
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

177

Manuscript received August 5, 2023
Manuscript revised August 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.8.21

Malware Detection Using Deep Recurrent Neural Networks with no
Random Initialization

Amir Namavar Jahromi and Sattar Hashemi

Shiraz University, Computer Science & Engineering and Information Technology Department, Shiraz, Iran

Summary
Malware detection is an increasingly important operational focus
in cyber security, particularly given the fast pace of such threats
(e.g., new malware variants introduced every day). There has
been great interest in exploring the use of machine learning
techniques in automating and enhancing the effectiveness of
malware detection and analysis. In this paper, we present a deep
recurrent neural network solution as a stacked Long Short-Term
Memory (LSTM) with a pre-training as a regularization method to
avoid random network initialization. In our proposal, we use
global and short dependencies of the inputs. With pre-training,
we avoid random initialization and are able to improve the
accuracy and robustness of malware threat hunting. The
proposed method speeds up the convergence (in comparison to
stacked LSTM) by reducing the length of malware OpCode or
bytecode sequences. Hence, the complexity of our final method
is reduced. This leads to better accuracy, higher Mattews
Correlation Coefficients (MCC), and Area Under the Curve
(AUC) in comparison to a standard LSTM with similar detection
time. Our proposed method can be applied in real-time malware
threat hunting, particularly for safety critical systems such as
eHealth or Internet of Military of Things where poor
convergence of the model could lead to catastrophic
consequences. We evaluate the effectiveness of our proposed
method on Windows, Ransomware, Internet of Things (IoT), and
Android malware datasets using both static and dynamic analysis.
For the IoT malware detection, we also present a comparative
summary of the performance on an IoT-specific dataset of our
proposed method and the standard stacked LSTM method. More
specifically, of our proposed method achieves an accuracy of
99.1% in detecting IoT malware samples, with AUC of 0.985,
and MCC of 0.95; thus, outperforming standard LSTM based
methods in these key metrics.
Keywords:
Deep learning, Stacked LSTM, Unsupervised layer-wise pre-
training, Malware, Cyber Threat Hunting.

1. Introduction

Malicious software (a.k.a. malware) is a program
designed to disrupt, damage, or gain unauthorized access
to a computing system. The threat of malware to our
society is evident, for example by the constant increases in
the number and types of malware discovered. In 2018, for
example, Symantec reported more than 669 million new

malware variants, an increase of 80.1% from the previous
year [1]. The number of mobile malware has also
reportedly increased by 54% [1]. Similar observation is
made by other security companies. For example, McAfee
reportedly detected 16 million mobile malware in the first
quarter of 2018, nearly doubled in comparison to the
previous quarter [2]. Also, the number of newly created
variants of ransomware increased by 46% (i.e., from 241
families in 2016 to 350 new ransomware families in 2017)
[1].

Machine learning techniques have emerged as
promising solutions to tackle the challenge of automated
malware detection and analysis [3]. Basic metrics for
evaluating performance of machine learning algorithms
are true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) as shown in Equations (1) to
(4), respectively.

 (1)

correctly classified as malwareTP samples

 (2)

wrongly classified as malwareFP samoples

 (3)

correctly classified as benignTN samples

 (4)

wrongly classified as benignFN samples

Using above direct metrics, we can define True
Positive Rate (TPR), False Positive Rate (FPR), Accuracy
(ACC), Mattews Correlation Coefficients (MCC),
Receiver Operating Characteristic (ROC) curve, and Area
Under the Curve (AUC) to measure performance of
machine learning algorithms in malware detection. True
positive rate (TPR) which is also known as recall or
probability of malware detection (see Equation (5)). The
false positive rate (FPR) which is also known as the fallout
is the probability of wrongly detecting a benign sample as
a malware (see Equation (6). Accuracy indicates the
number of samples that were classified correctly over the

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

178

entire dataset [4] (see Equation (7). MCC is a number
between -1 and +1, in which -1 shows that the classifier
wrongly classified samples all the time, +1 means the
classifier classified malware correctly all the times, and 0
means that the machine learning algorithm does not work
better than random prediction (see Equation (8)). ROC is a
curve that shows the TPR and FPR of algorithm in several
thresholds. AUC is the probability that a classifier ranks a
randomly chosen positive instance (i.e. a malware) higher
than a randomly chosen negative one (i.e. a benign
application) [5]. AUC value of 0 means that the algorithm
classifies all samples wrongly, 0.5 shows that the
algorithm did not work better than random classifier, and 1
shows that it can classify all the samples correctly.

TP
TPR

TP FN



 (5)

FP
FPR

TN FP



 (6)

TP TN
ACC

TP TN FP FN




  
 (7)

 (8)

()()()()

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   

Initial attempts to use machine learning for malware
detection were focused on representing malware features
(i.e. OpCodes, library calls, etc.) as an image, audio file,
or even a digital signal file and then apply machine
learning classifiers on new representation of malware
samples (see [6] [7] [8] [9] [10]) . Despite reporting a
reasonable accuracy of about 94%, the time required to
change samples representation (1.3 to 3 seconds for pre-
processing in [8, 10, 11, 12] for instances), and run the test
have made these techniques impractical [13]. To address
the issue of the time efficiency, several proposals have
been in the literature that use dynamic features such as
system calls with major classifiers such as k-nearest
neighbors (KNN), decision tree, random forest, Nave
Bayes, Bayesian network, support vector machine (SVM),
and logistic regression for malware detection (see [14, 15,
16, 17]). Others attempted to use natural language
processing techniques on malware static features such as
OpCode and file sections to identify malicious programs
(see [18, 19]). While reducing processing time (by not
changing malware representation), these methods were not
very accurate (below 87%).

