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Summary 
Malware detection is an increasingly important operational focus 
in cyber security, particularly given the fast pace of such threats 
(e.g., new malware variants introduced every day). There has 
been great interest in exploring the use of machine learning 
techniques in automating and enhancing the effectiveness of 
malware detection and analysis. In this paper, we present a deep 
recurrent neural network solution as a stacked Long Short-Term 
Memory (LSTM) with a pre-training as a regularization method to 
avoid random network initialization. In our proposal, we use 
global and short dependencies of the inputs. With pre-training, 
we avoid random initialization and are able to improve the 
accuracy and robustness of malware threat hunting. The 
proposed method speeds up the convergence (in comparison to 
stacked LSTM) by reducing the length of malware OpCode or 
bytecode sequences. Hence, the complexity of our final method 
is reduced. This leads to better accuracy, higher Mattews 
Correlation Coefficients (MCC), and Area Under the Curve 
(AUC) in comparison to a standard LSTM with similar detection 
time. Our proposed method can be applied in real-time malware 
threat hunting, particularly for safety critical systems such as 
eHealth or Internet of Military of Things where poor 
convergence of the model could lead to catastrophic 
consequences. We evaluate the effectiveness of our proposed 
method on Windows, Ransomware, Internet of Things (IoT), and 
Android malware datasets using both static and dynamic analysis. 
For the IoT malware detection, we also present a comparative 
summary of the performance on an IoT-specific dataset of our 
proposed method and the standard stacked LSTM method. More 
specifically, of our proposed method achieves an accuracy of 
99.1% in detecting IoT malware samples, with AUC of 0.985, 
and MCC of 0.95; thus, outperforming standard LSTM based 
methods in these key metrics. 
Keywords: 
Deep learning, Stacked LSTM, Unsupervised layer-wise pre-
training, Malware, Cyber Threat Hunting. 

1. Introduction 

Malicious software (a.k.a. malware) is a program 
designed to disrupt, damage, or gain unauthorized access 
to a computing system. The threat of malware to our 
society is evident, for example by the constant increases in 
the number and types of malware discovered. In 2018, for 
example, Symantec reported more than 669 million new  

 

malware variants, an increase of 80.1% from the previous 
year [1]. The number of mobile malware has also 
reportedly increased by 54% [1]. Similar observation is 
made by other security companies. For example, McAfee 
reportedly detected 16 million mobile malware in the first 
quarter of 2018, nearly doubled in comparison to the 
previous quarter [2]. Also, the number of newly created 
variants of ransomware increased by 46% (i.e., from 241 
families in 2016 to 350 new ransomware families in 2017) 
[1]. 

Machine learning techniques have emerged as 
promising solutions to tackle the challenge of automated 
malware detection and analysis [3]. Basic metrics for 
evaluating performance of machine learning algorithms 
are true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN) as shown in Equations (1) to 
(4), respectively. 

                                                                                    (1) 

correctly classified as malwareTP samples     

                                                                                    (2) 

wrongly classified as malwareFP samoples  

                                                                                    (3)

correctly classified as benignTN samples      

                                                                                    (4)

wrongly classified as benignFN samples  

Using above direct metrics, we can define True 
Positive Rate (TPR), False Positive Rate (FPR), Accuracy 
(ACC), Mattews Correlation Coefficients (MCC), 
Receiver Operating Characteristic (ROC) curve, and Area 
Under the Curve (AUC) to measure performance of 
machine learning algorithms in malware detection. True 
positive rate (TPR) which is also known as recall or 
probability of malware detection (see Equation (5)). The 
false positive rate (FPR) which is also known as the fallout 
is the probability of wrongly detecting a benign sample as 
a malware (see Equation (6). Accuracy indicates the 
number of samples that were classified correctly over the 
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entire dataset [4] (see Equation (7). MCC is a number 
between -1 and +1, in which -1 shows that the classifier 
wrongly classified samples all the time, +1 means the 
classifier classified malware correctly all the times, and 0 
means that the machine learning algorithm does not work 
better than random prediction (see Equation (8)). ROC is a 
curve that shows the TPR and FPR of algorithm in several 
thresholds. AUC is the probability that a classifier ranks a 
randomly chosen positive instance (i.e. a malware) higher 
than a randomly chosen negative one (i.e. a benign 
application) [5]. AUC value of 0 means that the algorithm 
classifies all samples wrongly, 0.5 shows that the 
algorithm did not work better than random classifier, and 1 
shows that it can classify all the samples correctly. 

