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Abstract  
Android malware is now on the rise, because of the rising interest 
in the Android operating system. Machine learning models may 
be used to classify unknown Android malware utilizing 
characteristics gathered from the dynamic and static analysis of 
an Android applications. Anti-virus software simply searches for 
the signs of the virus instance in a specific programme to detect it 
while scanning. Anti-virus software that competes with it keeps 
these in large databases and examines each file for all existing 
virus and malware signatures. The proposed model aims to 
provide a machine learning method that depend on the malware 
detection method for Android inability to detect malware apps 
and improve phone users' security and privacy. This system 
tracks numerous permission-based characteristics and events 
collected from Android apps and analyses them using a classifier 
model to determine whether the program is good ware or 
malware. This method used the machine learning techniques 
KNN-SVM, DBN, and GRU in which help to find the accuracy 
which gives the different values like KNN gives 87.20% 
accuracy, SVM gives 91.40% accuracy, Naïve Bayes gives 85.10% 
and DBN-GRU Gives 97.90%. Furthermore, in this paper, we 
simply employ standard machine learning techniques; but, in 
future work, we will attempt to improve those machine learning 
algorithms in order to develop a better detection algorithm. 
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Android Malware, Codes Vulnerability, Malware Detection, 
Machine Learning, Smartphones. 
 

1. INTRODUCTION 

Because of the ease and efficiency of various apps, as 
well as the ongoing development in the software and 
hardware on smartphone usage, smart devices, and its 
related application are fast developing in the modern era. 
By 2023, it’s expected that it will be more than 4.3 billion 
smartphones users. The most popular smartphone 
operating system (OS) is Android.It has a market share of 
72.2 percent in May 2021. Apple iOS has the second-
highest marketplace share of 26.99 percent, with Samsung, 
KaiOS, and other minor suppliers sharing the remaining 
0.81 percent. The official app store for Android 
smartphones is Google Play. As of May 2021, there were 
over 2.9 million applications available on it. AppBrain 
classifies more than 2.6 million of them as standard 
applications, while 0.5 million are labelled as ordinary 
apps. Because of its global prominence, Android is a more 
appealing aim for thieves and is much vulnerable to 

viruses  and malware[1]. Various ways of identifying these 
assaults have been offered in studies, with machine 
learning being one of the most prevalent. This is because 
machine learning algorithms may generate a ordinate from 
a (restricted) collection of training instances [2].The usage 
of examples eliminates the required to describe signatures 
directly while constructing malware detectors. Signature 
definition necessitates knowledge and time-consuming 
human engagement, and while specific rules (signatures) 
do not exist for some attack situations, instances are 
readily available [3]. Android malware investigation may 
be done in three distinct methods, according to research. 
The deployment of static and dynamic content is the first 
technique. Before loading an application onto any device, 
the code of the program is examined for harmful 
components [4].  

The second approach entails modifying the Android 
operating system to include components for tracking and 
intercepting any unusual behaviour that may occur on the 
machine, while the third process entails using 
virtualization to integrate domain detachment ranging 
from lighter weight application exclusion to running 
numerous incidents of Android Operating system on the 
same machine [5]. However, recent research found that 
machine learning or "abnormality detection" technologies 
are becoming a dominant and more successful method of 
combating Android malware [6]. Wi Excepttatic analysis, 
which entails manually inspecting the Android 
Manifest.xml file, and Dalvik byte code, source files and 
source files, which entails working an app in a meticulous 
setting to observe its behaviour, this behaviour  Learning 
entails learning overall patterns and rules from legitimate 
and malignant app specimens, and then enabling data-
driven prognostications of decisions, like classification [7]. 
Static characteristics retrieved from an applications are 
applications machine learning approaches [8]. The static 
elements of an Android application serve as the foundation 
for machine learning methodologies, and these static 
characteristics are meticulously obtained through 
decrypting. Machine learning approaches have been 
widely used to classify programmes, with a particular 
focus on detecting generic malware.  

