
Techniques KNN-SVM, DBN and GRU

Sk Heena Kauser#1, V.Maria Anu#2,

1Research scholor, Department of Computer Science & Engineering,
Sathyabama Institute of Science and Technology, Chennai, India.

2Professor, Department of Computer Science & Engineering,
Sathyabama Institute of Science and Technology, Chennai, India.

Abstract
Android malware is now on the rise, because of the rising interest
in the Android operating system. Machine learning models may
be used to classify unknown Android malware utilizing
characteristics gathered from the dynamic and static analysis of
an Android applications. Anti-virus software simply searches for
the signs of the virus instance in a specific programme to detect it
while scanning. Anti-virus software that competes with it keeps
these in large databases and examines each file for all existing
virus and malware signatures. The proposed model aims to
provide a machine learning method that depend on the malware
detection method for Android inability to detect malware apps
and improve phone users' security and privacy. This system
tracks numerous permission-based characteristics and events
collected from Android apps and analyses them using a classifier
model to determine whether the program is good ware or
malware. This method used the machine learning techniques
KNN-SVM, DBN, and GRU in which help to find the accuracy
which gives the different values like KNN gives 87.20%
accuracy, SVM gives 91.40% accuracy, Naïve Bayes gives 85.10%
and DBN-GRU Gives 97.90%. Furthermore, in this paper, we
simply employ standard machine learning techniques; but, in
future work, we will attempt to improve those machine learning
algorithms in order to develop a better detection algorithm.
Keywords
Android Malware, Codes Vulnerability, Malware Detection,
Machine Learning, Smartphones.

1. INTRODUCTION

Because of the ease and efficiency of various apps, as
well as the ongoing development in the software and
hardware on smartphone usage, smart devices, and its
related application are fast developing in the modern era.
By 2023, it’s expected that it will be more than 4.3 billion
smartphones users. The most popular smartphone
operating system (OS) is Android.It has a market share of
72.2 percent in May 2021. Apple iOS has the second-
highest marketplace share of 26.99 percent, with Samsung,
KaiOS, and other minor suppliers sharing the remaining
0.81 percent. The official app store for Android
smartphones is Google Play. As of May 2021, there were
over 2.9 million applications available on it. AppBrain
classifies more than 2.6 million of them as standard
applications, while 0.5 million are labelled as ordinary
apps. Because of its global prominence, Android is a more
appealing aim for thieves and is much vulnerable to

viruses and malware[1]. Various ways of identifying these
assaults have been offered in studies, with machine
learning being one of the most prevalent. This is because
machine learning algorithms may generate a ordinate from
a (restricted) collection of training instances [2].The usage
of examples eliminates the required to describe signatures
directly while constructing malware detectors. Signature
definition necessitates knowledge and time-consuming
human engagement, and while specific rules (signatures)
do not exist for some attack situations, instances are
readily available [3]. Android malware investigation may
be done in three distinct methods, according to research.
The deployment of static and dynamic content is the first
technique. Before loading an application onto any device,
the code of the program is examined for harmful
components [4].

The second approach entails modifying the Android
operating system to include components for tracking and
intercepting any unusual behaviour that may occur on the
machine, while the third process entails using
virtualization to integrate domain detachment ranging
from lighter weight application exclusion to running
numerous incidents of Android Operating system on the
same machine [5]. However, recent research found that
machine learning or "abnormality detection" technologies
are becoming a dominant and more successful method of
combating Android malware [6]. Wi Excepttatic analysis,
which entails manually inspecting the Android
Manifest.xml file, and Dalvik byte code, source files and
source files, which entails working an app in a meticulous
setting to observe its behaviour, this behaviour Learning
entails learning overall patterns and rules from legitimate
and malignant app specimens, and then enabling data-
driven prognostications of decisions, like classification [7].
Static characteristics retrieved from an applications are
applications machine learning approaches [8]. The static
elements of an Android application serve as the foundation
for machine learning methodologies, and these static
characteristics are meticulously obtained through
decrypting. Machine learning approaches have been
widely used to classify programmes, with a particular
focus on detecting generic malware.