  

TP
TPR

TP FN



                                                       (5) 

FP
FPR

TN FP



                                                      (6) 

TP TN
ACC

TP TN FP FN




  
                                 (7) 

                                                                                     (8)

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   
 

Initial attempts to use machine learning for malware 
detection were focused on representing malware features 
(i.e. OpCodes, library calls, etc.) as an image, audio file, 
or even a digital signal file and then apply machine 
learning classifiers on new representation of malware 
samples (see [6] [7] [8] [9] [10]) . Despite reporting a 
reasonable accuracy of about 94%, the time required to 
change samples representation (1.3 to 3 seconds for pre-
processing in [8, 10, 11, 12] for instances), and run the test 
have made these techniques impractical [13]. To address 
the issue of the time efficiency, several proposals have 
been in the literature that use dynamic features such as 
system calls with major classifiers such as k-nearest 
neighbors (KNN), decision tree, random forest, Nave 
Bayes, Bayesian network, support vector machine (SVM), 
and logistic regression for malware detection (see [14, 15, 
16, 17]). Others attempted to use natural language 
processing techniques on malware static features such as 
OpCode and file sections to identify malicious programs 
(see [18, 19]). While reducing processing time (by not 
changing malware representation), these methods were not 
very accurate (below 87%). 

The Convolutional Neural Networks (CNN) as a type of 
deep learning algorithms were suggested to improve 
malware detection accuracy. CNN offered a promising 
accuracy of 92%-99% in detecting malware using a range 
of dynamic and static features (see [11, 12, 20, 21, 22, 23, 
24, 25]). Despite being accurate, CNN-based malware 
detection systems inevitably hinder from the weaknesses 
of deep neural networks. The main assumption of 
feedforward deep neural network techniques with fixed 
number of input neurons such as CNN is independence 
and identical distribution of input data [26]. Therefore, the 
accuracy of CNN- based techniques drops significantly 
when they deal with variable-length sequence of malware 
OpCodes or samples with interdependent library calls [27, 
28]. To rectify this matter, Recurrent Neural Network 
(RNN) techniques were built to deal with the variable-
length sequential data in deep neural networks [29]. RNN 
is a multi- layer neural network with tied weights where 
each layer may receive two inputs, one from the original 
input data and the other from the previous layer. As layers 
can be generated dynamically, RNN-based techniques are 
capable of processing variable-length input data [30].  
However, when the length of input data is increased, 
traditional RNN networks with backpropagation would 
face the vanishing gradient problem [29], which causes an 
insufficient learning of initial layers of the deep network. 
This problem makes the utilization of RNN techniques to 
be limited to the malware samples with relatively short 
length of features, i.e. short sequence of OpCode or 
limited number of library calls [31]. To resolve this issue, 
while maintaining power of deep networks, stacked Long 
Short-Term Memory (LSTM) networks were introduced 
[29]. A stacked LSTM uses a hierarchy of LSTM 
networks to map an input sequence into another space 
with an automated feature learning procedure. Stacked 
LSTM based approaches for malware detection could deal 
with almost any length of sequential input data and offer a 
very good accuracy (97% to 99.7%) - see [32, 33, 34, 35, 
36, 37, 38]. However, k-means clustering, Hidden Markov 
Model (HMM), and stacked LSTM algorithms require 
random initialization that could lead to poor convergence 
of the model [39] [40]. Solutions such as using 
evolutionary algorithms for k-means clustering [41, 42] or 
making a global generative  model  for  HMM  [43, 44] or 
using better weights for initializing the deep network [40] 
were suggested to avoid poor convergence caused by 
random initialization of the model. Murthy and 
Chowdhury [42] proposed a genetic algorithm method to 
solve the random initialization of k-means clustering. 
They used vectors of cluster numbers as their 
chromosomes each contained the cluster of each data point. 
Also, [41] tried to avoid random initialization of k-means 
algorithm by considering the centroids as the 
chromosomes and try to find the best initialization for k-
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means algorithm using genetic algorithm technique. 
Integrating genetic algorithm to LSTM makes the model 
very slow since thousands of LSTM models should be 
trained to gain the best initialization that is not practical. In 
addition, [43] [44] proposed some models like Maximum 
Mutual Information Estimation (MMIE) to avoid random 
initialization in HMM model. Since these models work on 
the objective function of HMM, and since objective 
functions of HMM and LSTM are totally different, these 
models don’t work on LSTM method. This is especially 
important in malware threat hunting, as a poorly initialized 
LSTM network would reduce the convergence speed of 
the algorithm and cause the model to stick to a poor local 
optimum which significantly increases the risk of 
successful malware attack. To better understand the issues 
that are caused by random initialization, we have 
measured the accuracy of a randomly initialized standard 
LSTM with 4 hidden layers (same setup as other 
experiments) on 9th class of Kaggle dataset. In the third 
run, the model converged into a poor situation as shown in 
Figure 1. Comparing the ROC curve of the poor 
converged LSTM (red line in Figure 1(a)) with a random 
classifier with AUC of 0.500 (dotted blackline) shows that 
the performance of the model is not better than a random 
guess! Moreover, as shown in Figure 1(b), with poor 
random initialization, the changes of network weights with 
backpropagation is so slow that the model could not learn 
from data at all and the accuracy remains flat. 