The Convolutional Neural Networks (CNN) as a type of
deep learning algorithms were suggested to improve
malware detection accuracy. CNN offered a promising
accuracy of 92%-99% in detecting malware using a range
of dynamic and static features (see [11, 12, 20, 21, 22, 23,
24, 25]). Despite being accurate, CNN-based malware
detection systems inevitably hinder from the weaknesses
of deep neural networks. The main assumption of
feedforward deep neural network techniques with fixed
number of input neurons such as CNN is independence
and identical distribution of input data [26]. Therefore, the
accuracy of CNN- based techniques drops significantly
when they deal with variable-length sequence of malware
OpCodes or samples with interdependent library calls [27,
28]. To rectify this matter, Recurrent Neural Network
(RNN) techniques were built to deal with the variable-
length sequential data in deep neural networks [29]. RNN
is a multi- layer neural network with tied weights where
each layer may receive two inputs, one from the original
input data and the other from the previous layer. As layers
can be generated dynamically, RNN-based techniques are
capable of processing variable-length input data [30].
However, when the length of input data is increased,
traditional RNN networks with backpropagation would
face the vanishing gradient problem [29], which causes an
insufficient learning of initial layers of the deep network.
This problem makes the utilization of RNN techniques to
be limited to the malware samples with relatively short
length of features, i.e. short sequence of OpCode or
limited number of library calls [31]. To resolve this issue,
while maintaining power of deep networks, stacked Long
Short-Term Memory (LSTM) networks were introduced
[29]. A stacked LSTM uses a hierarchy of LSTM
networks to map an input sequence into another space
with an automated feature learning procedure. Stacked
LSTM based approaches for malware detection could deal
with almost any length of sequential input data and offer a
very good accuracy (97% to 99.7%) - see [32, 33, 34, 35,
36, 37, 38]. However, k-means clustering, Hidden Markov
Model (HMM), and stacked LSTM algorithms require
random initialization that could lead to poor convergence
of the model [39] [40]. Solutions such as using
evolutionary algorithms for k-means clustering [41, 42] or
making a global generative model for HMM [43, 44] or
using better weights for initializing the deep network [40]
were suggested to avoid poor convergence caused by
random initialization of the model. Murthy and
Chowdhury [42] proposed a genetic algorithm method to
solve the random initialization of k-means clustering.
They used vectors of cluster numbers as their
chromosomes each contained the cluster of each data point.
Also, [41] tried to avoid random initialization of k-means
algorithm by considering the centroids as the
chromosomes and try to find the best initialization for k-

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

179

means algorithm using genetic algorithm technique.
Integrating genetic algorithm to LSTM makes the model
very slow since thousands of LSTM models should be
trained to gain the best initialization that is not practical. In
addition, [43] [44] proposed some models like Maximum
Mutual Information Estimation (MMIE) to avoid random
initialization in HMM model. Since these models work on
the objective function of HMM, and since objective
functions of HMM and LSTM are totally different, these
models don’t work on LSTM method. This is especially
important in malware threat hunting, as a poorly initialized
LSTM network would reduce the convergence speed of
the algorithm and cause the model to stick to a poor local
optimum which significantly increases the risk of
successful malware attack. To better understand the issues
that are caused by random initialization, we have
measured the accuracy of a randomly initialized standard
LSTM with 4 hidden layers (same setup as other
experiments) on 9th class of Kaggle dataset. In the third
run, the model converged into a poor situation as shown in
Figure 1. Comparing the ROC curve of the poor
converged LSTM (red line in Figure 1(a)) with a random
classifier with AUC of 0.500 (dotted blackline) shows that
the performance of the model is not better than a random
guess! Moreover, as shown in Figure 1(b), with poor
random initialization, the changes of network weights with
backpropagation is so slow that the model could not learn
from data at all and the accuracy remains flat.

In this research, we propose a pre-training step for stacked
LSTM to avoid random initialization and improve ACC,
AUC, ROC, and MCC metrics. Also, the proposed method
speeds up the convergence (compare to stacked LSTM) by
reducing the length of malware OpCode or bytecode
sequences. Hence, the complexity of our final method is
reduced which leads to a better performance of accuracy,
AUC, and MCC in compare with a standard LSTM with
similar detection time.

It is worth mentioning that our proposed method is
importantly useful for malware threat hunting in safety
critical systems such as eHealth or Internet of Military of
Things where poor convergence of the model could lead to
a significant damage as re-initialization of the system
could be too time consuming.

We have evaluated our system using several malware

datasets namely, VXHeaven [46] dataset, Kaggle dataset
[47], and Windows ransomware dataset [17], as well as an
Drebin Android malware dataset [48] and an IoT malware
dataset [34]. Our results indicated that our method
improves the accuracy between 0.94% and 11.7%, AUC
between 0.016 and 0.58, and MCC between 0.089 and
0.215, on various datasets in compare with standard
LSTM. Moreover, our methods detection time was 2.7
milliseconds that is much faster than previous comparable
methods that reported 1.3 and 12.71 seconds [8, 10, 11]. It
is notable that we only tested our model on raw sequences
of malware and our results can be extended to sequential
data only.

The rest of the paper is organized as follows. In
Section 2, the current malware detection methods and their
challenges are explained. In Section 3, our malware
datasets and experiment setup is explained. Our proposed
method is explained in Section 4. Section 5 reports our
experiments result followed by discussions in Section 6,
which describes our performance in detecting
ransomwares families. Finally, section 7 offers
conclusions and future works of this paper.

