
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

115

Manuscript received October 5, 2023
Manuscript revised October 20, 2023

https://doi.org/10.22937/IJCSNS.2023.23.10.15

 Pragmatic Assessment of Optimizers in Deep Learning

Ajeet K. Jain1, Dr. PVRD Prasad Rao 2, Dr. K. Venkatesh Sharma 3

1Research Scholar, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation,
Vaddeswaram, AP, India; (Association: Asst Prof. , CSE, KMIT, Hyderabad, India)

2 Professor, CSE, KLEF, Vaddeswaram, AP, India
3Professor, CSE, CVR College of Engineering, Hyderabad, India

Summary
Deep learning has been incorporating various optimization
techniques motivated by new pragmatic optimizing algorithm
advancements and their usage has a central role in Machine
learning. In recent past, new avatars of various optimizers are
being put into practice and their suitability and applicability has
been reported on various domains. The resurgence of novelty
starts from Stochastic Gradient Descent to convex and non-
convex and derivative-free approaches. In the contemporary of
these horizons of optimizers, choosing a best-fit or appropriate
optimizer is an important consideration in deep learning theme
as these working–horse engines determines the final
performance predicted by the model. Moreover with increasing
number of deep layers tantamount higher complexity with
hyper–parameter tuning and consequently need to delve for a
befitting optimizer. We empirically examine most popular and
widely used optimizers on various data sets and networks–like
MNIST and GAN plus others. The pragmatic comparison
focuses on their similarities, differences and possibilities of
their suitability for a given application. Additionally, the recent
optimizer variants are highlighted with their subtlety. The
article emphasizes on their critical role and pinpoints buttress
options while choosing among them.
Keywords:
Deep Learning, Optimizers, Convexity, Lottery Ticket, ADAM,
RMS Prop

1. Introduction

Optimizers are indispensable with statistical
computations for higher efficiency when the dataset size
increases in Deep Learning (DL). Quite interestingly,
one on the mainstay of optimization process approach is
to make decision based on previously unseen data using
statistical methods. This is achieved by carefully chosen
parameters for an (sub) optimal solution for a given
learning problem. Manifestly, the idea is to look for those
optimizing algorithms offering better performance and
prediction accuracy [1, 2, 3, 4]. For instance, the text
classification provides the fundamental problem of
learning from examples. Likewise, speech and image
recognition have been studied with paramount
performance and accuracy – yet offers improvements

avenues. In striving towards these goals, many
optimizing techniques involving non–convexity and
convexity principles are cited in the ML literature [5, 6,
7]. The Stochastic Gradient Descent (SGD) has been
very well accepted optimizing technique past many years,
but suffers from ill-conditioning and taking more
computation time with bigger data sets. Moreover, it also
requires hyper-parameter tuning and different learning
rates adaptively.

Recently with the advent of new variants of
optimizers offering superior performance and sometime
outperforming over their counterpart on bigger datasets,
it is imperative to seek how these new entrants are
providing such a phenomenal performance improvement.
We examine the most popularly used optimizers in DL
framework using known data sets. We also accentuate
the significance of role of optimizers and pragmatically
compare them in response to their learning rate,
suitability plus other selection criterions.

1.1 Related work

Deep Learning (DL) has paved a strapping path in
engineering applications and has generated keen interest
in optimizers as working horse solving varied human like
problems including healthcare, marketing, finance,
sociology, economics, logistics and others. Importantly,
we have intelligent products and services like speech
recognition, computer vision, anomaly detection, game
playing, disease diagnosis, autonomous drive, animated
movie making, smart recommended systems and many
more. The flogging work is due to optimizers—starting
from Gradient Descent (GD) to Stochastic GD to
Momentum based optimizers [8-14].

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

116

In this work, we are addressing some of the pertinent
questions for optimization, those can be delve deep more
comprehensively.

What is the measure of optimal performance? What are
those attributes which pragmatically compares them in
DL?

 How to transform non-convex (functions)
techniques into convex ones?

 Are derivative free algorithms more
computational efficient?

 What are hyper-parameter optimization
methods?

 How modern optimizers are useful to
address DL scenarios? How recently
known ‘Lottery Ticket Algorithm’ facilitate
for optimization process?