In this research, we propose a pre-training step for stacked 
LSTM to avoid random initialization and improve ACC, 
AUC, ROC, and MCC metrics. Also, the proposed method 
speeds up the convergence (compare to stacked LSTM) by 
reducing the length of malware OpCode or bytecode 
sequences. Hence, the complexity of our final method is 
reduced which leads to a better performance of accuracy, 
AUC, and MCC in compare with a standard LSTM with 
similar detection time. 

It is worth mentioning that our proposed method is 
importantly useful for malware threat hunting in safety 
critical systems such as eHealth or Internet of Military of 
Things where poor convergence of the model could lead to 
a significant damage as re-initialization of the system 
could be too time consuming. 

 

We have evaluated our system using several malware  
 

datasets namely, VXHeaven [46] dataset, Kaggle dataset 
[47], and Windows ransomware dataset [17], as well as an 
Drebin Android malware dataset [48] and an IoT malware 
dataset [34]. Our results indicated that our method 
improves the accuracy between 0.94% and 11.7%, AUC 
between 0.016 and 0.58, and MCC between 0.089 and 
0.215, on various datasets in compare with standard 
LSTM. Moreover, our methods detection time was 2.7 
milliseconds that is much faster than previous comparable 
methods that reported 1.3 and 12.71 seconds [8, 10, 11]. It 
is notable that we only tested our model on raw sequences 
of malware and our results can be extended to sequential 
data only. 

The rest of the paper is organized as follows. In 
Section 2, the current malware detection methods and their 
challenges are explained. In Section 3, our malware 
datasets and experiment setup is explained. Our proposed 
method is explained in Section 4. Section 5 reports our 
experiments result followed by discussions in Section 6, 
which describes our performance in detecting 
ransomwares families. Finally, section 7 offers 
conclusions and future works of this paper. 

 

2. Related Work 

Many researches have used natural language 
processing (NLP) techniques for malware detection. Kang 
et al. [18] organized samples opcodes into feature vectors 
using N-grams and gain the F-measure of 0.98. Xu et al. 
[19] extracted n- grams, histogram, and Markov chain 
from system calls and achieved accuracy of 87.3%. These 
approaches consider short and local dependencies in 
malware sequences that is useful for semi-stationary 
datasets. However, since malware sample sequence are 
globally related, long dependencies of malware sequence 
elements may achieve a better [27, 28]. In the recent years, 
deep learning techniques have been mostly used in many 
applications domains including malware detection [11, 12, 
22, 23, 32, 38, 49]. In IoT malware detection, Azmoodeh 
et al. [50] used deep eigenspace learning to detect malware 
of IoT networks. They reported 99.68% of accuracy. Also, 
Haddadpajouh et al. [34] used deep bidirectional LSTM 
for this purpose. In their work, they used a bidirectional 
LSTM instead of standard LSTM to improve the network 
accuracy and reported 98.18% of accuracy with detection 
time of 1 second per sample. But the network still suffers 
from random initialization and the risk of sticking in poor 
local optimum, which are addressed in this paper. 