As a result, approaches for detecting these errors, in
totalling to malware recognition techniques, are critical [9].

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

203

The analysis of Android Application Package (APKs) to
generate an appropriate set of structures, training machines
and the deep learning (DL) algorithms on the resulting
features to recognise malicious APK recognize two
primary aspects of malware recognition using the machine
learning [10]. As a result, an overview of the various APK
analysis methodologies is given, including static, dynamic,
and hybrid analysis. Vulnerability identification in
computer code, like malware detection, includes two major
phases: feature creation through static analysis and the
training machine learning on derived structures to detect
susceptible code segments. As a result, these 2 features are
incorporated in the taxonomy of the review [11].The
unrivalled threat of Android malware is at the root of a
host of internet security problems, and it's an ongoing
challenge for researchers and cyber security experts [12].
The only way to eradicate this threat is to detect and kill
malware samples as soon as possible. The key to doing so
is having a basic awareness of the many types and
categories of Android malware. Finally, the report offers
some mitigation and preventive measures for Android
malware. They detect potentially harmful applications and
alert the user, as well as take efforts to eradicate that
affection. Antivirus detection rates have risen in lockstep
with the threat level.

2. LITERATURE REVIEW

Oluwakemi Christiana Abikoye et al. discussed about
the Android Operating System has been widely adopted by
a variety of developers. This dynamic has resulted in an
exponential growth of Anid-based smartphones across
many areas of the business. Even though this development
has resulted in significant technological advances and the
ease of conducting business (e-commerce) and
interpersonal relationships, they have also become
powerful platforms for unchecked cyber-attacks and covert
operations against company infrastructures and individual
people of these portable devices. Various cyber-attack
approaches exist, however, malicious application assaults
have surpassed previous attack methods such as social
engineering. Android malware has grown in sophistication
and awareness to the extent where it is now very different
from traditional detection methods, notably signature
depend systems. The machine learning technologies have
developed as a more competent choice for contending new
Android malware's uniqueness and complexity. Machine
learning (ML) prototypes work by first learning current
malware behaviours and then utilising that information to
discriminate or recognise any behaviour similar in novel
threats. As reported in recent research, this study presented
a complete evaluation of machine learning algorithms and
their applications in the Android malware detection [13].

Janaka Senanayake et al. explained about a malware
assault are increasing as the usage of mobile devices grows,
particularly on the Android phones, in which accounting
for 72.2 percent of the overall market share. The hackers
use a variety of tactics to target cell phones, including
credential theft, spying, and the malicious advertising. The
(ML) based approaches have shown to be useful in
detecting these assaults, since they may construct a
classifier from the sets of training instances, removing the
requirement for an unambiguous specification of the
signatures for developing malware indicators. This paper
presents a comprehensive overview of machine learning
depend android malware detection method. It assesses 106
carefully chosen articles and identifies their fortes and
flaws, and areas for growth. So finally, the ML-based
approaches for perceiving source codes susceptibilities are
described, because adding security after the program has
been released may be more challenging. As a result, the
goal of this study is to help academics get a deeper
understanding of the topic and suggest prospective future
research and development possibilities[11].

Talal A. Abdullah et al. explained about the number
of Android-based mobile devices on the market is growing,
these devices are becoming the prime targets for malicious
software. Several Android malware programs have been
developed in recent years to execute various unauthorised
and dangerous operations on mobile devices. To identify
such Android malicious applications, specialized tools and
the anti-virus agendas employed traditional signature-
based methodologies. The most current Android malware
applications, such as the zero-day, however, are not
detectable using traditional approaches that rely on fixed
signatures or IDs. As a result of their capacity to study and
use prevailing knowledge to detect new Android malware
applications, the most lately released research papers have
proposed machine learning methods as an alternate
strategy to detect the Android malware. This article covers
the fundamentals of malware, Android architecture, and
permission aspects that may be used as malware
predictors[14].