2. Related Work

Many researches have used natural language
processing (NLP) techniques for malware detection. Kang
et al. [18] organized samples opcodes into feature vectors
using N-grams and gain the F-measure of 0.98. Xu et al.
[19] extracted n- grams, histogram, and Markov chain
from system calls and achieved accuracy of 87.3%. These
approaches consider short and local dependencies in
malware sequences that is useful for semi-stationary
datasets. However, since malware sample sequence are
globally related, long dependencies of malware sequence
elements may achieve a better [27, 28]. In the recent years,
deep learning techniques have been mostly used in many
applications domains including malware detection [11, 12,
22, 23, 32, 38, 49]. In IoT malware detection, Azmoodeh
et al. [50] used deep eigenspace learning to detect malware
of IoT networks. They reported 99.68% of accuracy. Also,
Haddadpajouh et al. [34] used deep bidirectional LSTM
for this purpose. In their work, they used a bidirectional
LSTM instead of standard LSTM to improve the network
accuracy and reported 98.18% of accuracy with detection
time of 1 second per sample. But the network still suffers
from random initialization and the risk of sticking in poor
local optimum, which are addressed in this paper.

Fig. 1. Example of sticking in local optima for 9th class of Kaggle dataset in
(a) ROC curve, and (b) accuracy.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

180

Two types of deep approaches are used in this area,
Convolutional Neural Network (CNN), and Recurrent
Neural Network (RNN).

CNN based approaches try to learn efficient language
model from several short dependencies of input sequences.
These methods are especially suitable for methods with a
semi- stationary input such as test or image files.
McLaughlin et al. [24] used CNN on malware OpCodes
using traditional N-gram extraction and obtained 98%
accuracy with 0.0003 seconds detection time per sample
using GTX980 GPU. Le et al. [25] used CNN approach on
binary codes of samples and reported accuracy of 98.2%
with the detection time of 0.02 seconds per sample with
GTX1080Ti GPU. Also, [11] used CNN approach for
malware detection on their dataset with the accuracy of
98.86% and the detection time of 1.6 to 12.71 seconds on
CPU. Among RNN based techniques, Long Short-Term
Memory (LSTM) is used more than others in analyzing
sequential data due to their robustness on vanishing
gradient. Many researches such as [27, 28, 33] have
implemented and compared performance of CNN and
LSTM methods in malware detection. Their results further
indicate better performance of LSTM methods in compare
with CNN due to the consideration of longest
dependencies extracted from malware data assumed as
stationary. However, all existing LSTM based methods
require random initialization which significantly limits
their application to protecting safety critical systems.

3. Data Preparation and Experiment Setup

We used six datasets from various platforms covering,
Windows, Android, and IoT malware. We utilized four
Windows malware samples datasets including two datasets
extracted from VXHeaven [46]. The first dataset contained
3300 samples that 2200 of them were used for training,
and 1100 samples were used for testing of the method.
The included samples were taken randomly from the entire
dataset and were labeled as malware and benign. These
two datasets have been used by fellow researchers
previously in [9, 10, 51]. The third Windows dataset was
Microsoft Kaggle dataset [47]. Samples of this dataset
were labeled as nine families of malware variants without
any benign samples. Table 2 shows the number of

Fig. 2. Final model with four hidden layer for both proposed and stacked
method.

Fig. 3. Comparing proposed networks with 3, 4, 5, 6, 7 hidden layers

samples in each family of this dataset. This dataset
contained 10825 samples that were analyzed statically to
extract their opcodes. Our last Windows malware dataset
contained system calls of 1801 samples that were
categorized into ransomware and benign samples for
binary classification by Homayoun et al. in [17].

We used Drebin Android malware feature dataset
[48] which contained behavioral features such as system
calls of 5560 malware and 123453 benign samples. Finally,
we used an IoT dataset [34] which contained a total of 552
samples from which 271 samples were labeled as benign
and 281 samples were labeled as malware. Table 1
summarizes the basic information and characteristics of all
six datasets that we used in this research.

We run all our experiments on a Core i7-4500U desktop
with 8 GB of RAM and Windows 10 operating system.

To pass the input data to our model, feature vectors
were needed to be crafted in the form of one-hot or
embedding vector. To this end, we used an embedding
vector for system call and opcode datasets as the
neighborhood system calls. However, as the adjacent bytes
of bytecode dataset are not related to each other, we chose
one-hot vector due to its independency of neighborhood
bytes. In our setting, a 64 length for embedding vector for
all of our

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

181

Manuscript received August 5, 2023
Manuscript revised August 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.8.21

Table 1. Dataset description

Fig. 4. The proposed method. (a) is steps of proposed method.(b), (c), and (d) are the pre-training phase that reconstruct their input in the output. X is the
input data in sequence format, H1 is the first representation learned by network (b), H2 is the second representation learned from H1 in network (c), H3 is
the third representation learned from H2 in (d), all of them in sequence format. (e) is the final model with pre-trained layers (weights) from first phase. H4

is learned from H3 with LSTM 6 to map its input sequence to a vector in order to feed the classifier.

dynamic and opcode datasets, and a 256 length one-hot
vector for malware bytecode dataset were used. We
conducted several experiments to find the best length of
vector. The length of one-hot vector is equal to the all
possible values of a byte.

Table 2. Malware families and number of their samples in Kaggle dataset.

Our final model consists of four hidden layers as shown in
Figure 2. As illustrated in Figure 3, adding or removing
hidden layers will reduce the accuracy of the network so a
network with 4 hidden layers is selected. As can be seen in
Figure 3, a network with four hidden layers (three pre-
trained layers) and the network with three hidden layers
(two pre-trained layers) are having a comparable accuracy
in all but last epoch while the five-layer (four pre-trained
layers) network is always performing poorly in compare
with a network with four hidden layers. The first three
layers are pre-trained LSTMs that feed with sequences and
their outputs are sequential with 256, 168, and 128
memory units, respectively. These three layers are
responsible for converting the raw input sequence into a
new sequential representation. After this non-linear
mapping, we needed a layer to make a vector from this
new representation to feed the classifier. Thus, we used a
LSTM by considering the output of last sequence vector as
our final representation. This layer has 64 memory units,
so the final representation of our model became a vector
with 64 length. Afterwards, we used a dense layer as a
classifier. It is important to note that the size of this layer
is dependent on the number of classes. For example, a

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

182

binary classifications can be made with one neuron only
while we need nine neurons to classify our Kaggle dataset
into nine families.