Fig.  1. Example of sticking in local optima for 9th class of Kaggle dataset in
(a) ROC curve, and (b) accuracy. 
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Two types of deep approaches are used in this area, 
Convolutional Neural Network (CNN), and Recurrent 
Neural Network (RNN). 

CNN based approaches try to learn efficient language 
model from several short dependencies of input sequences. 
These methods are especially suitable for methods with a 
semi- stationary input such as test or image files. 
McLaughlin et al. [24] used CNN on malware OpCodes 
using traditional N-gram extraction and obtained 98% 
accuracy with 0.0003 seconds detection time per sample 
using GTX980 GPU. Le et al. [25] used CNN approach on 
binary codes of samples and reported accuracy of 98.2% 
with the detection time of 0.02 seconds per sample with 
GTX1080Ti GPU. Also, [11] used CNN approach for 
malware detection on their dataset with the accuracy of 
98.86% and the detection time of 1.6 to 12.71 seconds on 
CPU. Among RNN based techniques, Long Short-Term 
Memory (LSTM) is used more than others in analyzing 
sequential data due to their robustness on vanishing 
gradient. Many researches such as [27, 28, 33] have 
implemented and compared performance of CNN and 
LSTM methods in malware detection. Their results further 
indicate better performance of LSTM methods in compare 
with CNN due to the consideration of longest 
dependencies extracted from malware data assumed as 
stationary. However, all existing LSTM based methods 
require random initialization which significantly limits 
their application to protecting safety critical systems. 

 

3. Data Preparation and Experiment Setup 

We used six datasets from various platforms covering, 
Windows, Android, and IoT malware. We utilized four 
Windows malware samples datasets including two datasets 
extracted from VXHeaven [46]. The first dataset contained 
3300 samples that 2200 of them were used for training, 
and 1100 samples were used for testing of the method. 
The included samples were taken randomly from the entire 
dataset and were labeled as malware and benign. These 
two datasets have been used by fellow researchers 
previously in [9, 10, 51]. The third Windows dataset was 
Microsoft Kaggle dataset [47]. Samples of this dataset 
were labeled as nine families of malware variants without 
any benign samples. Table 2 shows the number of  

 
 
Fig.  2. Final model with four hidden layer for both proposed and stacked 
method. 

 

 
Fig.  3. Comparing proposed networks with 3, 4, 5, 6, 7 hidden layers 

 
samples in each family of this dataset. This dataset 
contained 10825 samples that were analyzed statically to 
extract their opcodes. Our last Windows malware dataset 
contained system calls of 1801 samples that were 
categorized into ransomware and benign samples for 
binary classification by Homayoun et al. in [17]. 

We used Drebin Android malware feature dataset 
[48] which contained behavioral features such as system 
calls of 5560 malware and 123453 benign samples. Finally, 
we used an IoT dataset [34] which contained a total of 552 
samples from which 271 samples were labeled as benign 
and 281 samples were labeled as malware. Table 1 
summarizes the basic information and characteristics of all 
six datasets that we used in this research. 

We run all our experiments on a Core i7-4500U desktop 
with 8 GB of RAM and Windows 10 operating system. 

To pass the input data to our model, feature vectors 
were needed to be crafted in the form of one-hot or 
embedding vector. To this end, we used an embedding 
vector for system call and opcode datasets as the 
neighborhood system calls. However, as the adjacent bytes 
of bytecode dataset are not related to each other, we chose 
one-hot vector due to its independency of neighborhood 
bytes. In our setting, a 64 length for embedding vector for 
all of our 
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Table 1.  Dataset description 

 

 
 

 
Fig.  4. The proposed method. (a) is steps of proposed method.(b), (c), and (d) are the pre-training phase that reconstruct their input in the output. X is the 
input data in sequence format, H1 is the first representation learned by network (b), H2 is the second representation learned from H1 in network (c), H3 is 
the third representation learned from H2 in (d), all of them in sequence format. (e) is the final model with pre-trained layers (weights) from first phase. H4 

is learned from H3 with LSTM 6 to map its input sequence to a vector in order to feed the classifier.

dynamic and opcode datasets, and a 256 length one-hot 
vector for malware bytecode dataset were used. We 
conducted several experiments to find the best length of 
vector. The length of one-hot vector is equal to the all 
possible values of a byte. 
 