We also highlight the selection process which offers
better results while selecting the ‘right’ among vivid
optimizers. A pragmatic comparison highlights their
relative importance, merits and other subtleties.

2. Role of Optimizer in DL

This section highlights about the role of optimizers
and performance issues and challenges therein. We need
some way to evaluate whether our optimizing algorithm
is performing correctly to reduce difference between the
current output and the targeted output, and this difference
is a response indicator to regulate the difference obtained
by the optimizer to make appropriate adjustments. The
weights are fundamentally a bunch of numbers and are
stored as pattern carrying information what a layer does
with its input data. Hence the learning is primarily to
update weight values for all the layers such that it
accurately maps them to their connected targets. Here is
a problem —a deep network may contain hundreds (or
even more!) of parameters, so finding their precise values
for each layer is a formidable task, particularly knowing
that amending value of one parameter influences the rest.
To control the output from layers, we calculate them
against expected ones and their closeness is desired as
expectation and this is accomplished by loss function of
the network [1, 3, 4] as depicted in Fig. 1.

 Figure 1 An Optimizer Framework

Basically this difference is a pointer to regulate the
value of the weights accordingly leading towards lesser
loss score. This modification is performed by ‘optimizer’,
which augments what is conventionally known as back
propagation algorithm.[11-14]. Initially, the weights are
given random (smaller) values and the network performs
a sequence of arbitrary transformations. As expected the
discrepancy should be lowered against the larger values.
Nevertheless, the network update weights in correct
direction for every input and thereby propitiating towards
decrease of loss. This process continues as iteration and
the training loop is repeated (aka epoch) — and each
epoch yields a correct weight update values augmenting
to reduce the loss further less. Ideally, the idea is to
reduce it towards near zero. A cost function usually just
calculates the mean squared error (loss) between an
actual output and the desired output when performing
supervised learning tasks. So a loss function can be
considered synonymously with a cost function [15].
How to train a NN successfully? To accomplish this we
need (i) power engine (latest multi-core CPU / GPU) (ii)
a suitable network, and (iii) a suitable algorithm with
accurate training artifices.

2.1 Deep Network Architecture.

The architectural and activation functions are most
important and one can think of a deep network with at
least 4-5 layers and sufficient connections. Achieving
good performance, one can go to even a deep level of 20
or more and add skip connections. Primarily, ReLU
(Rectified Linear Unit) activation function begins a good
choice, but depending upon the characteristics of data set,
using tanh or swish activation functions might prove a
superior choice while training the algorithm [16].
Additionally, another criticality is to use SGD with well-
tuned constant step-size, however, momentum and

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

117

adaptive step size offers additional profit. A prototypical
is depicted in Fig.2 interposing 3 aspects with their
effects.

Figure2: preferred choices for training of a NN

They offer 3 characteristics of algorithmic
convergence, namely: (i) make convergence possible,
(ii) faster convergence and (iii) better global
solutions. All three aspects are interrelated.
(i) Lipschitz constant is the maximum ratio

between variations in the output space and
variations in the input space of f. This
measures the sensitivity of the function
with respect to input perturbations.

A function f : n m is called
Lipschitz continuous if there exists a
constant L such that
 ∀𝑥, 𝑦 ∈ ℝ, ‖fሺxሻ െ fሺyሻ‖ଶ 𝐿‖x െ y‖ଶ
(1)

For locally Lipschitz functions, it may be computed
using the differential operator. For more details, one
can refer to [17, 18].
(ii) Proper Initialization - is extremely

significant to start in order to train a
network having many layers and two extra
artifices can improvise: adding
normalization layers and adding skip

connections. Imperatively, which one is a
design or a critical choice? Typical these
include: initialization strategies,
normalization methods, the skip
connections, over-parameterization as
depicted in Figure 3.

 Figure 3. Three steps towards generalization

(iii) Representation, Optimization and
Generalization. For a supervised learning,
we need to find a function that
approximates observed samples and
identify those parameters for minimizing
the loss. Also, we need to use a function
from the previous step to make predictions
on test data and calculate the resultant test
error. These can be further divided into
representation, optimization and
generalization errors, respectively.