As a result, approaches for detecting these errors, in 
totalling to malware recognition techniques, are critical [9]. 
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The analysis of Android Application Package (APKs) to 
generate an appropriate set of structures, training machines 
and the deep learning (DL) algorithms on the resulting 
features to recognise malicious APK recognize two 
primary aspects of malware recognition using the machine 
learning [10]. As a result, an overview of the various APK 
analysis methodologies is given, including static, dynamic, 
and hybrid analysis. Vulnerability identification in 
computer code, like malware detection, includes two major 
phases: feature creation through static analysis and the 
training machine learning on derived structures to detect 
susceptible code segments. As a result, these 2 features are 
incorporated in the taxonomy of the review [11].The 
unrivalled threat of Android malware is at the root of a 
host of internet security problems, and it's an ongoing 
challenge for researchers and cyber security experts [12]. 
The only way to eradicate this threat is to detect and kill 
malware samples as soon as possible. The key to doing so 
is having a basic awareness of the many types and 
categories of Android malware. Finally, the report offers 
some mitigation and preventive measures for Android 
malware. They detect potentially harmful applications and 
alert the user, as well as take efforts to eradicate that 
affection. Antivirus detection rates have risen in lockstep 
with the threat level.  

 

2. LITERATURE REVIEW 

Oluwakemi Christiana Abikoye et al. discussed about 
the Android Operating System has been widely adopted by 
a variety of developers. This dynamic has resulted in an 
exponential growth of Anid-based smartphones across 
many areas of the business. Even though this development 
has resulted in significant technological advances and the 
ease of conducting business (e-commerce) and 
interpersonal relationships, they have also become 
powerful platforms for unchecked cyber-attacks and covert 
operations against company infrastructures and individual 
people of these portable devices. Various cyber-attack 
approaches exist, however, malicious application assaults 
have surpassed previous attack methods such as social 
engineering. Android malware has grown in sophistication 
and awareness to the extent where it is now very different 
from traditional detection methods, notably signature 
depend systems. The machine learning technologies have 
developed as a more competent choice for contending new 
Android malware's uniqueness and complexity. Machine 
learning (ML) prototypes work by first learning current 
malware behaviours and then utilising that information to 
discriminate or recognise any behaviour similar in novel 
threats. As reported in recent research, this study presented 
a complete evaluation of machine learning algorithms and 
their applications in the Android malware detection [13].  

Janaka Senanayake et al. explained about a malware 
assault are increasing as the usage of mobile devices grows, 
particularly on the Android phones, in which accounting 
for 72.2 percent of the overall market share. The hackers 
use a variety of tactics to target cell phones, including 
credential theft, spying, and the malicious advertising. The 
(ML) based approaches have shown to be useful in 
detecting these assaults, since they may construct a 
classifier from the sets of training instances, removing the 
requirement for an unambiguous specification of the 
signatures for developing malware indicators. This paper 
presents a comprehensive overview of machine learning 
depend android malware detection method. It assesses 106 
carefully chosen articles and identifies their fortes and 
flaws, and areas for growth. So finally, the ML-based 
approaches for perceiving source codes susceptibilities are 
described, because adding security after the program has 
been released may be more challenging. As a result, the 
goal of this study is to help academics get a deeper 
understanding of the topic and suggest prospective future 
research and development possibilities[11]. 

Talal A. Abdullah et al. explained about the number 
of Android-based mobile devices on the market is growing, 
these devices are becoming the prime targets for malicious 
software. Several Android malware programs have been 
developed in recent years to execute various unauthorised 
and dangerous operations on mobile devices. To identify 
such Android malicious applications, specialized tools and 
the anti-virus agendas employed traditional signature-
based methodologies. The most current Android malware 
applications, such as the zero-day, however, are not 
detectable using traditional approaches that rely on fixed 
signatures or IDs. As a result of their capacity to study and 
use prevailing knowledge to detect new Android malware 
applications, the most lately released research papers have 
proposed machine learning methods as an alternate 
strategy to detect the Android malware. This article covers 
the fundamentals of malware, Android architecture, and 
permission aspects that may be used as malware 
predictors[14].  