 
 
Table 2. Malware families and number of their samples in Kaggle dataset. 

 

Our final model consists of four hidden layers as shown in 
Figure 2. As illustrated in Figure 3, adding or removing 
hidden layers will reduce the accuracy of the network so a 
network with 4 hidden layers is selected. As can be seen in 
Figure 3, a network with four hidden layers (three pre-
trained layers) and the network with three hidden layers 
(two pre-trained layers) are having a comparable accuracy 
in all but last epoch while the five-layer (four pre-trained 
layers) network is always performing poorly in compare 
with a network with four hidden layers. The first three 
layers are pre-trained LSTMs that feed with sequences and 
their outputs are sequential with 256, 168, and 128 
memory units, respectively. These three layers are 
responsible for converting the raw input sequence into a 
new sequential representation. After this non-linear 
mapping, we needed a layer to make a vector from this 
new representation to feed the classifier. Thus, we used a 
LSTM by considering the output of last sequence vector as 
our final representation. This layer has 64 memory units, 
so the final representation of our model became a vector 
with 64 length. Afterwards, we used a dense layer as a 
classifier. It is important to note that the size of this layer 
is dependent on the number of classes. For example, a 
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binary classifications can be made with one neuron only 
while we need nine neurons to classify our Kaggle dataset 
into nine families. 

4. Proposed Method 

To resolve the problem of random initialization of 
deep recurrent networks, we used unsupervised layer-wise 
pre- training, which has been used previously in methods 
like stacked autoencoders and deep Boltzmann machine 
[40]. Our method consists of two steps: 1) pre-training on 
training data to find initial weights in an unsupervised 
manner, and 2) fine- tuning the network in a supervised 
manner to classify samples in malware or benign classes. 
Figure 4 shows all steps in our proposed. 

For sequential data such as bytecodes where the value 
of neighborhood components of byte string is not 
important, one-hot representation is used to show each 
element of the sequence. In this type of representation, 
each element of sequence is shown by a vector of 
dictionary size. For example, for bytecode sequences, each 
element can be between 0 and 255, a 255-sized vector is 
assigned to each byte of file with all zeros except that 
equals to the byte value. This vector is assumed as a 
feature vector for our sequence in a certain time. Because 
of high length of sequences in the bytecode dataset (1 
million for every 1 MB of data), we used the windowing 
without overlapping method to reduce this size. Our 
window length is 1024 that means each element of 
converted sequence is averaging the bytes of 1KB of file. 
To achieve this, we tried a binary search approach for the 
window sizes between 10 and 2000. Window sizes 
between 960 and 1050 had the best results. So, 1024-
length window was selected. So, when we use first 100 
elements of each sequence, we considered 100 KB of file 
instead of 100 bytes of file. We use this technique to 
consider a higher length of sequence without slowing our 
network. 

Moreover, we use an embedding vector to represent 
datasets that contain system call or opcodes of our samples. 
An embedding layer was used to map the one-hot vector to 
a low dimensional vector respect to their neighborhood 
and frequency. This layer is learned on training data and 
produced a vector of size 64 for each sequence element as 
its feature vectors with size of 32 to 128 were tested and 
64-length vector had the best result. 

Our final models input is a 3-dimensional matrix. For 
example, if we have n sequence samples with length of l 
and each element has an m-dimensional feature vector 
(one-hot or embedding), our input sequence would be n-
by-l-by-m. To achieve early detection and speed up our 

method, we used the first 100 elements of sequence for 
our classification. 