In DL, these errors are often calculated
disparately—while noting the representation
supremacy of a certain class of functions; we often
do not try to look into optimization problem closely.
Similarly, while noting the generalization error, we
often take for granted that the global optima have
been found and in the same way tend to ignore the
generalization error while noting optimization
properties, assuming the representation error is zero
[19, 20, 21].

2.2 Optimization Issues:

The challenges for optimization are fairly
intricate and are being represented in Fig. 4.
(i) Making the algorithm to converge to a realistic
solution.
(ii) Speeding convergence rate.
(iii) Ensuring convergence like a global minimum.

First

Second

Third

•Network

• Functions

•Parameters of
functions

•Optimization
environment

•Unseen Data
prediction

•Generalization

Controllin

g Lipschitz

Constant

Faster

Converge

nce

Better

Landsc

Proper

Initialization

Skip

connection

Wide

Normalizati
on

SGD and

its variants

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

118

 Figure 4. Optimization: Issues and Challenges

All these challenges are chiefly inspired by
optimization techniques although the vertical divide
is never clear-cut due to blur boundaries. For
instance, some algorithms provide better
convergence rate—citing it as a global challenge.
Others visualize these as sub-areas of DL
optimization techniques as an important artefact.

2.3 Stochastic GD Optimization

Paradoxically SGD follows the gradient of a
mini-batch while training a network, we estimate the
gradient using a suitable loss function. At an
iteration ‘k’, the gradient will be updated
accordingly. Hence, the calculation for ‘m’
examples input from the training set having y(i) as
target , is:

 (2)

𝜃 ← 𝜃 െ 𝜂 ĝ

where’η’ (eta) is the learning rate. Further, the
learning rate is of paramount importance as the
magnitude of an update at ‘ kth ‘ iteration is dictated
by this. For instance, if η = 0.01, then evidently
more number of iteration updates will be required
for convergence. On the contrary, if η = 0.5 or
greater, then in this case the recent updates shall be
highly dependent on the recent instance. Eventually,

an obvious wise decision is to choose it arbitrary by
trial—this is one very important hyper-parameter
tuning in DL systems. On the parallel side of it, yet
another way could be ‘choose one among several
learning rates’ which provide smallest loss value.
This intrigue technique is known as ‘line search’- a
very popular scheme for DL fraternity to tuning. Yet
another intuitive way is to monitor for first few
beginning epochs and make a prudent choice of ‘η’
offering best or near-to-best performance [22-26. In
later part, a more interesting technique MAS
(Mixing Adam and SGD) is discussed to elaborate.

2.4 Stochastic Gradient Descent with

Momentum

The SGD algorithms have a trouble to get towards global
optima, and have a tendency to get stuck into local
minima (Figure 5).

 Figure. 5 A 3-D Representation with Local

and Global Minima (Maxima)

Furthermore, smaller values of gradient can create
problem of vanishing gradient! To overcome this,
momentum based principle is adopted to accelerate the
process of learning. The method takes running moving

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

119

average by incorporating previous update in the recent
change as if there is a momentum due to preceding
updates. The momentum based SGD converges faster
with reducing oscillations– in order to achieve this, we
use another hyper-parameter ‘ν’ known as velocity.
Usually ’ν‘ is set as negative of gradient value of
exponential decaying average. Moving further on, we
would require yet one more hyper-parameter α (alpha): α
ϵ [0 , 1], known as momentum parameter and its
contribution is to find how fast the previous gradient
exponentially decays. The updated values are computes
as:

 (3)

From equation (3) it is obvious that the velocity vector ‘ν’
keeps on adding the gradient values. Additionally, for a
bigger value of α (alpha) relative to ϵ, the gradient affects
the current direction more from previous iteration. This
in fact the founding principle on which ADAM optimizer
works. The commonly used values of α : from 0.5 to
0.99. Despite being so intuitive and nice technique, the
limitation of this algorithm is additional parameter
inclusion and extra calculations involved.

3. Various Optimizers in DL

The DL practice is fundamentally aimed at
optimization and regularization techniques. The
contemporary optimizers with their process framework
are briefly described with their relative merits and
limitations.