More importantly, this article empirically examines 
the different the achievement of five learning algorithms 
usually used in the literature for the detecting malware 
apps: K-Nearest Neighbours (K-NN), Support Vector 
Machine (SVM), Data Bus Network (DBN), Naive Bayes 
(NB) and Gated Recurrent Units (GRU). 

Research Question: 

 What is the requirement of Android malware 
detection? 

 How ML technique help to detect Android 
Malware Recognition?  

  
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3. METHODOLOGY 

On Android, the malware detection may be 
accomplished in two ways: identification based on 
signatures and identification based on behaviour [15]. The 
signature-based exposure technique is simple, effective, 
and produces minimal fabricated positives. The digital 
signal of the programme is analysed to patterns in a known 
malware collection. This technique, on the other hand, 
excludes the identification of ransom-ware. As a result, the 
anomaly-based detection technique is the most often 
utilized. On Android, malware detection may be 
accomplished in two types: signature-based detection and 
behaviour detection [16]. The system's binary code is 
examined to patterns in a list of known malware. However, 
this method does not permit for the identification of the 
unknown malware. The most often used detection 
approach is behaviour-based/ the anomaly detection. 

3.1. Design: 

Both dynamic and static analysis approaches 
converge successfully in hybrid analysis. The suggested 
approach retrieves the dynamic and static characteristics of 
the Android application. The methodology design focused 
on permission and application programming interface (API) 
characteristics of the Android application in the static 
detection, then filtered features depending on the weight 
derived by the term frequency-inverse document 
frequency (TF-IDF) approach. Each feature in static 
detection is assigned a weight based on the Naive Bayes 
method. They also presented experimental results from 
three ensemble algorithms for dynamic detection, 
indicating that the XGBoost algorithm beat the others. 
Finally, they demonstrated that their technique has a 
detection accuracy of 94.6 percent for 8000 applications 
(4000 benign apps and 4000 malicious apps), which is 
higher than the static detection accuracy of 85.3 percent 
and the dynamic detection accuracy of 94.1 percent for the 
same number of applications. 

 
Figure 1: The malware is detected by applying an algorithm 

such as a hybrid machines learning algorithm. 

As shown in given Figure 1, the virus is initially 
discovered by using an algorithm such as a hybrid 
machines learning technique and delivering the 
application's data set. A specific sort of data decoder is 
then used to decode the data collection. Following the 
decoding of the files, the characteristics are taken from the 
data and stored in a dataset over which the appropriate 
algorithm will be run to identify the virus. 

 
Figure 2: This shows the feature extraction of the dynamic and 

static extraction. 

 

Figure 2 depicts the features extraction strategy used 
for Android malware, which combines dynamic and static 
analysis. Decompiling the APK files yields static 
characteristics such as resource features and semantic 
features. Through one-hot in encoding, the static structures 
form a binary feature vectors. The dynamic structures are 
retrieved by observing the associated API calls while the 
APK is executing. The entity implanting approach is 
required to build features of vector for dynamic 
characteristics connected with time series. 

 

3.2. Instrument:  
3.2.1. Features Extraction:  

Static characteristics although extraction is debauched 
and uses slight system assets, making it suited for the 
large-scale feature extractions, it cannot identify 
obfuscated of Android malware. This study employs the 
hybrid detection approach combining dynamic and static 
analysis a whole of 353 features were retrieved, including 
293 static and 54 dynamic features. 
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3.2.1.1. Static Feature Extraction:  

The resource characteristics and semantic structures 
are among the retrieved static characteristics. 

3.2.1.1.1. Resource Features:   

The term "resource features" refers to features 
retrieved from APK resource files. The APK's 
inconsistency in structure and logic serve as the basic 
foundation for obtaining resource attributes. Inconsistent 
alludes to the artefacts left behind because of hidden 
hazardous components, culminating in an APK file with an 
abnormal architecture. When malicious software is 
bundled as a benevolent application, it generally leaves 
evidence behind, which is referred to as contradictory 
logic. 

3.2.1.1.2. Semantic Features:  

The semantic characteristics of the APK code file are 
extracted. Semantic characteristics include common static 
feature such the penetrating API and authorization. Author 
suggest several modern semantic characteristics, such as 
express purpose and other meta-data-mined features. 