4. Proposed Method

To resolve the problem of random initialization of
deep recurrent networks, we used unsupervised layer-wise
pre- training, which has been used previously in methods
like stacked autoencoders and deep Boltzmann machine
[40]. Our method consists of two steps: 1) pre-training on
training data to find initial weights in an unsupervised
manner, and 2) fine- tuning the network in a supervised
manner to classify samples in malware or benign classes.
Figure 4 shows all steps in our proposed.

For sequential data such as bytecodes where the value
of neighborhood components of byte string is not
important, one-hot representation is used to show each
element of the sequence. In this type of representation,
each element of sequence is shown by a vector of
dictionary size. For example, for bytecode sequences, each
element can be between 0 and 255, a 255-sized vector is
assigned to each byte of file with all zeros except that
equals to the byte value. This vector is assumed as a
feature vector for our sequence in a certain time. Because
of high length of sequences in the bytecode dataset (1
million for every 1 MB of data), we used the windowing
without overlapping method to reduce this size. Our
window length is 1024 that means each element of
converted sequence is averaging the bytes of 1KB of file.
To achieve this, we tried a binary search approach for the
window sizes between 10 and 2000. Window sizes
between 960 and 1050 had the best results. So, 1024-
length window was selected. So, when we use first 100
elements of each sequence, we considered 100 KB of file
instead of 100 bytes of file. We use this technique to
consider a higher length of sequence without slowing our
network.

Moreover, we use an embedding vector to represent
datasets that contain system call or opcodes of our samples.
An embedding layer was used to map the one-hot vector to
a low dimensional vector respect to their neighborhood
and frequency. This layer is learned on training data and
produced a vector of size 64 for each sequence element as
its feature vectors with size of 32 to 128 were tested and
64-length vector had the best result.

Our final models input is a 3-dimensional matrix. For
example, if we have n sequence samples with length of l
and each element has an m-dimensional feature vector
(one-hot or embedding), our input sequence would be n-
by-l-by-m. To achieve early detection and speed up our

method, we used the first 100 elements of sequence for
our classification.

In pre-training step, we use two LSTMs for each
layer of our deep network, one for encoding input
sequence to a latent space called encoder LSTM, and
another for reconstructing the input from the output of first
LSTM, called decoder. If each element of input sequence
is m-dimensional (size of one- hot or embedding vector),
the first LSTM encodes this m- dimensional representation
to a p-dimensional representation in the latent space. The
goal of this encoder-decoder LSTM is to attain this p-
dimensional representation that is more abstract than the
input features and extracted automatically obtained by a
non-linear function. To learn this layer, a mechanism is
needed to adjust the weights with respect to some output.
To achieve better generalization, unsupervised learning
was selected for pre-training. Therefore, the sequence is
considered as an output and the second LSTM (decoder
one) is used to map the p-dimensional vectors to m-
dimensional ones and reconstruct the input sequence.
Backpropagation through time (BPTT) technique [52] is
used to adjust the weights based on differences between
input sequence and reconstructed sequence. This
procedure is repeated in different hidden layers of our
main network such that output of each encoder layer is
considered as an input for the next encoder-decoder
LSTM. For instance, if one wants to create a model with 3
hidden layers, then three encoder-decoder LSTM would
be needed for pre-training phase for which the input of
first encoder is the input data, the input of the second
encoder is the output of first encoder, and the input of
third encoder is the output of second encoder (see Figure 4
(a), (b), and (c)). Also, Figure 6 shows the pre-training
algorithm. Equation (9) [53, 54, 55], shows the encoding

phase where th is the encoding result, encode
t is the

encoder function, tx is the input of the network at time

t (t − th element of sequence), and 1th  is the hidden state

of encoder LSTM at time t − 1.

1(,)encode
t t t tH x h  (9)

Equation (10) [53, 54, 55] shows the decoder phase of

unsupervised pre-training step that ˆ
tH is the predicted

output, decode
t is the decoder function, tH is encoded

input at time t, and 1th  is the hidden state of decoder

LSTM in the previous time.

1
ˆ (,)decode

t t t tH H h  (10)

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

183

To train our model in an unsupervised manner,
reconstruction error between the true output (input of
network) and the predicted output is calculated to update
the weights by BPTT algorithm. This objective function is
given in Equation (11) [53, 54, 55].

2
1

ˆ
T

t t
t

H H W


  (11)

Where ˆ
tH is the predicted output, tH is the network

input that is our desired output in unsupervised training,

and
2

W is the 2l norm of network weights.

Upon completing pre-training step, the main network is
built by concatenating pre-trained layers to each other (see
Figure 4 (e)). Now, the model can be fine-tuned in a
supervised manner data labels. However, there is a snag in
our architecture that the last layers output is in a sequential
format. To solve this problem, we used an LSTM layer
with vector output and classify its output using a dense
layer with softmax activation function. Fine-tuning step is
used by BPTT algorithm in respect to the differences of
true label and predicted label of each sample (see Figure
7). Equation (12) and (13) [56] show the fine-tuning phase

where th is the hidden state of LSTM at time t, f is an

activation function, tx is the input of network at time t,

and to is the output of network at time t. U,W, and V, are

weights of network as shown in Figure 5.