More importantly, this article empirically examines
the different the achievement of five learning algorithms
usually used in the literature for the detecting malware
apps: K-Nearest Neighbours (K-NN), Support Vector
Machine (SVM), Data Bus Network (DBN), Naive Bayes
(NB) and Gated Recurrent Units (GRU).

Research Question:

 What is the requirement of Android malware
detection?

 How ML technique help to detect Android
Malware Recognition?



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

204

3. METHODOLOGY

On Android, the malware detection may be
accomplished in two ways: identification based on
signatures and identification based on behaviour [15]. The
signature-based exposure technique is simple, effective,
and produces minimal fabricated positives. The digital
signal of the programme is analysed to patterns in a known
malware collection. This technique, on the other hand,
excludes the identification of ransom-ware. As a result, the
anomaly-based detection technique is the most often
utilized. On Android, malware detection may be
accomplished in two types: signature-based detection and
behaviour detection [16]. The system's binary code is
examined to patterns in a list of known malware. However,
this method does not permit for the identification of the
unknown malware. The most often used detection
approach is behaviour-based/ the anomaly detection.

3.1. Design:

Both dynamic and static analysis approaches
converge successfully in hybrid analysis. The suggested
approach retrieves the dynamic and static characteristics of
the Android application. The methodology design focused
on permission and application programming interface (API)
characteristics of the Android application in the static
detection, then filtered features depending on the weight
derived by the term frequency-inverse document
frequency (TF-IDF) approach. Each feature in static
detection is assigned a weight based on the Naive Bayes
method. They also presented experimental results from
three ensemble algorithms for dynamic detection,
indicating that the XGBoost algorithm beat the others.
Finally, they demonstrated that their technique has a
detection accuracy of 94.6 percent for 8000 applications
(4000 benign apps and 4000 malicious apps), which is
higher than the static detection accuracy of 85.3 percent
and the dynamic detection accuracy of 94.1 percent for the
same number of applications.

Figure 1: The malware is detected by applying an algorithm

such as a hybrid machines learning algorithm.

As shown in given Figure 1, the virus is initially
discovered by using an algorithm such as a hybrid
machines learning technique and delivering the
application's data set. A specific sort of data decoder is
then used to decode the data collection. Following the
decoding of the files, the characteristics are taken from the
data and stored in a dataset over which the appropriate
algorithm will be run to identify the virus.

Figure 2: This shows the feature extraction of the dynamic and

static extraction.

Figure 2 depicts the features extraction strategy used
for Android malware, which combines dynamic and static
analysis. Decompiling the APK files yields static
characteristics such as resource features and semantic
features. Through one-hot in encoding, the static structures
form a binary feature vectors. The dynamic structures are
retrieved by observing the associated API calls while the
APK is executing. The entity implanting approach is
required to build features of vector for dynamic
characteristics connected with time series.

3.2. Instrument:
3.2.1. Features Extraction:

Static characteristics although extraction is debauched
and uses slight system assets, making it suited for the
large-scale feature extractions, it cannot identify
obfuscated of Android malware. This study employs the
hybrid detection approach combining dynamic and static
analysis a whole of 353 features were retrieved, including
293 static and 54 dynamic features.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

205

3.2.1.1. Static Feature Extraction:

The resource characteristics and semantic structures
are among the retrieved static characteristics.

3.2.1.1.1. Resource Features:

The term "resource features" refers to features
retrieved from APK resource files. The APK's
inconsistency in structure and logic serve as the basic
foundation for obtaining resource attributes. Inconsistent
alludes to the artefacts left behind because of hidden
hazardous components, culminating in an APK file with an
abnormal architecture. When malicious software is
bundled as a benevolent application, it generally leaves
evidence behind, which is referred to as contradictory
logic.

3.2.1.1.2. Semantic Features:

The semantic characteristics of the APK code file are
extracted. Semantic characteristics include common static
feature such the penetrating API and authorization. Author
suggest several modern semantic characteristics, such as
express purpose and other meta-data-mined features.