3.2.1.2. Dynamic Features Extraction:  

Data decryption and encryption, file writing and 
reading, network data transfer, SMS, call, geographic 
position, and entrée to sensitive informations are examples 
of dynamic features. These behaviours might indicate the 
functions and goals of the application. In packages a 
simple application program that includes regularly used 
dynamic analytic methods, and built-in the web server may 
give users with nice interactive interface. In spin package 
not only collect fundamental information like permissions, 
shared libraries, components, User Identifier (UID), and so 
on, but it can also watch the application's activity in real-
time can alter the bent API, which means it can adapt 
dynamic behaviour necessary for observing, which is also 
the tool's main benefit. 

3.2.2. Features Encoding:   
3.2.2.1. Static Features Encoding:  

The majority of static characteristics are binary, with 
just a limited number of discrete features, and there is no 
link between them. As a result, the deep learning 
algorithms DBN is well suited to static features. Because 
the DBN’s input is the binary vector, the static 
characteristics are encoded into binary vectors using one-
hot encoding. The method of one-hot encoding involves 
converting discrete characteristics into binary structures. 
The discrete numbers 0, 1, 2, 3 are encoded to binary orders 
0001, 0010, 0100, 1000, for example. If one-hot encoding 
is used for discrete structures with a wide value ranges, the 
features vector will be scant. In this situation, the value 
ranges can be finely categorized after one-hot encoding to 
lower the feature dimension. Following one-hot encoding, 

entirely static characteristics are concatenated hooked on 
the binary vector, in which serves as the DBN's inputs. 

3.2.2.2. Dynamic Feature Encoding:  

After collecting the dynamic characteristics of an 
Android applications, the dynamic structures are molded 
into a chronological operating order. Since the dynamic 
characteristics are associated in with time, the neural 
network that can better suited for the dynamic behaviour of 
the Android applications software. The GRU network's 
input is a dynamic feature vector. Entity implanting is the 
data demonstration technique. It encodes organised discrete 
variable and attempts to keep the continuous link between 
data in the data representation.  

3.3. The Requirements of Analysis:  
3.3.1. Functional Necessities: 

The system generates malware detection for a given 
group of APK datasets. The detection's output must meet 
the following conditions: 

 Depending on the input data, the outputs ought to 
be possible to perceive malware. 

 The technology must be opoptimizedor the 
complexity of time and space. 

 The system will be able to notice new/ unknown 
malware variants. 

 The system will be able to know the outcome of 
harmful programs based on their previous 
behaviour 

 The system should be able to choose the 
appropriate feature set to include unknown 
behaviour stem should be capable of detecting 
malware from any domain. 

3.3.2. Non- Functional Necessities: 
3.3.2.1. User interface: 

There has to be a convenient and straightforward 
solution that allows the user to detect viruses using the 
APK dataset. The model is constructed using deep learning 
using the chosen features as input. A comparison analysis 
is performed, and a classification report is produced. 

 
3.3.2.2. Hardware: 

The system's effective implementation does not 
necessitate the use of any unique hardware interfaces. 

3.3.2.3. Software: 

● Tools: Android Studio, Anaconda3 

● Programming Languages: Java, Python 

● Dataset: APK dataset 
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● Operating System: Linux/Windows/ 
Macintosh 

The detection technique or classifier is used to identify 
whether or not a programs malware. The classifier 
determines if software is a malware or benign ware based 
on its attributes. Machine learning is required by the 
popular of classifiers. Machine learning classifiers employ 
one or more classifiers. In the detecting procedure, layered 
classifiers may also be utilized. In this example, there are 2 
or 3 levels, with every layer including identification to 
increase the detection system's accuracy. There are 
numerous individual classifiers in parallel classifiers. As 
indicated in the figure below, the outputs of various 
classifiers are merged to achieve improved accuracy. 
Another classifiers, like analytic hierarchy process (AHP) 
and punishment computation, do not employ machine 
learning. Figure 3 depicts collective machine learning 
classifier used in the Android mobile malware exposure. 
The deep learning models based on a mix of the deep belief 
networks and the gates recurrent units is presented based on 
the varied characteristics of the dynamic and static 
properties of Android applications.  

