
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

77

Manuscript received August 5, 2023
Manuscript revised August 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.8.9

Building a Dynamic Analyzer for CUDA based System.

SALAH T. ALSHAMMARI

King Abdul-Aziz University, College of Computing and Information Technology, Jeddah, Saudi Arabia

Summary
The utilization of GPUs on general-purpose computers is
currently on the rise due to the increase in its programmability
and performance requirements. The utility of tools like
NVIDIA’s CUDA have been designed to allow programmers to
code algorithms by using C-like language for the execution
process on the graphics processing units GPU. Unfortunately,
many of the performance and correctness bugs will happen on
parallel programs. The CUDA tool support for the parallel
programs has not yet been actualized. The use of a dynamic
analyzer to find performance and correctness bugs in CUDA
programs facilitates the execution of sophisticated processes,
especially in modern computing requirements. Any race
conditions bug it will impact of program correctness and the
share memory bank conflicts to improve the overall performance.
The technique instruments the programs in a way that promotes
accessibility of the memory locations accessed by different
threads well as to check for any bugs in the code of a program.
The instrumented source code will be used initiated directly in
the device emulation code of CUDA to send report for the user
about all errors. The current degree of automation helps
programmers solve subtle bugs in highly complex programs or
programs that cannot be analyzed manually.
Keywords:
CUDA programs, GPU, Dynamic Analyzer, software testing,
Race conditions, bank conflicts.

1. Introduction

After reaching the epitome of optimizing single-
core processors, the microprocessor industry has shifted
into integrating multiple cores to attain significantly high
processing speeds. The application has integrated
microprocessor cores has overwhelmingly transformed the
computing industry. For instance, the General Processing
Units (GPUs) are some of the computing units that use up
to 128 cores, which leads to tremendous processing speed.
This level of integration is regarded to as “manycore”, a
modern technology that has improved the computing
platform to suit the high demand in the industry (Li,
Guodong, and Ganesh [6]). Computer developers and
programmers have been able to attain high concurrency in
the execution of basic and sophisticated computer
applications. The main goal of design GPUs is the
effective executive of 3D rendering applications; however,
there is a significantly high demand for advanced
programmability by graphics designers and programmers.
Consequently, they are utilized in the general

multipurpose structures especially where complex
instruction sets and rich memory hierarchies are needed.
Crucially, it is through the use of CUDA that programmers
can develop general purpose applications for multipurpose
utilization of computer resources. Nonetheless, the risk of
data races and the possibility of contention in the
utilization of resources make it difficult to write multi-
threaded GPU programs. Apparently, with just two threads
the bug of synchronization in the CPU program may have
a significantly low likelihood of occurrence when the
sophisticated program executed.

A bug parallel program may have too many
threads with a much higher possibility of happening. The
use of debugging and testing tools used mainly for
applications of the desktop are normally not available in a
parallel environment with several processes. Therefore, in
the parallel program, solving and locating a bug becomes
very difficult. In a sequentially executing program,
however, it is possible to locate and solve bugs using a
small number of threads from a multi-threaded application.
Apparently, locating and solving these bugs becomes
impossible when hundreds or thousands are involved. At
this point, the use of automated analyses enhances the
handling of bugs on parallel programs.

 The adaptation of software instrumentation
techniques to CUDA programs. Certainly, the adaptation
is done using modern and advanced instrumentation
techniques since CUDA programs use multi-threaded
barriers that have memory and space limitations.
Traditional approaches are also written in simple
programming languages, which make them incompatible
with advanced programs. The use of an automated
approach to instrumenting CUDA programs is highly
efficient in detecting most classes of bugs during program
runtime. The approach is recommended to programmers as
a usable tool in finding performance bugs and correctness
in complex codes which are too difficult to be analyzed
manually. The automated approach has been successfully
configured to automatically detect ineffective memory
access patterns and race conditions bugs in CUDA
programs. Mostly, race conditions and ineffective memory
access patterns are representative of general classifications
of codes problems, memory contentions that happen as
thread counts, and core counts grow during the execution
process and synchronization errors.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