3.2.1.2. Dynamic Features Extraction:

Data decryption and encryption, file writing and
reading, network data transfer, SMS, call, geographic
position, and entrée to sensitive informations are examples
of dynamic features. These behaviours might indicate the
functions and goals of the application. In packages a
simple application program that includes regularly used
dynamic analytic methods, and built-in the web server may
give users with nice interactive interface. In spin package
not only collect fundamental information like permissions,
shared libraries, components, User Identifier (UID), and so
on, but it can also watch the application's activity in real-
time can alter the bent API, which means it can adapt
dynamic behaviour necessary for observing, which is also
the tool's main benefit.

3.2.2. Features Encoding:
3.2.2.1. Static Features Encoding:

The majority of static characteristics are binary, with
just a limited number of discrete features, and there is no
link between them. As a result, the deep learning
algorithms DBN is well suited to static features. Because
the DBN’s input is the binary vector, the static
characteristics are encoded into binary vectors using one-
hot encoding. The method of one-hot encoding involves
converting discrete characteristics into binary structures.
The discrete numbers 0, 1, 2, 3 are encoded to binary orders
0001, 0010, 0100, 1000, for example. If one-hot encoding
is used for discrete structures with a wide value ranges, the
features vector will be scant. In this situation, the value
ranges can be finely categorized after one-hot encoding to
lower the feature dimension. Following one-hot encoding,

entirely static characteristics are concatenated hooked on
the binary vector, in which serves as the DBN's inputs.

3.2.2.2. Dynamic Feature Encoding:

After collecting the dynamic characteristics of an
Android applications, the dynamic structures are molded
into a chronological operating order. Since the dynamic
characteristics are associated in with time, the neural
network that can better suited for the dynamic behaviour of
the Android applications software. The GRU network's
input is a dynamic feature vector. Entity implanting is the
data demonstration technique. It encodes organised discrete
variable and attempts to keep the continuous link between
data in the data representation.

3.3. The Requirements of Analysis:
3.3.1. Functional Necessities:

The system generates malware detection for a given
group of APK datasets. The detection's output must meet
the following conditions:

 Depending on the input data, the outputs ought to
be possible to perceive malware.

 The technology must be opoptimizedor the
complexity of time and space.

 The system will be able to notice new/ unknown
malware variants.

 The system will be able to know the outcome of
harmful programs based on their previous
behaviour

 The system should be able to choose the
appropriate feature set to include unknown
behaviour stem should be capable of detecting
malware from any domain.

3.3.2. Non- Functional Necessities:
3.3.2.1. User interface:

There has to be a convenient and straightforward
solution that allows the user to detect viruses using the
APK dataset. The model is constructed using deep learning
using the chosen features as input. A comparison analysis
is performed, and a classification report is produced.

3.3.2.2. Hardware:

The system's effective implementation does not
necessitate the use of any unique hardware interfaces.

3.3.2.3. Software:

● Tools: Android Studio, Anaconda3

● Programming Languages: Java, Python

● Dataset: APK dataset

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

206

● Operating System: Linux/Windows/
Macintosh

The detection technique or classifier is used to identify
whether or not a programs malware. The classifier
determines if software is a malware or benign ware based
on its attributes. Machine learning is required by the
popular of classifiers. Machine learning classifiers employ
one or more classifiers. In the detecting procedure, layered
classifiers may also be utilized. In this example, there are 2
or 3 levels, with every layer including identification to
increase the detection system's accuracy. There are
numerous individual classifiers in parallel classifiers. As
indicated in the figure below, the outputs of various
classifiers are merged to achieve improved accuracy.
Another classifiers, like analytic hierarchy process (AHP)
and punishment computation, do not employ machine
learning. Figure 3 depicts collective machine learning
classifier used in the Android mobile malware exposure.
The deep learning models based on a mix of the deep belief
networks and the gates recurrent units is presented based on
the varied characteristics of the dynamic and static
properties of Android applications.