The advantage of employing the DBN is that static 
structures of the Android applications learn earlier and 
perform better. GRU outperforms typical machine learning 
models in coping with lengthier time operations sequences, 
with rarer parameters, quicker training speeds, and fewer 
data necessary to obtain a satisfactory generalisation effect. 
As a result, the GRU neural networks is more suited to 
handling the dynamic elements of Android applications. 
Figure 2 depicts the DBN-GRU hybrid models for the 
Android malware detection. The dynamic and static 
features vectors are utilized to sequence the DBN-GRU, 
individually, and the outputs vectors are fed into the 
completely connected layers. So, the softmax functions 
transfers several neurons' outputs to the intermission (0, 1) 
and produces classification outputs in the procedure of 
possibility. The SVM algorithm is parts of back 
propagation algorithm that is charity to fine-tune the DBN 
and GRU variables. Figure 4 depicts a hybrid feature that 
may be created using DBN, KNN-SVM, and GRU. 

 

Figure 3: The above diagram shows the android package which 
helps to select the feature for the static and dynamic state. 

 

Figure 4: The above diagram shows the hybrid feature which 
can be made with the help of DBN, KNN-SVM, and GRU. 

 

 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023 
 

207

4. RESULT AND DISCUSSION 

 

Static features are those that can be extracted without 
operating the program. A static feature extractor is a 
technique that extracts the static features. Some studies 
concentrate on a single category of static properties, while 
others examine a large number of them. Permissions, API 
calls, extracted strings, XML components, native 
commands, meta data, intents, usage scenarios, components, 
and other static properties are all prevalent. To extract static 
features, you can utilise the document, dex file, or byte 
code. The APK tool is the most extensively used. 
Researchers get the APK file, Smali file, classes.dex and 
Manifest file from the APK tool. Table 1 shows the type, 
sources, and number of models in dataset. A total of 7,000 
benign samples were obtained through web crawler from 
the Google Play and the APK mobile applications stores. 
The malware collection contains 6,298 samples, all of 
which were obtained from communal malware distribution 
websites. The malware samples dataset is split into 2 parts 
based as to whether the trials use misdirection technology: 
each part is the nonobfuscated malware set of data 
available for download from VirusShare, as well as the 
other parts is the obscured malware dataset available for 
download from the PRAGuard acquired by distorting the 
Contagion Minimum and MalGenome sets of data with 
five different evasion techniques. 

The most often utilised aspects of obfuscated 
malware sample and the nonobfuscated malware sample 
are compared. Figures 5 and Figure 6 depict the top ten 
commonly utilised attributes of the two types of samples. 
Permission-related structures (such as Write SMS, Read 
SMS, and so on) of both example kinds are widely 
employed since permission structures are hard to conceal, 
and obfuscating authorisation features destroys the basic 
edifice of APK.  However, several sensitive API structures 
(such as Telephony manager get devised, etc.) are 
commonly utilised in non-obfuscated malware sample but 
extremely seldom in the obfuscated malware sample, 
indicating that malware sample after obfuscation might 
evade associated detections when accessing sensitive APIs. 
It checks if the certificate's creation time and the time it's 
used to sign the APK are the same. This feature appears 
often, suggesting that automated repackaging is used to 
build the bulk of obfuscated malware variants. 

Table 1: This table shows the benign and android malware type. 

Type Originator Number Total 

Malware Praguard 4500 7360 

Virus 2860 

Benign Android 5300 8300 

package 

Google Play 
Apps 

3000 

 

 

Figure 5: The above graph shows the nonobfuscated 
malware feature. 

 

Figure 6: The above graph shows the obfuscated malware 
feature. 

The Hybrid Deep Learning Model’s (HDLM) 
Detection Effects Table 2 shows the results of evaluating 
the detection impact of the (HDLM) and (DBN-GRU) on 
Android malware using the indicators of recall, precision, 
and accuracy. Standard machine learning models (such as 
SVM, Nave Bayes, and KNN) are much worse than deep 
learning models and Figure 7 shown the accuracy after 
applying the machine learning methods for detecting the 
malware in android. 

