
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

199

Manuscript received August 5, 2023
Manuscript revised August 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.8.23

Impact on Requirement Elicitation Process when Transforming
Software from Product Model to a Service Model

Sameen Fatima, Amna Anwer1† and Adil Tareen2††,

University of Engineering & Technology, Lahore, Pakistan1†, University of Management & Technology, Lahore

Pakistan2††

Abstract
Influential trend that widely reflected the software engineering
industry is service oriented architecture. Vendors are migrating
towards cloud environment to benefit their organization.
Companies usually offer products and services with a goal to solve
problems at customer end. Because customers are more interested
in solution of their problem rather than focusing on products or
services. In software industry the approach in which customers’
problems are solved by providing services is known as software as
a service. However, software development life cycle encounters
enormous changes when migrating software from product model
to service model. Enough research has been done on the overall
development process but a limited work has been done on the
factors that influence requirements elicitation process. This paper
focuses on those changes that influence requirement elicitation
process and proposes a systematic methodology for transformation
of software from product to service model in a successful manner.
The paper then elaborates the benefits that inherently come along
with elicitation process in cloud environment. The paper also
describes the problems during transformation. The paper
concludes that requirement engineering process turn out to be
more profitable after transformation of traditional software from
product to service model.
Keywords:
Software as a Service (SaaS), Requirement Engineering process,
Requirement elicitation

1. Introduction

According to a study only 20% of IT corporations
prefers software as service and consider this process very
important. Whereas, majority of companies consider it to be
average because of security, availability of system, rate of
performance and integration with existing systems. A study
shows that providing software as a service model leads to a
profit margin of 45% per year. Software as a service (SaaS)
is analysed as a software that is accessible over internet and
is hosted by the software provider. Provider charges fee on
regular basis for software use. Whereas, Software as a
product (SaaP) solutions are those in which customer has to
buy the license to use the solution. SaaP solutions are hosted
by customer himself [2].

SaaS mainly focuses on distinguishing owner and
customer of a software as separate entities. The tools,
environment and other services that are provided by the
provider are called platform as a service (Paas). The users
of PaaS have no or very less control over the platform tools
but they can fully control the deployed version of software
applications. Another element of cloud computing is
Infrastructure as a service (IaaS) which is responsible for
network services, storage facilities as well as other
hardware mechanisms. Whereas, the customer is able to
install and execute random software that may even include
operating systems as well.

 In SaaS model user data and software are stored and
hosted on a central repository. In this case user do not buy
the product itself but use software, its services and
infrastructure as a rental facility and pay according to use of
services [5]. There are many ways in which SaaP and SaaS
differs from each other. SaaS owns a database and
middleware oriented architecture, due to which
nonfunctional requirements of this process differ from the
traditional software product [1]. When migrating software
to SaaS model the vendor must focus on change in
architecture, requirements and overall process to make sure
that transformation is successful [3].
 This paper gives an analysis of differences between
SaaP model and SaaS model and provide a systematic
approach for successful migration.Section 2 of this paper
involves the related work done in this field. Section 3
offered a proposed methodology for a successful
transformation which includes a generic and systematic
approach. Section 4 includes the case study which was
conducted to validate the proposed solution. Section 5 and
6 describes the limitation and future work of our research.

2. Literature Review

According to the study of Bennett et.al [6] SaaS mainly
focuses on human managing relationship between provider
and customer. According to his study service based soft
wares are highly flexible, user interactive and personalized
due to which requirement elicitation process changes. The
future work of his study focuses on essential changes in

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

200

software development life cycle while transforming
software to service based model.

According to study of Olsen et.al [5] SaaS model is
different from SaaP in terms of vendor customer
relationships. SaaS provides a long term relationship
between customer and vendor also his study point out that
upgrades in software must be non-disruptive.

M.P.Papazoglou [6] conducted study on traditional
software architecture and according to his study design
process need alteration when software is transforming from
product model to service model. He was one of the very first
authors who analyzed the effects of SaaS model on
engineering and business processes.