3.1 AdaGrad

The simplest optimizing algorithm is AdaGrad,
where dynamically changing learning rates are model
parameters. Here, for parameters whose partial
derivatives are higher, for them decrease their

corresponding learning rate substantially, otherwise, the
algorithm takes inversely to where derivatives are lower
instead. Why one needs different learning rates? We
need this adaptive feature of learning rate for following
reasons:

(i) Learning Rate for Sparse Features—where quite a
large number of zero value features are present–like in a
bag of words. This necessitates that we should have a
mechanism to perform larger updates on those features.

(ii) Learning Rate for Dense Features—where quite a
large number of non-zero values are present. This kind of
dense features when present in the data set necessitates
for the mechanism to perform smaller updates on those
ones.

To accomplish these , AdaGrad employs square value of
the gradient vector using a variable ‘r’ for gradient
accumulation , as in equation(4).

(4)
Using this equation (6) the square of gradient is collected
and subsequently the update of parameters is computed
by a scaling factor ‘ δ + √r ‘ , where δ is a very low
value constant for numeric stability. The update applied
as per the following equation (5) now:

(5)

Here ⨀ operator implies element-wise multiplication of
vectors. As can be inferred from above equations, when
‘r’ is close to a ‘near-zero’ value, the term in the
denominator should not be evaluated as ‘NaN = Not A
Number’ and thus the term δ helps to avoid this to
happen. Also, the term ‘ϵ ‘stands for global learning
rate.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

120

Advantages

 Easier to use for simple learning tasks

 Manual tuning of learning rate is
eliminated–set to a value of 0.01 as default

Disadvantages

 Suitable for simple problems having
quadratic space

 Stops early while training even medium
complexity networks, as scaling factor
affects convergence and also stops before
trying to get towards better solutions

3.2 RMS Prop

Root Mean Square Proportional [27] is modified
version of AdaGrad where it recursively defines a
decaying average of all past gradients. In so doing,
the running exponential moving average at each time
step depends only on the average of previous and
current gradients. Moreover, AdaGrad contracts the
learning rate according to the entire history of the
squared gradient whereas RMSProp exploits an
exponentially decaying average to discard history
from the extreme past such that it can converge
faster after finding a convex bowl. The
implementing equation is:

 𝑟 ← 𝜌𝑟 ሺ1 െ 𝜌ሻ𝑔 ⨀ 𝑔

(6)

here ρ is the decay rate. Then parameter update is
computed and applied as follows:

(7)

Characteristic features

 Adapting in increase or decrease of
learning rate with each epoch, i.e., it
chooses different learning rate for
each parameter

 New input data does not
dramatically changes the gradient
and hence convergence to local
minima faster

3.3 Adam

Adam (Adaptive Momentum) is majorly used
optimization algorithms in DL and combines the
heuristic of both the momentum and RMS Prop and
interestingly been designed for DNN [28]. This
algorithmic technique has the squared gradient feature of
AdaGrad and to scale the learning rate analogous to
RMSProp and feature of momentum using moving
average. The fine algorithm calculates individual
learning rate for each parameter using a term called ‘first
moment’ (like a velocity) and ‘second moment’ (like
acceleration). The algorism combines the characteristics
of AdaGrad having sparse gradient and RMSProp having
the mechanism for on-line and non-stationary data sets.

Salient features:

 Momentum term is in-built as an estimate
of first-order moment

 In-built bias correction while estimating for
first and second order moments

 Update moving exponential averages of
gradient ‘mt’ and square gradient ‘ut’ with
hyper-parameters ρ1 and ρ2 (originally
these are denoted by β1 and β2 ,
respectively by authors) as these control the
cited decaying rates.

These moving averages are estimation of mean (first
moment) and uncentered variance (second moment)
of gradient. In this process, at time step ‘t’, the
various estimates are :

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

121

(8)

Subsequently, the bias is corrected in first and
second moments and thus using the corrected
moment estimates parameter updates are calculated
and applied as:

(9)

From [28], the default values are: ρ1 (β1) = 0.9 and ρ2
(β2) = 0.999 and δ = 10 -8. Adam works quite well in
deep learning scenarios and is one of the most favored
adaptive learning-method algorithms.