1(,)t t th f Ux Wh  (12)

()t to f Vh (13)

As illustrated in Equation (12), our network has two inputs

at each time, one input from the sequence (tx) and

another from the last internal hidden state of LSTM (1th ).

The pre-training procedure consists of two LSTM
layers (see Figure 6). The first layer is responsible for
producing new representation from its input data (variable
X from previous layer or input data), which is referred as
encoder layer (see Equation 9). The second layer is a
decoder (see Equation 10) that reconstructs the input (X)
from the output of encoder layer. Also the objective
function of this network is the reconstruction error that
calculated using Equation 11. This procedure is repeated
in different hidden layers of our pre- trained hidden
network. In this algorithm, n-th layer is the number of
internal neurons of each LSTM layer.

All pre-trained layers are concatenated to make the final
network. The final network is fine-tuned in a supervised
way to detect malware samples. This fine-tuning is
training the feedforward network as well (see Figure 7).
The first three layers of this network are the pre-trained
layers. Afterwards, a vectorising LSTM is added to the
network to convert the final sequence into a vector and
pass the output to a dense layer for classification. The
network is fine-tuned with backpropagation method [57].

Layer1, Layer2, and Layer3 are pre-trained layers from
last step and just added to the final network with all their
trained weights. Following these layers, a vectorising layer
is added. This layer is an LSTM with vector output. After
vectorising, a dense layer is added to the network for
classification. The number neurons in this layer equals to
the number of classes, except for the binary classification
that needs just one neuron. To classify the vectors,
softmax activation function is used.

5. Results

To evaluate our method, we chose both static and
dynamic malware analysis datasets. As mentioned before,
each dataset contains sequences of malware and benign
samples including bytecodes, opcodes, and system calls.
We compare the performance of our model to the standard
stacked LSTM using accuracy, AUC, and MCC metrics.

As can be seen in Table 3, the proposed method achieved
better accuracy, AUC, and MCC in compare with standard
stacked LSTM in all three datasets.

As AUC and MCC are binary metrics, one vs. all
technique is used to evaluate these metrics for Kaggle
dataset. In this technique, samples of one class are
considered as positive and others are considered as
negative class and the model is trained and evaluated
accordingly. This procedure is repeated for all the classes
and the result is the average of all one versus all models
results. As shown in Figure 8, the accuracy of proposed
method is higher in all cases.

To visually show the comparison between these two
methods, accuracy per epoch and ROC curve of proposed
method and standard LSTM are shown in Figure 9 and
Figure 10, respectively which indicate better performance
of our model. To measure the AUC of Kaggle dataset, one
vs. all technique was used (see Figure 11).

Table 4 compares the detection time of our model
with similar previous works. It can be seen that our
method is the detection time is lesser than all previous
models with better performance.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

184

5. Discussion

We compared our method with the same standard
stacked LSTM to investigate the effect of our layer-wise
pre- processing of the training phase. As illustrated in
Table 3, our method outperformed the standard LSTM in
all metrics. As seen in Figure 8, our method converges
faster

Fig. 5. RNN network. a) A folded RNN. tx is the sequence input in

time t, and to is the output of network at time t. The arc arrow shows the

recurrently feed of output of network to its input. b) Unfolded
representation of an RNN network.

Fig. 6. Algorithm of pre-training step of proposed method. The first
LSTM acts as an encoder and the second one acts as a decoder. The
objective function of this algorithm is reconstruction error that calculated
using Equation 11.

Fig. 7. Algorithm of fine-tuning step of proposed method

Table 3. Comparison of proposed method with standard stacked LSTM

Table 4. Detection time per sample for some methods

than standard LSTM and it initiates with higher accuracy.
Also, the accuracy change of our method is less than the
standard LSTM that shows the robustness of our model
except in seventh class of Kaggle dataset that is highly
imbalanced. A similar trend was seen in Figure 9 for other
datasets. This all shows the positive effect of removing
random initialization on accuracy and convergence speed
of deep recurrent neural networks. As illustrated in Figure
9, the proposed method increased the ACC between
0.94% (for Kaggle dataset) and 11.7% (for VXHeaven
dataset) that is related to the higher ACC contribution.
Also, it can be seen in Figure 9 (c) and 9(d) that the
proposed method reaches its highest accuracy in fewer
epochs that shows its faster convergence.

Figure 10 and Figure 11 show the results of ROC and
AUC of our method compared to standard LSTM. As seen
in these figures, our method has lower false negative rate
with higher true positive rates which shows that removing
random initialization would lead to better detection of
malware samples with lesser false detection. As illustrated
in Figure 10 and Table 3, the proposed method increased
the AUC between 0.016 (for Ransomware dataset) and
0.068 (for VXHeaven dataset) that is related to the higher
AUC contribution.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

185

As shown in Figure 11 (g), none of the models could work
well on the seventh class of Kaggle dataset. That is
because of the low number of samples in that class.
Among 10828 samples of dataset, only 42 samples belong
to this class. Standard LSTM predict the samples
randomly for this class so the MCC is 0 and the AUC is
0.500. However, the proposed method gained better
results even in this highly unbalanced situation by

producing the MCC of 0.223 and AUC of 0.550, which is
a rather better than random prediction.

As seen in Table 3 and Figure 9 (d) and Figure 10 (d), our
proposed method can deal with IoT malware better than
the current deep recurrent neural networks. The processing
time of our algorithm (in test environment after training)
about 3 millisecond (real-time), which is equal to the time
for standard LSTM. Hence, we could

Fig. 8. Comparing accuracy of proposed method and standard LSTM in each epoch for Kaggle dataset classes. (a) first class against all classes, (b) second

class against all classes, (c) third class against all classes, (d) fourth class against all classes, (e) fifth class against all classes, (f) sixth class against all
classes,

(g) seventh class against all classes, (h) eighth class against all classes, and (i) ninth class against all classes.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

186

Fig. 9. Comparing accuracy of proposed method and standard LSTM in
each epoch. (a) Ransomware dataset, (b) VXHeaven dataset, (c) Kaggle
dataset, and (d) IoT dataset.