According to the group study of Balian and Kumar [2]
the engineering process and quality models that are adopted
for SaaS are not enough for software transformation from
SaaP to SaaS. Their study concludes that nonfunctional
requirements need to be considered more seriously while
developing software from scratch or moving from SaaP to
SaaS.

Recent study of Tariq et.al [1] compared the software
development process for SaaP and SaaS models. His study
describes the impact of nonfunctional requirements on the
SaaS development model. His study than concludes that due
to change in engineering process number of stakeholders
increases and a checklist should be made to keep record of
new stakeholders. For this purpose, Capability Maturity
Model Integration (CMMI) has been referenced by him for
making checklist for new stakeholder.

 Sufficient research has been done on the SaaP model
and transformation of Service based systems to cloud based
system. Cloud based systems are those systems, services or
resources that are given to user on demand via internet.
However, very limited work has been done on requirement
elicitation process when transforming existing software into
a service based model.

This paper suggests a systematic methodology and a
generic approach for successful transformation of software
from product model to service model. Moreover, it also
covers the necessary changes that need to be accommodated
in requirement elicitation process during transformation.

3. Proposed Methodology

Generic Approach:

This approach mainly emphases on the software
development process for both SaaP and SaaS model. It
compares the engineering process for both models and
extracts the differences among them.

Table 1: Differences in requirement engineering process of SaaP and

SaaS model

Software as a Product (SaaP) Software as a Service (SaaS)

Limited number of stakeholders Large number of stakeholders

Customer involvement is very

little.
Customer involvement is very

high

Version based customer

relationship
Customer relationship is long

term

Special survey techniques are

used for customer feedback.
Customer feedback can be

achieved directly from usage

monitoring and updated on basis.

An upgrade is needed for feature

enhancement
Feature enhancement can be done

on regular basis without any

delay.

Specific downtime is required for

system update
Integration of update is easy and

there will be no downtime, the

process is almost seamless.

Updates have strong impact on

the system sometimes it needs to

be retrained.

Updates are on continuous basis

and they do not have high impact

on the system.

Testing and user acceptance is

difficult.

Tested in modules according to

updates and user accepted is

achieved through grouping.

Bug fixing is scheduled. Immediately fix bugs.

According to the comparison SaaP model involves
limited number of stakeholders but in SaaS model variety
of stakeholders are involved. According to research study
of kumar[4] these stakeholders could be graphic designers,
security experts, integration managers, requirement
analysts, customers and marketing managers etc.

Along with the expansion of stakeholders SaaS
requirement engineering process also have long term
customer relationship among the user and the provider that
makes customer involvement more strong than SaaP.
Moreover, a direct feedback is required from the customer
that can be achieved by monitoring usage of the system and
motivating the end users to provide genuine feedback using
feedback forms by making them realize that their
involvement matters a lot in development and improvement
of the software. The integration of new features and bug
fixing in SaaP require downtime and needs to be scheduled
before implementation but in case of SaaS integration of
updates is seamless and less disruptive also bug fixing is
immediate as the system is updated and tested iteratively.

SaaP sometimes needs retraining when upgraded but
in case of SaaS upgrades are more frequent and smaller as
compared to SaaP due to which it requires less training at
the customer side.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

201

Furthermore, as SaaS is hosted on a central repository
acceptance testing of new features is easy in comparison to
SaaP model. A proportion of particular user group is
selected and features are rolled out to them for feedback. In
some cases different versions of new features are rolled out
among the different user groups and then the solution which
is highly approved by the end user is implemented. The
difference in engineering process of SaaP and SaaS and the
above defined characteristics leads to an iterative
development process as the development and updates are
continuous in service oriented process along with the
frequent feedback from customers. A systematic solution
has been proposed to handle changes in requirement
engineering process.