78

2. The GPU

The performances of Graphics Processing Units
continue to increase with the advancement of parallel
microprocessor technology. Its peak performance speed
has already bypassed the speed of Intel’s most advanced
CPU. Therefore, CPU’s are most preferable in providing
the most needed rapid performance growth in most high-
demand computing requirements. The GPU performance
technology utilizes replicating simple processing elements
(PEs), which target throughput rather than single-thread
performance. The system is also designed to allocate much
less die area to caches and control logic. Additionally,
different groups of PEs are harnessed under the SIMD
control, which enables the system to amortize the area
overhead of the instruction store and control logic.

Advanced cache management has been
successfully utilized to increase the performance of the
GPU by reducing memory latency. In this regard, the
GPUs depend on massive multi-threading where the
system supports up to thousands of threads. Apparently,
constant tests have indicated that it is nearly impossible to
reduce memory latency by merely increase the cache
memory for bug processing while other processes are
ongoing. Multi-threading technology increases
performance by reducing the number of on-hold processes,
which enhances increased multi-level performance.

Li et al. proposed that the automated abstraction
of techniques can be significant in reducing the efforts
required to undertake concurrent system analysis [6]. A
high-precision approach to behavioral symmetry present in
GPU programs facilitates CUDA race detection in a highly
simplified approach. The use of abstraction techniques
enhances a controlled flow of threads such that the
debugging process takes less time as possible. An
extensive analysis of complexity has played a significant
role in addressing the issues required to articulate the
complexity of locating and debugging errors during the
execution of programs.

Programmers and advanced computer users can
develop GPU graphics easily using various classical image
processing algorithms using the Computer Unified Device
Architecture (Yang, Yating, and Yong [12]). The main
features of CUDA-GPU enhance the summary of the
general process of enhancing the effectiveness of software
development. CUDA enables programmers to implement
several image processing algorithms such as histogram
equalization, edge detection, and removal of clouds. An
increase in the size of the image prompts a histogram
computation leading to a speed-up of 40 times. Other
image processing functions such as removal of clouds may
prompt speed of about 70 times while edge detection may
prompt a speed increment of a speed of about 400 times.
These operations have made a significant transformation

in the image processing requirements in a
multidimensional computation framework.

1.1 General-Purpose Computation on GPUs

 The computation performance of general-purpose
on graphics processing unit GPUs has gained extensive
interest following the flexibility and performance of GPUs
with respect to the contemporary CPUs. GPGPU programs
were previously written using graphics APIs. The GPU-
specific hardware offered a reliable and powerful
computing platform, which facilitated the execution of
overhead non-graphics computation into graphics API.
With time, significant advancements have been
accomplished. Already, NVIDIA and ATI have released a
series of software tools for simplifying the development of
GPGPU applications. The Close-to-the-Metal (CTM),
released by API in 2006 offers a low-level interface for
programming of graphics processing unit GPU (Sanders
and Edward [7]). Alternately, NVIDIA has released Tesla,
Quadro, and GeForce based products, which are
embedded in the architecture of Tesla hardware that
allows programmers to implement general-purpose
programs for the graphics processing units.

3. The CUDA

The CUDA NVIDIA is a development toolkit
and a free source language. It is highly preferred due to it
makes the processing of programming general-purpose
applications simple for the latest GPUs NVIDIA.

CUDA is an application programming interface
comprising an extended version of C with a runtime
library. The characteristic abstractions provide a notion of
a kernel function with a series of routines, which are
invoked whenever the system is attempting to invoke
commands during thread instances [16]. Thread instances
comprise SIMD core and barrier synchronization. These
features are highly dependent on a series of debugging
processes and swift microprocessor functions. As a virtual
machine, CUDA is assigned to many streaming
multiprocessors, that are arranged as a 32-wide SIMD
cores along with multiple thread contexts of more than
512 thread contexts. Thread contexts are majorly bundled
into warps of 32 threads each, which are multiplexed onto
the SIMD hardware.