Fig. 10. Comparing AUC and ROC curve of proposed method and
stacked LSTM for (a) Ransomware dataset, (b) VXHeaven (bytecode)
dataset, (c) VXHeaven (opcode) dataset, and (d) IoT dataset

Fig. 11. Comparing AUC and ROC curve of proposed method and standard LSTM in each epoch for Kaggle dataset classes. (a) first class against all

classes,
(b) second class against all classes, (c) third class against all classes, (d) fourth class against all classes, (e) fifth class against all classes, (f) sixth class

against all classes, (g) seventh class against all classes, (h) eighth class against all classes, and (i) ninth class against all classes.

improve accuracy and all other evaluation metrics without
increasing the sample processing time. Attested by this
outcome, we believe that our framework can be used in
enterprise IoT networks for real-time malware detection
with high efficiency.

To show the detection speed of our model, we compared it
with several recent peer methods ([8, 10, 11, 12, 22, 25,
33, 36]). As seen in Table 4, our proposed method has the
lowest detection time due to its use of raw sequential data,
shorter sample data (sequence length), and simple
architecture of the network. The speed of our method is

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

187

similar to MalDozer speed that uses of TitanX GPU while
we have not used any GPU in our testing!

5. Conclusion and future work

In this paper, we proposed a stacked LSTM method
that not only is considered long dependencies of malware
sequence elements but it also avoids random initialization
of weights of the network. We used a stacked LSTM with
four LSTM layers and a classifier that its first three layers
are pre-trained in an unsupervised manner. We not only
reduced the time of sample processing but increased the
performance of our classification method. We evaluated
our method in malware detection space and compared it to
the standard stacked LSTM on six diverse datasets. As
results indicated, our model outperformed the standard
stacked LSTM model in terms of accuracy, AUC, and
MCC. Since the detection in the proposed method is real-
time, we focused more on IoT application and by fixing
the time we could improve the accuracy from 93.69% to
99.10%, AUC from 0.976 to 0.995, and MCC from 0.830
to 0.963.

As we see our work as a framework for deep
recurrent learning, we think that it can be used for testing
all sequential datasets. Hence, testing this framework on
other applications like text-based datasets, time series and
bioinformatics is one of our future works. Moreover, using
multiple modalities (views) of malware samples may be
pursued in the future. Our method can be viewed as a part
of a bigger model that combines multiple modalities of
malware samples and classify them more efficiently. In
addition, because of fast convergence of our method, it
can be explored for adversarial malware detection.

References
[1] Symantec, “Internet security threat report 23 volume,” Symantec,
Tech.
Rep., 2018.
[2] McAfee, “Mcafee mobile threst report,” McAfee, Tech. Rep.,
2018. [Online]. Available: https://www.mcafee.com/enterprise/en-us/
assets/reports/rp-mobile-threat-report-2018.pdf
[3] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, “Machine
learning aided static malware analysis: A survey and tutorial,” 2018,
pp. 7–45. [Online]. Available: http://link.springer.com/10.1007/
978-3-319-73951-9_2
[4] A. G. Ramirez, C. Lara, L. Betev, D. Bilanovic, U. Kebschull, and
f. t. A. Collaboration, “Arhuaco: Deep learning and isolation based
security for distributed high-throughput computing,” 2018. [Online].
Available: http://arxiv.org/abs/1801.04179
[5] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, jun 2006. [Online].
Available:
http://linkinghub.elsevier.com/retrieve/pii/S016786550500303X
[6] J. Fu, J. Xue, Y. Wang, Z. Liu, and C. Shan, “Malware Visualization
for Fine-Grained Classification,” IEEE Access, vol. 6, pp. 14 510–14