 Systematic Approach:

The most important and time consuming phase of the

software development life cycle is requirement elicitation
and analysis [figure 1]. While transforming software from
SaaP model to SaaS model there is a huge change in
requirement engineering mechanism. To accommodate
these changes in software engineering process we need to
handle new requirements iteratively.

Figure 1: Iterative Software Development Mechanism

For a successful transformation of software from SaaP
to SaaS the following steps of systematic approach needs to
accommodate in requirement engineering mechanism.

1: As the requirement engineering process becomes

iterative due to volatile requirements the development team
needs to be trained for adaption of changes.

2: Requirement engineering process requires

integration with iterative software development. Although
iterative development process is not a distinctive property
of SaaS model it also comes in SaaP model as well but the
variable nature of requirements and frequent updates of
system demands an iterative development model.

3: when shifting to SaaS model number of stakeholder
increases. It is very important to identify right stakeholders
during the requirement engineering mechanism. Identified
stakeholders then needs to be prioritized according to a
systematic approach.

4: As SaaS model demands strong customer
involvement, so we can get customer attention by bug
reports, feedbacks and sending themfeature requests
invitations. End user should have a feeling that their
interaction and feedback would be very effective for future
updates and enhancements.

5: To get better understanding of requirements and to
establish a better customer relationship feedback forms
could be provided as well as usage of the software could be
monitored to analyze that how system is behaving on
customer end and which requirements need modification in
engineering mechanism.

6: Updates integration should be seamless. One of the
main benefits of service based software is that updates are
so frequent and developers have full control over the
deployment of the software. Due to frequent and small
updates, downtime of the system turns out to be almost zero
and database amendments are too small to affect the client
side working. Furthermore, updates are installed on the
server and customer has nothing to do with the updates
unlike a traditional software product.

7: For acceptance testing of the software make
multiple versions of the software update and roll them out
among the various user groups. Feedback forms and usage
monitoring techniques could be used for this purpose.

CASE STUDY

To validate our proposed methodology we have
conducted a case study of EHR (Electronic Health Record)
system of Ericsson Nikola Tesla (ENT) Corporation. This
study is based on transformation of organization’s
centralized system to service based cloud software. Cloud
software refers to the term cloud computing which in
general is the distribution of hosted services over the
internet [10].

Ericsson Healthcare Exchange (EHE) system was
provided by ENT Corporation to the health care institutions
and providers. EHR is the essential component of EHE
system which stores all the patient, doctor, laboratory,
medicine and research information of healthcare system.
EHR is then responsible of sharing data among patients,
health institutions, healthcare providers etc.

The existing version of EHR is not service oriented.
Data is hosted on a central repository and accessible through
direct database access.

However, due to some factors a service based cloud
model is required for EHR.Those factors mainly are
volatility and scalability in requirement engineering process
as well as cost management. Furthermore, SaaS model is

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

202

required so that EHR is accessible for the institutions and
patients who are living in remote areas.For the existing
version of EHR it was very difficult to estimate the user
defined requirements and suitable amount of resources. The
tools and methods used for estimation were not cost
effective especially in case of customized requirements by
users. We have mapped our proposed methodology on the
transformation of traditional EHR system to SaaS model
and found the following results.

4. RESULTS

 Stake Holder Identification:

The transformation of EHR to SaaS model identified
an increase in stakeholders. The following list of
stakeholders has been found and identified during the
requirement elicitation process.
1: System architect

2: System Builder

3: Service Provider

4: Service Consumer

5: Product Manager

6: System Engineer

7: Performance Analyst

1. Iterative Process:

The process was handled iteratively because of new
services and customer specified requirements. And after
every service deployment requirement were re checked to
make sure that they are implemented properly.

2. Customer Relationship:

To make sure that customers are getting secure access
of services continuously, services that were being used by
remote areas customers were monitored. Feedback forms
were created for users to get an idea of processing speeds
and new service requirements.