On a 2D grid the kernels are recalled, which is
sub-separated into a maximum of thread blocks of a
capacity of 64K 3D. Every Single thread block is
completely mapped to completion on an arbitrary
streaming multiprocessor to be executed. Concurrently,
the warps are multiplexed on a cycle-by-cycle granularity
based on their readiness to execute. In their execution,
threads do so in lockstep while discrepancy is treated by a

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

79

masking and branch stack. The streaming multiprocessors
are characterized by fast and small software-controlled
shared memory by each thread in any communicated
thread block.

The CUDA Tesla architecture is only confirmed
from NVIDIA, which includes the 8-series, Quadro, and
GeForce, GPU’s and the computing model of Tesla GPU.
After launching the kernel, the hardware scheduler is used
to assign every single thread block to a single streaming
multiprocessor with enough space for holding the entire
thread block. In the event that several thread blocks fitting
with a single streaming multiprocessor, it will be executed
systematically and concurrently since each thread is
allocated a scalar, which enables them to execute arbitrary
addresses to the respective codes. Sufficient memory is
required to facilitate the execution of commands in the
respective order. Presumably, the programs contain a
single thread; therefore, it is assumed that it is possible to
access all the resources from a centralized location.

Building a Dynamic analyzer for a CUDA system requires
the assessment memory locations and the processor speed
of the underlying system. The system needs to evaluate
the limitations of the host system, the capacity of fighting
bugs, and the capacity to detect the correctness of the
program. Apparently, a former classmate experiences the
challenges of sufficient memory for the execution of
single or multiple cases. CUDA Tool makes the
developing process of the GPGPU simple. Mistakes the
performers make is by compiling the system improperly
triggering mistakes and reducing the correctness of the
code. The aforementioned technique for automatically
instrumenting CUDA programs with literally no
programmer input can be achieved systematically through
the real-time detection of race conditions and
inconsistency in the shared and dedicated memories
respectively.

4. The Dynamic Analyzer Architecture

Convert the original CUDA source code to an
intermediate representation (from C code to CIL code) by
the source-to-source compiler, which is a representation
that makes it easy to analyze and manipulate C programs
and emit them in a form that resembles the original source.
The intermediate representation is transformed and
instrumented by the instrumentor, then the instrumentor
generates instrumented CUDA source code based on
specific rules. The instrumented program is then compiled
by the compiler. Finally, the dynamic analyzer executes
the executable file and output the list of dynamic errors.
The elements of the analyzer system:

A source-to-source compiler: Convert the original
CUDA source code to an intermediate
representation (from C code to CIL code).
Instrumentor: generate instrumented CUDA source
code based on specific rules. The Instrumentor
contains a lexical analyzer known as a scanner. It
converts the input program into a sequence of
Tokens.
Compiler: to compile the instrumented program
and convert it to an executable file to executes it
and output the list of dynamic errors.

Figure 1: Dynamic Analyzer Architecture for CUDA based system

5. Analyses of CUDA code

As established in the previous sections of the
paper, CUDA, the general-purpose application
development for GPUs (GPGPU) makes the developing
process of general-purpose programs for the GPU simple.
According to Kerr, Andrew, and Sudhakar, the general
purpose application development for GPUs (GPGPU)
provides a cost-effective alternative for accelerating data
and computing intensive applications. The current
software development aims to enhance effectiveness in the
software application process as well as a compiler
optimization, and the ultimate transformation of
microprocessor processing.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

80

 According to Zheng et al., illustrates the cost-
effectiveness of GPUs in achieving high performances in
image and graphics processing [10]. For this reason, most
programmers and media specialists have found favor in
the use of GPUs as opposed to contemporary CPUs.
CUDA and OpenCL are some of the programs that have
dynamically embraced GPUs for both graphical and non-
graphical operations. The desire of most programmers is
to achieve the correctness of their programs. Apparently,
the GPU micro processing framework offers a
multithreaded environment which triggers the occurrence
of data races. Data races can negatively affect program
reliability. In response, different tools have been devised
to detect race conditions and eradicate them beforehand.