In pre-training step, we use two LSTMs for each 
layer of our deep network, one for encoding input 
sequence to a latent space called encoder LSTM, and 
another for reconstructing the input from the output of first 
LSTM, called decoder. If each element of input sequence 
is m-dimensional (size of one- hot or embedding vector), 
the first LSTM encodes this m- dimensional representation 
to a p-dimensional representation in the latent space. The 
goal of this encoder-decoder LSTM is to attain this p-
dimensional representation that is more abstract than the 
input features and extracted automatically obtained by a 
non-linear function. To learn this layer, a mechanism is 
needed to adjust the weights with respect to some output. 
To achieve better generalization, unsupervised learning 
was selected for pre-training. Therefore, the sequence is 
considered as an output and the second LSTM (decoder 
one) is used to map the p-dimensional vectors to m-
dimensional ones and reconstruct the input sequence. 
Backpropagation through time (BPTT) technique [52] is 
used to adjust the weights based on differences between 
input sequence and reconstructed sequence. This 
procedure is repeated in different hidden layers of our 
main network such that output of each encoder layer is 
considered as an input for the next encoder-decoder 
LSTM. For instance, if one wants to create a model with 3 
hidden layers, then three encoder-decoder LSTM would 
be needed for pre-training phase for which the input of 
first encoder is the input data, the input of the second 
encoder is the output of first encoder, and the input of 
third encoder is the output of second encoder (see Figure 4 
(a), (b), and (c)). Also, Figure 6 shows the pre-training 
algorithm. Equation (9) [53, 54, 55], shows the encoding 

phase where th  is the encoding result, encode
t  is the 

encoder function, tx  is the input of the network at time 

t (t − th element of sequence), and 1th   is the hidden state 

of encoder LSTM at time t − 1. 
 

1( , )encode
t t t tH x h                                               (9) 

Equation (10) [53, 54, 55] shows the decoder phase of 

unsupervised pre-training step that ˆ
tH  is the predicted 

output, decode
t  is the decoder function, tH  is encoded 

input at time t, and 1th   is the hidden state of decoder 

LSTM in the previous time. 

1
ˆ ( , )decode

t t t tH H h                                               (10) 
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To train our model in an unsupervised manner, 
reconstruction error between the true output (input of 
network) and the predicted output is calculated to update 
the weights by BPTT algorithm. This objective function is 
given in Equation (11) [53, 54, 55]. 
 

2
1

ˆ
T

t t
t

H H W


                                             (11) 

Where ˆ
tH  is the predicted output, tH  is the network 

input that is our desired output in unsupervised training, 

and 
2

W  is the 2l norm  of network weights. 

Upon completing pre-training step, the main network is 
built by concatenating pre-trained layers to each other (see 
Figure 4 (e)). Now, the model can be fine-tuned in a 
supervised manner data labels. However, there is a snag in 
our architecture that the last layers output is in a sequential 
format. To solve this problem, we used an LSTM layer 
with vector output and classify its output using a dense 
layer with softmax activation function. Fine-tuning step is 
used by BPTT algorithm in respect to the differences of 
true label and predicted label of each sample (see Figure 
7). Equation (12) and (13) [56] show the fine-tuning phase 

where th  is the hidden state of LSTM at time t, f  is an 

activation function, tx  is the input of network at time t, 

and to  is the output of network at time t. U,W, and V, are 

weights of network as shown in Figure 5. 

1( , )t t th f Ux Wh                                                    (12) 

( )t to f Vh                                                              (13) 

 
As illustrated in Equation (12), our network has two inputs 

at each time, one input from the sequence ( tx ) and 

another from the last internal hidden state of LSTM ( 1th  ). 

The pre-training procedure consists of two LSTM 
layers (see Figure 6). The first layer is responsible for 
producing new representation from its input data (variable 
X from previous layer or input data), which is referred as 
encoder layer (see Equation 9). The second layer is a 
decoder (see Equation 10) that reconstructs the input (X) 
from the output of encoder layer. Also the objective 
function of this network is the reconstruction error that 
calculated using Equation 11. This procedure is repeated 
in different hidden layers of our pre- trained hidden 
network. In this algorithm, n-th layer is the number of 
internal neurons of each LSTM layer. 