The advantage of employing the DBN is that static
structures of the Android applications learn earlier and
perform better. GRU outperforms typical machine learning
models in coping with lengthier time operations sequences,
with rarer parameters, quicker training speeds, and fewer
data necessary to obtain a satisfactory generalisation effect.
As a result, the GRU neural networks is more suited to
handling the dynamic elements of Android applications.
Figure 2 depicts the DBN-GRU hybrid models for the
Android malware detection. The dynamic and static
features vectors are utilized to sequence the DBN-GRU,
individually, and the outputs vectors are fed into the
completely connected layers. So, the softmax functions
transfers several neurons' outputs to the intermission (0, 1)
and produces classification outputs in the procedure of
possibility. The SVM algorithm is parts of back
propagation algorithm that is charity to fine-tune the DBN
and GRU variables. Figure 4 depicts a hybrid feature that
may be created using DBN, KNN-SVM, and GRU.

Figure 3: The above diagram shows the android package which
helps to select the feature for the static and dynamic state.

Figure 4: The above diagram shows the hybrid feature which
can be made with the help of DBN, KNN-SVM, and GRU.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

207

4. RESULT AND DISCUSSION

Static features are those that can be extracted without
operating the program. A static feature extractor is a
technique that extracts the static features. Some studies
concentrate on a single category of static properties, while
others examine a large number of them. Permissions, API
calls, extracted strings, XML components, native
commands, meta data, intents, usage scenarios, components,
and other static properties are all prevalent. To extract static
features, you can utilise the document, dex file, or byte
code. The APK tool is the most extensively used.
Researchers get the APK file, Smali file, classes.dex and
Manifest file from the APK tool. Table 1 shows the type,
sources, and number of models in dataset. A total of 7,000
benign samples were obtained through web crawler from
the Google Play and the APK mobile applications stores.
The malware collection contains 6,298 samples, all of
which were obtained from communal malware distribution
websites. The malware samples dataset is split into 2 parts
based as to whether the trials use misdirection technology:
each part is the nonobfuscated malware set of data
available for download from VirusShare, as well as the
other parts is the obscured malware dataset available for
download from the PRAGuard acquired by distorting the
Contagion Minimum and MalGenome sets of data with
five different evasion techniques.

The most often utilised aspects of obfuscated
malware sample and the nonobfuscated malware sample
are compared. Figures 5 and Figure 6 depict the top ten
commonly utilised attributes of the two types of samples.
Permission-related structures (such as Write SMS, Read
SMS, and so on) of both example kinds are widely
employed since permission structures are hard to conceal,
and obfuscating authorisation features destroys the basic
edifice of APK. However, several sensitive API structures
(such as Telephony manager get devised, etc.) are
commonly utilised in non-obfuscated malware sample but
extremely seldom in the obfuscated malware sample,
indicating that malware sample after obfuscation might
evade associated detections when accessing sensitive APIs.
It checks if the certificate's creation time and the time it's
used to sign the APK are the same. This feature appears
often, suggesting that automated repackaging is used to
build the bulk of obfuscated malware variants.

Table 1: This table shows the benign and android malware type.

Type Originator Number Total

Malware Praguard 4500 7360

Virus 2860

Benign Android 5300 8300

package

Google Play
Apps

3000

Figure 5: The above graph shows the nonobfuscated
malware feature.

Figure 6: The above graph shows the obfuscated malware
feature.

The Hybrid Deep Learning Model’s (HDLM)
Detection Effects Table 2 shows the results of evaluating
the detection impact of the (HDLM) and (DBN-GRU) on
Android malware using the indicators of recall, precision,
and accuracy. Standard machine learning models (such as
SVM, Nave Bayes, and KNN) are much worse than deep
learning models and Figure 7 shown the accuracy after
applying the machine learning methods for detecting the
malware in android.