5.1 Data Races in CUDA

The current approaches to detecting race
conditions are limited by the lack of scalability due to the
state explosion problem. State explosion occurs when the
number of state variables in the system increase and the
size of the system state space increase exponentially
(Clarke et al. [2]). Another limitation is the reporting of
false positives due to the simplified modeling or the
presence of non-lock synchronization primitives.
Ultimately, the presence of prohibitive runtime and space
overhead can hinder the logical flow of commands during
the flow of execution. Essentially, Essentially, GRace
could be effectively used to detect data races without
bogging the system with unnecessary processes.

5.1.2 Avoiding Race Condition

Mainly, in simple programs such as the one
illustrated in figure 2 below, race conditions are detected
and corrected manually. but this process is infeasible in
complex programs.
1. #define N (2048*2048)
2. #define THREADS_PER_BLOCK 512
3. __global__ void dot(int *a, int *b, int *c)

{
4. __shared__ int temp[THREADS_PER_BLOCK];
5. int index = threadIdx.x + blockIdx.x *

blockDim.x;
6. temp[threadIdx.x] = a[index] * b[index];
7. __syncthreads();
8. if(0 == threadIdx.x) {
9. int sum = 0;
10. for(int i = 0; i < THREADS_PER_BLOCK; i++)
11. sum += temp[i];
12. *c += sum;
13. atomicAdd(c , sum);
14. }
15. }

Figure 2: CUDA program with Race Condition

The Race Condition error happen if two or more threads
need to access and operate on a memory location without
synchronization, as shown below in figure 3.

Figure 3: CUDA program with Race Condition

The source code of the CUDA program is
transferred as an intermediate representation to recalls
declarations knowledge and type qualifiers for the CUDA-
specific. By using the C Intermediate Language
framework. Then the analyzer is instrumented and
transformed the intermediate representation. These
transformations are just to use these transformations by
global or device and shared functions, after that the
analyzer converts the instrumented representation to
Cuda’s dialect of C.

GRace utilizes analysis to reduce the number of
statements that are entailed in the procedural
instrumentation [10]. Thread scheduling and the execution
models are significant in the detection of data races
without generating reports on false positives. The schemes,
GRace-stmt and GRace-addr are specifically designed for
NVIDIA GPUs. They are purposely designed for dynamic
evaluation, logging, and analysis during runtime. They are
also integrated using the same scheme analysis which
simplifies the algorithmic development. They are also
integrated with three data race bugs in three GPU kernel
functions, which is critical in the analysis and articulation
of the critical GPU processes.

The Btool is established as a secondary
mechanism to report false positives [10]. Apparently,
GRace-addr incurs a low runtime overhead and a low
space overhead after a comprehensive analysis on the
kernels. Grace-stmt, on the other hand, offers diagnostic
procedures on all matters involving data races that exceed
the threshold overhead. The two schemes have been used
to transform the programmability of GPUs, leading to
nearly a perfect micro processing mechanism using GPUs.
The schemes have also enhanced the utilization of GPUs
in multiple capacities that require extensive data
processing. A wide variety of users with little
programming experience can scale their applications using
GPUs with overwhelming ease.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

81

Referring to the CUDA code illustrated in figure 2, it can
be noted that a race condition can be seen on line 12 of the
code. After running the code through an automated
instrumentation tool, Evidently, automated instrumentation
detects and reports race conditions comprehensively. It
further adds a call to syncthreads between lines 11 and 12;
however, re-running the code does not report a race
condition.

5.2 Performance

Understanding the performance of the CUDA program can
significantly influence the implementation dynamics
involving the appropriate resource allocation in terms of
memory and processing speed. In some cases, developers
parallelize various applications with the aim of optimizing
performance and enhancing memory utilization.
Apparently, parallelizing the application would else not be
applied if it negatively influences the performance of the
application. Alternately, the application would not be
allocated dedicated resources if its performance cannot be
significantly verified.

Parallelizing can be critical if attributed to some
significant improvements in the overall improvement of
the application. Therefore, maximizing performance on a
CUDA program entails the utilization of share memory,
enhancement of efficient debugging, and advanced micro
processing using the GPU.