All pre-trained layers are concatenated to make the final 
network. The final network is fine-tuned in a supervised 
way to detect malware samples. This fine-tuning is 
training the feedforward network as well (see Figure 7). 
The first three layers of this network are the pre-trained 
layers. Afterwards, a vectorising LSTM is added to the 
network to convert the final sequence into a vector and 
pass the output to a dense layer for classification. The 
network is fine-tuned with backpropagation method [57]. 

Layer1, Layer2, and Layer3 are pre-trained layers from 
last step and just added to the final network with all their 
trained weights. Following these layers, a vectorising layer 
is added. This layer is an LSTM with vector output. After 
vectorising, a dense layer is added to the network for 
classification. The number neurons in this layer equals to 
the number of classes, except for the binary classification 
that needs just one neuron. To classify the vectors, 
softmax activation function is used. 

5. Results 

To evaluate our method, we chose both static and 
dynamic malware analysis datasets. As mentioned before, 
each dataset contains sequences of malware and benign 
samples including bytecodes, opcodes, and system calls. 
We compare the performance of our model to the standard 
stacked LSTM using accuracy, AUC, and MCC metrics. 

As can be seen in Table 3, the proposed method achieved 
better accuracy, AUC, and MCC in compare with standard 
stacked LSTM in all three datasets. 

As AUC and MCC are binary metrics, one vs. all 
technique is used to evaluate these metrics for Kaggle 
dataset. In this technique, samples of one class are 
considered as positive and others are considered as 
negative class and the model is trained and evaluated 
accordingly. This procedure is repeated for all the classes 
and the result is the average of all one versus all models 
results. As shown in Figure 8, the accuracy of proposed 
method is higher in all cases. 

To visually show the comparison between these two 
methods, accuracy per epoch and ROC curve of proposed 
method and standard LSTM are shown in Figure 9 and 
Figure 10, respectively which indicate better performance 
of our model. To measure the AUC of Kaggle dataset, one 
vs. all technique was used (see Figure 11). 

Table 4 compares the detection time of our model 
with similar previous works. It can be seen that our 
method is the detection time is lesser than all previous 
models with better performance. 
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5. Discussion 

We compared our method with the same standard 
stacked LSTM to investigate the effect of our layer-wise 
pre- processing of the training phase. As illustrated in 
Table 3, our method outperformed the standard LSTM in 
all metrics. As seen in Figure 8, our method converges 
faster  

 
Fig.  5. RNN network. a) A folded RNN. tx  is the sequence input in 

time t, and to  is the output of network at time t. The arc arrow shows the 

recurrently feed of output of network to its input. b) Unfolded 
representation of an RNN network. 

 

 
Fig.  6. Algorithm of pre-training step of proposed method. The first 
LSTM acts as an encoder and the second one acts as a decoder. The 
objective function of this algorithm is reconstruction error that calculated 
using Equation 11. 

 

 
Fig.  7. Algorithm of fine-tuning step of proposed method 

 

Table 3. Comparison of proposed method with standard stacked LSTM 

 
 
 
Table 4. Detection time per sample for some methods 

 
 
than standard LSTM and it initiates with higher accuracy. 
Also, the accuracy change of our method is less than the 
standard LSTM that shows the robustness of our model 
except in seventh class of Kaggle dataset that is highly 
imbalanced. A similar trend was seen in Figure 9 for other 
datasets. This all shows the positive effect of removing 
random initialization on accuracy and convergence speed 
of deep recurrent neural networks. As illustrated in Figure 
9, the proposed method increased the ACC between 
0.94% (for Kaggle dataset) and 11.7% (for VXHeaven 
dataset) that is related to the higher ACC contribution. 
Also, it can be seen in Figure 9 (c) and 9(d) that the 
proposed method reaches its highest accuracy in fewer 
epochs that shows its faster convergence. 