3.4. Evaluation Parameters:

The True Positive Rate (TPR) defines the percentage
of benign apps identified accurately, where
i. TPR = TP (TP+FN)

TP is the number of properly recognised benign
applications, whereas FN denotes the amount of
erroneously identified kind apps. The False Positive Rate
(FPR) is the percentage of malware programmes that are
wrongly identified, where

0 20 40 60 80 100

TELEPHONYMANAGER_G…

TELEPHONYMANGER_GE…

TELEPHONYMANGER_GE…

RECEIVE_SMS

Nonobfuscated malware

0 20 40 60 80 100

READ_PHONE_STATE

INSTALL_PACKAGES

INTERNET

obfuscated malware

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

208

3.4.1. FPR = FP/(TN+FP)

The numbers of mistakenly identified malware is
denoted by FP, while the number of appropriately
identified malware is denoted by TN. Accuracy (ACC) is a
performance statistic that is used to quantify overall
performance. The percentage of accurately identified apps
is referred to as accuracy, where

3.4.2. ACC=(TP+TN)/(TP+TN+FP+FN)

Table 2: Detecting the effects of the different machine
learning algorithm.

MALWARE
SAMPLE

BENING
SAMPLES EXACT

NESS ACCUR
ACY

REC
ALL

ACCUR
ACY

REC
ALL

NAÏ
VE
BA
YES

87.60 87.90 87.01 80.10 85.10

KN
N

86.93 84.59 85.50 87.50 87.20

SV
M

94.80 94.87 93.40 89.90 91.40

DB
N-
GR
U

98.80 98.70 98.84 97.40 97.90

Figure 7: The above graph shows the different accuracy with
different machine learning approaches.

5. CONCLUSION

To identify mobile malware and malicious activity,
researchers employed static, dynamic, and hybrid
approaches. The key interest of researchers is accuracy
levels, and the majority of research articles use accuracy
measures to explain the efficacy of their detection
technique. Performance overhead should be addressed for
mobile device operating systems, since better precision
may result in more overhead. To make the detection
procedure efficient, accuracy and performance overhead
must be effectively matched. The static characteristic is
created by examining the sample's formats, then collecting
the hash value, string data, function data, header file data,
and metadata data. However, when stationary camera is
packed, encoded, or compacted, static characteristics are
unable to effectively identify malware, making it difficult
for static characteristics to communicate the genuine intent
of malware, lowering detection rate. The behaviour of the
sample operation and the characteristics of the debugging
record, such as file actions, process formation and
destruction, as well as other dynamic behaviours, are
examples of dynamic characteristics. The extracted
dynamic characteristics give a more accurate
characterization than the static characteristics since the
dangerous activities of malware during dynamic runtime
cannot be hidden. However, dynamic extracted features
must be performed in a virtual world that will be restored
and returned to its previous condition after each harmful
sample is evaluated, ensuring that the virtual world is a
legitimate user scenario. As a result, the efficiency of
extracting features is substantially lower than that for
classifiers. Researcher look at the current research projects
in 3 groups: dynamic, static, and hybrid analysis.

The data collection, features, characteristic selection
process, detection method, and accuracy are all represented
in these research. Authors also discussed the gap in the
literature and the limits of present studies. As a result,
author were able to identify the suspicious feature lists that
malware authors frequently utilise. For Android malware
detection, this research integrates dynamic and static
analytic technologies and constructs a hybrid deep learning
method depend on GRU, DBN, KNN and SVM. To
contract with concealment technology, modern stable
features with stout antiobfuscation abilities have been
introduced, and dynamic characteristics of the software
applications at the given runtime have been removed to
expand the Android malware set of structures. A hybrid
deep learning model containing DBN, SVM, GRU, and
KNN is utilised for learning based on the varied
characteristics of dynamic and static data, and the
detection impact of this model is proven by comparison

75 80 85 90 95 100

NAÏVE BAYES

SVM

DIFFERENT MACHINE LEARNING

ALGORITHM

EXACTNESS BENING SAMPLES

MALWARE SAMPLE

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

209

tests. There are various research questions that need to be
answered in the future.

REFERENCES

[1] I. Martín, J. A. Hernández, A. Muñoz, and A. Guzmán,
“Android Malware Characterization Using Metadata and
Machine Learning Techniques,” Secur. Commun.
Networks, 2018, doi: 10.1155/2018/5749481.