According to Fang, Ana and Henk, although
CUDA and OpenCL are critical in image processing, there
is a significant difference in their performance [3].
Differences are exhibited in the programming models used
to enhance their mode of operation, optimization strategies,
background compilers, and the architectural framework.
Inherently, CUDA is far more efficient than OpenCL;
however, to basic computer users, the difference is
insignificant. Additionally, how effective each of the
performance depends on the secondary features such as
the processing capacity of the computing devices. OpenCL
is also widely used as an alternative to CUDA or in the
conduction of analytical reports on the performance of
both applications.

Che et al. provides that GPUs are characterized
by simplistic, data-parallel, deeply multithreaded cores,
and high-memory bandwidths, which are easily
programmable and effective in advanced image processing
[1]. As aforementioned, speedups for a variety of general-
purpose applications make GPUs incomparable to the
contemporary general-purpose processors (CPUs) in terms
of speed and portability. The C-like programming
language used by NVIDIA has enhanced the design of
highly effective image processors. In addition to the
programming language, programmers have established
specific coding idioms to enhance GPU performance

under extreme system utility. The ultimate goal of these
approaches is to ensure that the GPU is to enhance
performance and meet the growing demand in the current
market where image processing is largely widespread.

Farooqui et al. [4] proposed the design and
implementation of a dynamic instrumentation
infrastructure for PTX programs that procedurally
transform kernels and manage related data structures.
These can be achieved by the use of a GPU Ocelot
dynamic compiler infrastructure which is only unique to
PTX programs. The profiling and instrumentation tool
chains facilitate the acceleration of the workload being
executed by the GPU, provide information that can be
used to manage load imbalance, and enhance the
utilization of the resource allocator to enhance
performance.

Ultimately, these too chains facilitate the compute
utilization feedback which is enhanced by the simulated
process scheduler. The hypervisor is critical in the
establishment of a feedback platform, where the user or
programmer can utilize real-time information to manage
system resources for ultimate microprocessor performance.
Occasionally, compilation overheads may be necessary
while performing dynamic compilation during a series of
GPU processes. These activities increase runtimes during
the execution of instrumental kernels in extensive
processing frameworks. According to Farooqui et al [4],
compilation overheads constitute 69% of the time required
to complete the execution as a result of instrumentation
modules on the kernel. This phenomenon provides a
critical framework within which the system can be
optimized using the readily available features on the
system.

5.2.1 Bank Conflicts

Accessing global memory is enhanced by system
developers due to the fact that such shared memory is
located on a chip. Mostly, for easy accessing of global
memory, the system is designed such that it cannot be
cached. Consequently, the process facilitates fast access to
shared memory, which obviously depends on the
accessibility pattern. According to Harris, the shared
global memory is split into 16 banks which hold
sequential words in memory [11]. The access speed is
significantly high following the ability of the threads to
access the same bank. In this case, the speedy access can
be effectively equated to register access.

The access of a bank by a series of registers
enhances the serialization of the accesses of the respective
threads, which decreases the aggregate throughput of the
CUDA program (Ruetsch et al. [13]). The banking
strategy is strategized to enhance the scalability of the
memory being accessed by the respective users of the host

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

82

program. Whenever different threads access the memory,
they are serialized to enhance a systemic development
approach in the articulation of the accessibility framework.
The number of cores in the multicore processors increases
gradually in line with the increase in the need for
scalability.

Figure 5: Bank Conflicts

The performance of the program when the bank conflicts
occur if four times the performance of the program
without any conflicts. Apparently, such performances
correspond to worse than if the program was rewritten the
slow, off-chip global memory (Iwai et al. [14]). Evidently,
in order to improve the performance and optimization of
CUDA programs, the developer must significantly reduce
any occurrence of such conflicts.