523, 2018. [Online]. Available: https://ieeexplore.ieee.org/
document/8290767/
[7] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware analysis using
visualized images and entropy graphs,” International Journal of
Information Security, vol. 14, no. 1, pp. 1–14, Feb 2015. [Online].
Available: http://link.springer.com/10.1007/s10207-014-0242-0
[8] J. Zhang, Z. Qin, H. Yin, L. Ou, S. Xiao, and Y. Hu, “Malware variant
detection using opcode image recognition with small training sets,” in
2016 25th International Conference on Computer Communication and
Networks (ICCCN). IEEE, Aug 2016, pp. 1–9. [Online]. Available:
http://ieeexplore.ieee.org/document/7568542/
 [9] M. Farrokhmanesh and A. Hamzeh, “A novel method for malware
detection using audio signal processing techniques,” in 2016 Artificial
Intelligence and Robotics (IRANOPEN). IEEE, Apr 2016, pp. 85–91.
[Online]. Available: http://ieeexplore.ieee.org/document/7529495/
[10] H. Hashemi and A. Hamzeh, “Visual malware detection using
local malicious pattern,” Journal of Computer Virology and Hacking
Techniques, pp. 1–14, Jan 2018. [Online]. Available: http://link.springer.
com/10.1007/s11416-018-0314-1
[11] S. Ni, Q. Qian, and R. Zhang, “Malware identification using
visualization images and deep learning,” Computers & Security, pp. 871–
885, Apr 2018. [Online]. Available: http://linkinghub.elsevier.com/
retrieve/pii/S0167404818303481
[12] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb,
“Maldozer: Automatic framework for android malware detection using
deep learning,” Digital Investigation, vol. 24, pp. S48–S59, Mar 2018.
[Online]. Available: http://arxiv.org/abs/1712.08996http:
//linkinghub.elsevier.com/retrieve/pii/S1742287618300392
[13] J. Baldwin and A. Dehghantanha, “Leveraging support vector
machine for opcode density based detection of crypto-ransomware,”
2018, pp. 107–136. [Online]. Available:
http://link.springer.com/10.1007/ 978-3-319-73951-9_6
[14] W. Mao, Z. Cai, D. Towsley, Q. Feng, and X. Guan, “Security
importance assessment for system objects and malware detection,”
Computers & Security, vol. 68, pp. 47–68, Jul 2017. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0167404817300354
[15] N. Nissim, Y. Lapidot, A. Cohen, and Y. Elovici, “Trusted system-
calls analysis methodology aimed at detection of compromised virtual
machines using sequential mining,” Knowledge-Based Systems, vol. 153,
pp. 147–175, Aug 2018. [Online]. Available: http://linkinghub.
elsevier.com/retrieve/pii/S0950705118302041
[16] B. Alsulami, A. Srinivasan, H. Dong, and S. Mancoridis,
“Lightweight behavioral malware detection for windows platforms,”
in 2017 12th International Conference on Malicious and Unwanted
Software (MALWARE). IEEE, Oct 2017, pp. 75–81. [Online]. Available:
http://ieeexplore.ieee.org/document/8323959/
[17] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, and
R. Khayami, “Know abnormal, find evil: Frequent pattern mining for
ransomware threat hunting and intelligence,” IEEE Transactions on
Emerging Topics in Computing, pp. 1–1, 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/8051108/
[18] B. Kang, S. Y. Yerima, K. Mclaughlin, and S. Sezer, “N-opcode
analysis for android malware classification and categorization,” in 2016
International Conference On Cyber Security And Protection Of Digital
Services (Cyber Security). IEEE, Jun 2016, pp. 1–7. [Online].
Available: http://ieeexplore.ieee.org/document/7502343/
[19] L. Xu, D. Zhang, M. A. Alvarez, J. A. Morales, X. Ma, and
J. Cavazos, “Dynamic android malware classification using graph-based
representations,” in 2016 IEEE 3rd International Conference on Cyber
Security and Cloud Computing (CSCloud). IEEE, Jun 2016, pp. 220–
231. [Online]. Available: http://ieeexplore.ieee.org/document/7545923/
[20] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J.
Sakuma, “Malware analysis of imaged binary samples by convolutional
neural network with attention mechanism,” in Proceedings of the Eighth
ACM Conference on Data and Application Security and Privacy -
CODASPY18. New York, New York, USA: ACM Press, 2018, pp.
127–134. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
3176258.3176335

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

188

[21] E. K. Kabanga and C. H. Kim, “Malware images classification using
convolutional neural network,” Journal of Computer and Communi-
cations, vol. 06, no. 01, pp. 153–158, 2018. [Online]. Available:
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jcc.2018.61016
[22] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-g. Wang, and J. Chen,
“Detection of malicious code variants based on deep learning,”
IEEE Transactions on Industrial Informatics, pp. 1–1, 2018. [Online].
Available: http://ieeexplore.ieee.org/document/8330042/
[23] X. Meng, Z. Shan, F. Liu, B. Zhao, J. Han, H. Wang, and J. Wang,
“Mcsmgs: Malware classification model based on deep learning,” in
2017 International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC). IEEE, Oct 2017, pp. 272–275.
[Online]. Available: http://ieeexplore.ieee.org/document/ 8250369/
[24] N. McLaughlin, A. Doupe, G. Joon Ahn, J. Martinez del Rincon, B.
Kang, S. Yerima, P. Miller, S. Sezer, Y. Safaei, E. Trickel, and Z. Zhao,
“Deep android malware detection,” in Proceedings of the Seventh ACM
on Conference on Data and Application Security and Privacy -
CODASPY17. ACM Press, 2017, pp. 301–308. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3029806.3029823
[25] Q. Le, O. Boydell, B. Mac, and M. Scanlon, “Deep learning at the
shallow end : Malware classification for non-domain experts,” in Digital
Investigation. Elsevier, 2018, pp. S118–S126.
[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
Press, 2016. [Online]. Available: http://www.deeplearningbook.org
[27] M. Nauman, T. A. Tanveer, S. Khan, and T. A. Syed, “Deep
neural architectures for large scale android malware analysis,” Cluster
Computing, vol. 21, no. 1, pp. 569–588, Mar 2018. [Online]. Available:
http://link.springer.com/10.1007/s10586-017-0944-y
[28] B. Athiwaratkun and J. W. Stokes, “Malware classification with
lstm and gru language models and a character-level cnn,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, mar 2017, pp. 2482–2486. [Online]. Available:
http://ieeexplore.ieee.org/document/7952603/
[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov 1997.
[Online]. Available: http://www.mitpressjournals.org/doi/10.1162/neco.
1997.9.8.1735
[30] J. Schmidhuber, “Deep learning in neural networks: An
overwiew,” Neural Networks, vol. 61, pp. 85–117, 2015.
[31] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S.
Hashemi, Khayami, K.-K. R. Choo, and D. E. Newton, “Drthis: Deep ran-
somware threat hunting and intelligence system at the fog layer,” Journal
of Future Generation Computer Systems, pp. 94–104, 2019.
[32] S. Homayoun, M. Ahmadzadeh, S. Hashemi, A. Dehghantanha, and
R. Khayami, “Botshark: A deep learning approach for botnet traffic
detection,” 2018, pp. 137–153. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-73951-9_7
[33] J. Yan, Y. Qi, and Q. Rao, “Lstm-based hierarchical denoising
network for android malware detection,” Security and Communication
Networks, vol. 2018, pp. 1–18, 2018. [Online]. Available:
https://www.hindawi.com/journals/scn/2018/5249190/
[34] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K. R.
Choo, “A deep recurrent neural network based approach for internet of
things malware threat hunting,” Future Generation Computer Systems,
vol. 85, pp. 88–96, Aug 2018. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0167739X1732486X
[35] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah,
“Android malware detection based on system call sequences and lstm,”
Multimedia Tools and Applications, pp. 1–21, Sep 2017. [Online].
Available: http://link.springer.com/10.1007/s11042-017-5104-0
[36] K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner: Multi-layer
android malware detection system applying deep neural networks,” in
2018 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, Apr 2018, pp. 473–487. [Online]. Available:
https://ieeexplore.ieee.org/document/8406618/
[37] R. Vinayakumar, K. Soman, P. Poornachandran, and S. Sachin
Kumar, “Detecting android malware using long short-term memory
(lstm),” Journal of Intelligent & Fuzzy Systems, vol. 34, no. 3, pp.