Figure 10 and Figure 11 show the results of ROC and 
AUC of our method compared to standard LSTM. As seen 
in these figures, our method has lower false negative rate 
with higher true positive rates which shows that removing 
random initialization would lead to better detection of 
malware samples with lesser false detection. As illustrated 
in Figure 10 and Table 3, the proposed method increased 
the AUC between 0.016 (for Ransomware dataset) and 
0.068 (for VXHeaven dataset) that is related to the higher 
AUC contribution. 
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As shown in Figure 11 (g), none of the models could work 
well on the seventh class of Kaggle dataset. That is 
because of the low number of samples in that class. 
Among 10828 samples of dataset, only 42 samples belong 
to this class. Standard LSTM predict the samples 
randomly for this class so the MCC is 0 and the AUC is 
0.500. However, the proposed method gained better 
results even in this highly unbalanced situation by 

producing the MCC of 0.223 and AUC of 0.550, which is 
a rather better than random prediction. 

As seen in Table 3 and Figure 9 (d) and Figure 10 (d), our 
proposed method can deal with IoT malware better than 
the current deep recurrent neural networks. The processing 
time of our algorithm (in test environment after training) 
about 3 millisecond (real-time), which is equal to the time 
for standard LSTM. Hence, we could  

 
Fig.  8.  Comparing accuracy of proposed method and standard LSTM in each epoch for Kaggle dataset classes. (a) first class against all classes, (b) second 

class against all classes, (c) third class against all classes, (d) fourth class against all classes, (e) fifth class against all classes, (f) sixth class against all 
classes, 

(g) seventh class against all classes, (h) eighth class against all classes, and (i) ninth class against all classes.
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Fig.  9. Comparing accuracy of proposed method and standard LSTM in 
each epoch. (a) Ransomware dataset, (b) VXHeaven dataset, (c) Kaggle 
dataset, and (d) IoT dataset. 

 
Fig.  10. Comparing AUC and ROC curve of proposed method and 
stacked LSTM for (a) Ransomware dataset, (b) VXHeaven (bytecode) 
dataset, (c) VXHeaven (opcode) dataset, and (d) IoT dataset 

 

 
Fig.  11. Comparing AUC and ROC curve of proposed method and standard LSTM in each epoch for Kaggle dataset classes. (a) first class against all 

classes, 
(b) second class against all classes, (c) third class against all classes, (d) fourth class against all classes, (e) fifth class against all classes, (f) sixth class 

against all classes, (g) seventh class against all classes, (h) eighth class against all classes, and (i) ninth class against all classes. 

 
improve accuracy and all other evaluation metrics without 
increasing the sample processing time. Attested by this 
outcome, we believe that our framework can be used in 
enterprise IoT networks for real-time malware detection 
with high efficiency. 

To show the detection speed of our model, we compared it 
with several recent peer methods ([8, 10, 11, 12, 22, 25, 
33, 36]). As seen in Table 4, our proposed method has the 
lowest detection time due to its use of raw sequential data, 
shorter sample data (sequence length), and simple 
architecture of the network. The speed of our method is 
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similar to MalDozer speed that uses of TitanX GPU while 
we have not used any GPU in our testing! 

5. Conclusion and future work 

In this paper, we proposed a stacked LSTM method 
that not only is considered long dependencies of malware 
sequence elements but it also avoids random initialization 
of weights of the network. We used a stacked LSTM with 
four LSTM layers and a classifier that its first three layers 
are pre-trained in an unsupervised manner. We not only 
reduced the time of sample processing but increased the 
performance of our classification method. We evaluated 
our method in malware detection space and compared it to 
the standard stacked LSTM on six diverse datasets. As 
results indicated, our model outperformed the standard 
stacked LSTM model in terms of accuracy, AUC, and 
MCC. Since the detection in the proposed method is real- 
time, we focused more on IoT application and by fixing 
the time we could improve the accuracy from 93.69% to 
99.10%, AUC from 0.976 to 0.995, and MCC from 0.830 
to 0.963. 

As we see our work as a framework for deep 
recurrent learning, we think that it can be used for testing 
all sequential datasets. Hence, testing this framework on 
other applications like text-based datasets, time series and 
bioinformatics is one of our future works. Moreover, using 
multiple modalities (views) of malware samples may be 
pursued in the future. Our method can be viewed as a part 
of a bigger model that combines multiple modalities of 
malware samples and classify them more efficiently. In 
addition, because of fast convergence of our method, it 
can be explored for adversarial malware detection. 
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