3.4. Evaluation Parameters: 

The True Positive Rate (TPR) defines the percentage 
of benign apps identified accurately, where 
i. TPR = TP (TP+FN) 

TP is the number of properly recognised benign 
applications, whereas FN denotes the amount of 
erroneously identified kind apps. The False Positive Rate 
(FPR) is the percentage of malware programmes that are 
wrongly identified, where 
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3.4.1. FPR = FP/(TN+FP) 

The numbers of mistakenly identified malware is 
denoted by FP, while the number of appropriately 
identified malware is denoted by TN. Accuracy (ACC) is a 
performance statistic that is used to quantify overall 
performance. The percentage of accurately identified apps 
is referred to as accuracy, where 

3.4.2. ACC=(TP+TN)/(TP+TN+FP+FN) 

Table 2: Detecting the effects of the different machine 
learning algorithm. 

 

MALWARE 
SAMPLE 

BENING 
SAMPLES EXACT

NESS ACCUR
ACY 

REC
ALL 

ACCUR
ACY 

REC
ALL 

NAÏ
VE 
BA
YES 

87.60 87.90 87.01 80.10 85.10 

KN
N 

86.93 84.59 85.50 87.50 87.20 

SV
M 

94.80 94.87 93.40 89.90 91.40 

DB
N-
GR
U 

98.80 98.70 98.84 97.40 97.90 

 

Figure 7: The above graph shows the different accuracy with 
different machine learning approaches. 

 

 

5. CONCLUSION 

 

To identify mobile malware and malicious activity, 
researchers employed static, dynamic, and hybrid 
approaches. The key interest of researchers is accuracy 
levels, and the majority of research articles use accuracy 
measures to explain the efficacy of their detection 
technique. Performance overhead should be addressed for 
mobile device operating systems, since better precision 
may result in more overhead. To make the detection 
procedure efficient, accuracy and performance overhead 
must be effectively matched. The static characteristic is 
created by examining the sample's formats, then collecting 
the hash value, string data, function data, header file data, 
and metadata data. However, when stationary camera is 
packed, encoded, or compacted, static characteristics are 
unable to effectively identify malware, making it difficult 
for static characteristics to communicate the genuine intent 
of malware, lowering detection rate. The behaviour of the 
sample operation and the characteristics of the debugging 
record, such as file actions, process formation and 
destruction, as well as other dynamic behaviours, are 
examples of dynamic characteristics. The extracted 
dynamic characteristics give a more accurate 
characterization than the static characteristics since the 
dangerous activities of malware during dynamic runtime 
cannot be hidden. However, dynamic extracted features 
must be performed in a virtual world that will be restored 
and returned to its previous condition after each harmful 
sample is evaluated, ensuring that the virtual world is a 
legitimate user scenario. As a result, the efficiency of 
extracting features is substantially lower than that for 
classifiers. Researcher look at the current research projects 
in 3 groups: dynamic, static, and hybrid analysis.  

The data collection, features, characteristic selection 
process, detection method, and accuracy are all represented 
in these research. Authors also discussed the gap in the 
literature and the limits of present studies. As a result, 
author were able to identify the suspicious feature lists that 
malware authors frequently utilise. For Android malware 
detection, this research integrates dynamic and static 
analytic technologies and constructs a hybrid deep learning 
method depend on GRU, DBN, KNN and SVM. To 
contract with concealment technology, modern stable 
features with stout antiobfuscation abilities have been 
introduced, and dynamic characteristics of the software 
applications at the given runtime have been removed to 
expand the Android malware set of structures. A hybrid 
deep learning model containing DBN, SVM, GRU, and 
KNN is utilised for learning based on the varied 
characteristics of dynamic and static data, and the 
detection impact of this model is proven by comparison 

75 80 85 90 95 100

NAÏVE BAYES
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DIFFERENT MACHINE LEARNING 
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MALWARE SAMPLE



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023 
 

209

tests. There are various research questions that need to be 
answered in the future.  
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