5.2.2 Avoiding Bank Conflict

The initial step towards reducing bank conflicts is
being able to detect them. The analysis of memory
accesses is used to detect bank conflicts in simple
programs. The correctness analysis approach, which uses a
manual analysis approach can also be used to detect bank
conflicts; however, the approach becomes infeasible when
the programs become complex. The use of automatic bank
detection is thus mostly used to address the challenges of
bank conflicts (Ryoo et al. [12]). The use of a highly
particular instrumentation code is inserted into the second
step to detect bank conflicts immediately they start to
build up.
Additionally, the use of a global array enhances the
storage of the addresses accessed by each thread in the
program. A code is always added for each thread so that it
can be able to update its entry in the array every time the

shared memory is accessed. A synchronism between the
memory access and code integration enables the threads to
calculate each access to memory bank by all threads,
which determines if there are bank conflicts and
determines the impact of these bank conflicts. All
information regarding the access and the presence of bank
conflicts is progressively displayed to the program
developer.

6. Testing Results

The use of an explicit synchronization can be
used to avoid race conditions, which facilitate the
definition of a specific macro that can be used to avoid
bank conflicts. Illustratively, removing the
synchronization statements in the program can be used to
observe the performances of the tools while detecting the
race conditions that arise in the course of the
implementation process. In addition to observing the race
conditions, the approach can enhance the detection of the
bank conflicts as well as the detection of the resultant lack
of bank conflicts.

6.1 Analysis of CUDA code Correctness

The race condition analysis was illustrated scan
and the scan performance of the program analyzed using
syncthreads calls. The analysis of the unmodified version
indicated no race conditions. Modification of the three
versions of scan and removal of the syncthreads reported
race conditions following the removal of the
synchronization point.

6.2 Analysis of CUDA code Performance

The performance was conducted by the bank
conflict analysis using the original version of the scan that
had been redesigned to observe the performance of the
program with or without the bank conflicts. The
performance analysis enabled the developers to analyze
the severity of having bank conflicts and approaches that
could be used to eradicate them effectively. Ultimately, the
illustrations indicated that the user could effectively
develop an automated analysis to check the program
development while the user code without the fear that
bank conflicts could lower program performance.

6.3 Performance Impact of Instrumentation

Running the CUDA applications in emulation
mode is mostly recommended due to its improved
debugging capabilities. Primarily, an instrumented source

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

83

code produced by the source code presented earlier in the
study provides that it is advisable to run the code in device
emulation mode as opposed to the usual GPU hardware.
Majorly, comparisons between the runtime of the original
application and the instrumented code running in the
simulation code can be used to determine the computing
and performance overhead of the instrumentation code.

7. Related Work

Several dynamic analyses frameworks are used to
detect and address concurrency errors in writing CUDA
programs. The Eraser tool is one of the common systems
that transform programs to track locks held on various
programs [15]. Following the occurrence of syncthreads;
however, memory locks are applied in streamlining the
integrity of the CUDA program. Parallel programs can
also be applied in addressing the issues associated with the
development of efficiency in the coding process.

Yang and Huiyang observed that parallel
programs comprise a series of code sections, which are
characterized by a diver thread-level parallelism (TLP) [8].
Therefore, a thread occurring in a parallel program such as
a GPU kernel in CUDA programs contains parallel loops
and sequential codes. NVIDIA utilizes dynamic
parallelism to enable a GPU thread to initiate another GPU
kernel thus reducing the overhead of launching kernels
from the contemporary central processing unit (CPU).
Yang and Huiyang further propose the use of control flow
in activating different numbers of threads on various code
sections [8]. The nested parallelism in CUDA can be
implemented utilizing a directive-based compiler method.
Optimized GPU kernels are automatically generated once
the CUDA-NP is initiated. Consequently, such optimized
GPU kernels enhance the efficient management of on-chip
resources while reducing scan primitives. CUDA-NP has
been used to improve the overall GPU performance by
6.69 times. Michael et al. [16] built a dynamic analyzer to
detect the CUDA code errors, which enhances the
performance of the CUDA programs.