1277–1288, mar 2018. [Online]. Available:
http://www.medra.org/servlet/aliasResolver?alias=iospress{\&}doi=10.3
233/JIFS-169424
[38] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua Science
and Technology, vol. 21, no. 1, pp. 114–123, Feb 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7399288/
[39] R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis. New York, New York, USA: John Wiley and Sons, 1973.
[40] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
Bengio, “Why does unsupervised pre-training help deep learning,”
Journal of Machine Learning Research, vol. 11, pp. 625–660, 2010.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1756025
[41] S. Bandyopadhyay and U. Maulik, “An evolutionary technique
based on k-means algorithm for optimal clustering in r,” Information
Sciences, vol. 2002, no. 146, pp. 221–237.
[42] C. Murthy and N. Chowdhury, “In search of optimal clusters using
genetic algorithms,” Pattern Recognition Letters, vol. 17, no. 8, pp. 825–
832, 1996.
[43] D. Povey and P. Woodland, “Minimum phone error and i-smoothing
for improved discriminative training,” in IEEE International Conference
on Acoustics Speech and Signal Processing. IEEE, may 2002, pp. I–105–
I–108. [Online]. Available:
http://ieeexplore.ieee.org/document/5743665/
[44] L. Bahl, P. Brown, P. de Souza, and R. Mercer,
“Maximum mutual information estimation of hidden markov model
parameters for speech recognition,” in ICASSP86. IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 11.
Institute of Electrical and Electronics Engineers, pp. 49–52. [Online].
Available: http://ieeexplore.ieee.org/document/1169179/
 [45] M. Henaff, A. Szlam, and Y. Lecun, “Recurrent orthogonal
networks and long-memory tasks,” in 33rd International Conference on
Machine Learning, 2016, pp. 2034–2042.
[46] “Vxheaven virus collection.” [Online]. Available:
http://83.133.184.251/ virensimulation.org/
[47] Microsoft, “Microsoft malware classification challenge,” 2015.
[Online]. Available: https://www.kaggle.com/c/malware-classification
[48] D. Arp, M. Spreitzenbarth, H. Gascon, and K. Rieck, “Drebin:
Effective and explainable detection of android malware in your pocket,”
in Network and Disttributed System Security Symposium (NDSS), 2014,
pp. 1–15.
[49] S. Huda, S. Miah, J. Yearwood, S. Alyahya, H. Al-Dossari,
and R. Doss, “A malicious threat detection model for cloud assisted
internet of things (cot) based industrial control system (ics) networks
using deep belief network,” Journal of Parallel and Distributed
Computing, vol. 120, pp. 23–31, Oct 2018. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0743731518302442
[50] A. Azmoodeh, A. Dehghantanha, and K.-K. R. Choo, “Robust
malware detection for internet of (battlefield) things devices using deep
eigenspace learning,” IEEE Transactions on Sustainable Computing, pp.
1–1, 2018. [Online]. Available: http://ieeexplore.ieee.org/document/
8302863/
[51] H. Hashemi, A. Azmoodeh, A. Hamzeh, and S. Hashemi, “Graph
embedding as a new approach for unknown malware detection,” Journal
of Computer Virology and Hacking Techniques, vol. 13, no. 3, pp. 153–
166, Aug 2017. [Online]. Available: http://link.springer.com/10.
1007/s11416-016-0278-y
[52] P. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.
[Online]. Available: http://ieeexplore.ieee.org/document/58337/
[53] I. M. Byatas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou,
“Patient subtyping via time-aware lstm networks,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD 17. ACM Press, 2017, pp. 65–74. [Online].
Available: https://dl.acm.org/citation.cfm?id=3097997
[54] F. Zhao, J. Feng, J. ZHao, W. Yang, and S. Yan, “Robust LSTM-
Autoencoders for Face De-Occlusion in the Wild,” IEEE Transactions on
Image Processing, vol. 27, no. 2, pp. 778–790, 2018.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

189

[55] E. Marchi, F. Vesperini, S. Squartini, and B. Schuller, “Deep
Recurrent Neural Network-Based Autoencoders for Acoustic Novelty
Detection,” Computational Intelligence and Neuroscience, vol. 2017, pp.
1–14, 2017.
[56] W. Bao, J. Yue, and Y. Rao, “A Deep Learning Framework for
Financial Time Series Using Stacked Autoencoders and Long-Short Term
Mem- ory,” PLoS ONE, vol. 6, no. 12, pp. 1–24, 2017.
[57] R. HECHT-NIELSEN, “Theory of the backpropagation neural
network,” in Neural Networks for Perception. Elsevier, 1992, pp. 65–
93. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/B9780127412528500108