3. Trained Staff:

As the process of requirement elicitation is iterative for
that performance analyst, system engineer and service
providers were hired for full time monitoring of the system.

4. Seamless Update:

In EHR system users didn’t had to worry about the
upgrades and updates. All the updates and upgrades were
handled by the hosting server and were integrated to the

system using application programming interface (API). It
was performance analyst’s job to make sure that enough
resources are available to avoid downtime of the system.

5. Acceptance Testing:

As the system was developed at a national level the
users of the system were known. Different user groups were
made to gain acceptance of the new or modified feature.
Emails were forwarded to the specified user groups
depending upon the service to be developed.

Limitations :

This research work only focuses on requirement
engineering mechanism of software development life cycle
and do not cover all the phases due to which implementation
of this methodology could be failed when considering all
phases.

The other limitation of this research work is that it
mainly emphasizes on the web based service model. For
other SaaS models transformations, it might not be the very
good approach.

5. Conclusion & Future Work:

During the process of transformation to SaaS model
software development engineering process encounter
changes radically which make requirement engineering
process volatile unlike the process of traditional software.

Variation in process involves stakeholders, Strong

customer involvement and their long term relationship
management, more frequent upgrades and feature
improvements and resource utilization for achieving service
oriented goals.This paper has proposed a systematic
solution for a successful transformation of a traditional
product to service based model. This approach mainly
focuses on necessary changes that need to adapt in
requirement engineering mechanism during the migration.

The Future vision of this research is to study that how

this new proposed requirement elicitation methodology can
be integrated with agile development process. Which is
already incremental and iterative in nature, and what will be
the impact of this new method on the agile development
engineering process.

6. References

[1] A. Tariq, S. A. Khan, and S. Iftikhar. Requirements
engineering process for software-as-a-service (saas) cloud

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

203

environment. In Emerging Technologies (ICET), 2014
International Conference on, pages 13–18. IEEE, 2014.

[2] N. Baliyan and S. Kumar. Towards software engineering
paradigm for software as a service. In Contemporary
Computing (IC3), 2014 Seventh International Conference on,
pages 329–333. IEEE, 2014.

[3] M. A. Chauhan and M. A. Babar. Migrating service-oriented
system to cloud computing: An experience report. In Cloud
Computing (CLOUD), 2011 IEEE International Conference
on, pages 404–411. IEEE, 2011.

[4] S. Kumar and S. Sangwan. Adapting the software
engineering process to web engineering process.
International Journal of Computing and Business Research,
2(1), 2011.

[5] E. R. Olsen. Transitioning to software as a service:
Realigning software engineering practices with the new
business model. In Service Operations and Logistics, and
Informatics, 2006. SOLI’06. IEEE International Conference
on, pages 266–271. IEEE, 2006

[6] M. P. Papazoglou. Service-oriented computing: Concepts,
characteristics and directions. In Web Information Systems
Engineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on, pages 3–12. IEEE, 2003.

[7] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay,
and M. Munro. Service-based software: The future for
flexible software. In Software Engineering Conference, 2000.
APSEC 2000. Proceedings. Seventh Asia- Pacific, pages
214–221. IEEE, 2000.

[8] "Cloud computing," in Wikipedia, Wikimedia Foundation,
2017. [Online]. Available:
https://en.wikipedia.org/wiki/Cloud_com puting. Accessed:
Jan. 22, 2017.

[9] A. Gorokhova, "Software as a product vs. Software as a
service," https://www.facebook.com/GetBynder,2016.
[Online].Available:https://blog.bynder.com/en/knowledge/o
ur-log/software-as-a-product-vs- software-as-a-service.
Accessed: Jan. 22, 2017.

[10] Posted and M. Rouse, "What is cloud computing? - definition
from WhatIs.com," SearchCloudComputing, 2012. [Online].
Available: http://searchcloudcomputing.techtarget.c
om/definition/cloud-computing. Accessed: Jan. 22, 2017.