8. CONCLUSION

Characteristically, a parent thread can be able to
communicate with the child threads; however, it can only
do so via global memory. Additionally, the overhead of
the parent graphics processing unit GPU lacks any
triviality even within the GPUs. Nonetheless, it is possible
to show that the existing GPGPU benchmarks containing
parallel loops have a relatively low loop count.
Occasionally, these benchmarks are characterized by high
degrees of thread-level parallelism. In this case, therefore,
leveraging such parallel loops using dynamic parallelism
can be unable to offset its overhead, making it difficult to

utilize the GPU processing speed and system resources.
The use of nested parallelism in CUDA may increase the
number of threads when initiating the GPU program.

References
[1] Che, Shuai, et al. "A performance study of general-

purpose applications on graphics processors using CUDA."
Journal of parallel and distributed computing 68.10 (2008):
1370-1380.

[2] Clarke, Edmund, et al. "Progress on the state explosion
problem in model checking." Informatics. Springer, Berlin,
Heidelberg, 2001.

[3] Fang, Jianbin, Ana Lucia Varbanescu, and Henk Sips. "A
comprehensive performance comparison of CUDA and
OpenCL." Parallel Processing (ICPP), 2011 International
Conference on. IEEE, 2011.

[4] Farooqui, Naila, et al. "A framework for dynamically
instrumenting GPU compute applications within GPU
Ocelot." Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units. ACM,
2011.

[5] Kerr, Andrew, Gregory Diamos, and Sudhakar
Yalamanchili. "A characterization and analysis of ptx
kernels." Workload Characterization, 2009. IISWC 2009.
IEEE International Symposium on. IEEE, 2009.

[6] Li, Peng, Guodong Li, and Ganesh Gopalakrishnan.
"Parametric flows: automated behavior equivalencing for
symbolic analysis of races in CUDA programs."
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society Press, 2012.

[7] Sanders, Jason, and Edward Kandrot. CUDA by
Example: An Introduction to General-Purpose GPU
Programming, Portable Documents. Addison-Wesley
Professional, 2010.

[8] Yang, Yi, and Huiyang Zhou. "CUDA-NP: realizing
nested thread-level parallelism in GPGPU applications."
ACM SIGPLAN Notices. Vol. 49. No. 8. ACM, 2014.

[9] Yang, Zhiyi, Yating Zhu, and Yong Pu. "Parallel image
processing based on CUDA." Computer Science and
Software Engineering, 2008 International Conference on.
Vol. 3. IEEE, 2008.

[10] Zheng, Mai, et al. "GRace: a low-overhead mechanism
for detecting data races in GPU programs." ACM SIGPLAN
Notices. Vol. 46. No. 8. ACM, 2011.

[11] Harris, Mark. "Optimizing cuda." SC07: High
Performance Computing With CUDA, 2007.

[12] Ryoo, Shane, et al. "Optimization principles and
application performance evaluation of a multithreaded GPU
using CUDA." Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel
programming. ACM, 2008.

[13] Ruetsch, Greg, and Paulius Micikevicius. "Optimizing
matrix transpose in CUDA." Nvidia CUDA SDK
Application Note 18 (2009).

[14] Iwai, Keisuke, Takakazu Kurokawa, and Naoki Nisikawa.
"AES encryption implementation on CUDA GPU and its
analysis." Networking and Computing (ICNC), 2010 First
International Conference on. IEEE, 2010.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

84

[15] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.
Anderson. ''Eraser: A dynamic data race detector for
multithreaded programs''. ACM Transactions on Computer
Systems, 15(4):391–411, 1997.

[16] Michael Boyer , Kevin Skadron , Westley Weimer
''Automated Dynamic Analysis of CUDA Programs''

[17] A. Ghanbari, S. Benton, and L. Zhang, “Practical
program repair via bytecode mutation,” in International
Symposium on Software Testing and Analysis. ACM, pp.
19–30, 2019.

Salah T. Alshammari: Ph.D. student at
king abdulaziz university, department of
computer science, college of computing
and information technology, Jeddah, Saudi
Arabia. His main research interests are
Information Security, Cybersecurity,
Security in Cloud Computing, Trust in
Cloud Computing, Software Testing.