[2] S. Priyadharshini and S. Shanthi, “A Survey on
Detecting Android Malware Using Machine Learning
Technique,” 2021, doi:
10.1109/ICACCS51430.2021.9441712.

[3] A. N. Jahromi, S. Hashemi, A. Dehghantanha, R. M.
Parizi, and K. K. R. Choo, “An Enhanced Stacked
LSTM Method with No Random Initialization for
Malware Threat Hunting in Safety and Time-Critical
Systems,” IEEE Trans. Emerg. Top. Comput. Intell.,
2020, doi: 10.1109/TETCI.2019.2910243.

[4] J. Garcia, M. Hammad, and S. Malek, “Lightweight,
obfuscation-Resilient detection and family identification
of android malware,” ACM Trans. Softw. Eng.
Methodol., 2018, doi: 10.1145/3162625.

[5] S. Gupta, S. Sethi, S. Chaudhary, and A. Arora,
“Blockchain Based Detection of Android Malware using
Ranked Permissions,” Int. J. Eng. Adv. Technol., 2021,
doi: 10.35940/ijeat.e2593.0610521.

[6] M. Melis et al., “Do gradient-based explanations tell
anything about adversarial robustness to android
malware?,” Int. J. Mach. Learn. Cybern., 2021, doi:
10.1007/s13042-021-01393-7.

[7] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy
android malware detection using ensemble learning,”
IET Inf. Secur., 2015, doi: 10.1049/iet-ifs.2014.0099.

[8] H. Zhang, D. Yao, and N. Ramakrishnan, “Causality-
based sensemaking of network traffic for android
application security,” 2016, doi:
10.1145/2996758.2996760.

[9] G. Canfora, F. Mercaldo, E. Medvet, and C. A. Visaggio,
“Detecting Android malware using sequences of system
calls,” 2015, doi: 10.1145/2804345.2804349.

[10] S. I. Imtiaz, S. ur Rehman, A. R. Javed, Z. Jalil, X. Liu,
and W. S. Alnumay, “DeepAMD: Detection and
identification of Android malware using high-efficient
Deep Artificial Neural Network,” Futur. Gener. Comput.
Syst., 2021, doi: 10.1016/j.future.2020.10.008.

[11] J. Senanayake, H. Kalutarage, and M. O. Al-Kadri,
“Android mobile malware detection using machine
learning: A systematic review,” Electronics
(Switzerland). 2021, doi: 10.3390/electronics10131606.

[12] E. J. Alqahtani, R. Zagrouba, and A. Almuhaideb, “A
survey on android malware detection techniques using
machine learning Algorithms,” 2019, doi:
10.1109/SDS.2019.8768729.

[13] O. C. Abikoye, B. A. Gyunka, and O. N. Akande,

“Android malware detection through machine learning
techniques: A review,” Int. J. online Biomed. Eng., vol.
16, no. 2, pp. 14–30, 2020, doi:
10.3991/ijoe.v16i02.11549.

[14] T. A. A. Abdullah, W. Ali, and R. Abdulghafor,
“Empirical study on intelligent android malware
detection based on supervised machine learning,” Int. J.
Adv. Comput. Sci. Appl., vol. 11, no. 4, pp. 215–224,
2020, doi: 10.14569/IJACSA.2020.0110429.

[15] F. Mercaldo and A. Santone, “Formal Equivalence
Checking for Mobile Malware Detection and Family
Classification,” IEEE Trans. Softw. Eng., 2021, doi:
10.1109/TSE.2021.3067061.

[16] S. M. Shahidi, H. Shakeri, and M. Jalali, “A semantic
malware detection model based on the GMDH neural
networks,” Comput. Electr. Eng., 2021, doi:
10.1016/j.compeleceng.2021.107099.

Sk Heena Kauser
Research scholor,
Department of Computer Science &
Engineering,
Sathyabama Institute of Science and
Technology, Chennai, India.

Dr.V.Maria Anu
Professor,
Department of Computer Science &
Engineering,
Sathyabama Institute of Science and
Technology, Chennai, India.