Advantages :

(i) Requires no tuning for learning rate as no
modifications needed to rescale gradients
(ii) Less memory requirements and hence the algorithm

is proficient
(iii) Fitting for gradients having noisy and sparsity

characteristics

3.4 AdaMax

Adamax is an algorithm with infinity norm as another
variant of Adam [28]. The idea borrowed here is that, as
Adam algorithm updates individual weights with respect
to inversely proportional to L2 norm, this technique is

more generalized with Lp norm taken for updating. Here,
at time step ‘t’, we calculate gradient with respect to
stochastic way for biased first moment via training
infinity norm. Subsequently, the parameters are updated
according to Equation (12):

(10)

The basic advantage of using AdaMax is that we
need not to make correcting the values of
initialization bias and parameter updates a much
easier bound in comparison to Adam [28, 29].

3.5 AMSGrad

Can we have a technique where the exponential
moving average guarantees convergence as one of
prominent features? Obviously ‘yes’ and this is what
AMSGrad technique provides by combining the
features of Adam and RMS Prop together [30]. As
noticed from the previous discussions, the first and
second order moments variables are modified as per
Equation (13) as: .

(11)

The fundamental differentiation from Adam
algorithm is as per Equation (14):

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

122

(12)

Noting that, it keeps the maximum of all ut until present
time step and takes this value for normalizing averages
successively instead of ut as their counterpart in Adam.
By accomplishing this way, AMSGrad achieves a non-
increasing step size and the parameters are revised as per
(14). The most noticeable feature is that AMSGrad
neither way decreases nor increases the learning rate. In
addition to this, it reduces ut - which guides to non-
decreasing rate in the event when gradient is huge in
future expected iterations.

4. Recent Optimizers in the Fray

Recently, many things in the optimization
techniques are in forefront of research community in ML
and DL are striving for more with better parameter
tuning and exponential decay rates and using state-of-
the-art technology to improve the performance on CNN,
GAN, RNN and other data sets. Here, we highlight a few
recent optimizers with different blends which they
exhibit close relationships with the optimizers presented
so far [31].

4.1 EVE

There are two learning rates of paramount interest
as depicted in Figure 4 (sec.4) and these influence the
convergence and other virtues of optimizer. Recapturing
the thinking towards this, we can have the adaptive
gradient feature of SGD where the intended these is well
suited too. So, this one is cited as modification of Adam
optimizer with coefficient confining two themes—firstly
adapting the learning rate locally for each parameter and
secondly combining all parameters together and
performing an update globally. This sounds great! And
in fact it has shown to be outperforming Adam and
others while training deep neural networks (DNN)-like
CNN for classification of pictures (photographs) and
RNN for language translation task [32].

4.2. RAdam

 The problem of adaptive learning rate and its big
variance is usually noticed in the early stage of training
the network and the idea of ‘warmup’ works as a
supplement in order to reduce the variance. The term
‘warmup’ step is just a parameter used to lower the
learning rate to reduce impact of model deviation from
learning on new data suddenly. This implies that we can
use a very low learning rate for a set number of training
steps, i.e., ‘warmup steps’. Afterwards we use our
"regular" learning rate or better known as ‘learning rate
scheduler’. We can also gradually increase your learning
rate over the number of warmup steps. The proposed
Rectified Adam (RAdam) is a modification by
introducing a term to rectify the variance of the adaptive
learning rate. The experimental results on image
classification, language modeling, and neural machine
translation verify our intuition and demonstrate the
efficacy of this new variant [33,34] .

4.3. MAS1 (Mixing ADAM and SGD)

Another variant that join together Adam and SGD
by weighing the contributions collectively with the task
of regular (constant) weights and exploit them at the
same time by taking the best of them. This intuitive
blending idea is illustrated in Figure 5 with a side caption
therein. Recently various demonstrations are cited with
CNN DNN incorporating different images and the
conventional classification of text data with MAS
optimizer and cited that it produced better results than
their single SGD or ADAM counterpart optimizers
individually [35].

4.4 Lottery Ticket Hypothesis

From the passion of gambling world, the
inspiration is to select (get) a ticket whose chance of
winning is highest! In the same way, the training of DL
models is often compared with lottery to buy every
possible ticket. However, if we know the winning
process, it seems we can make a prudence choice about
selection process. By the same token, in DL models, the
training processes produce large structures of inter-
connections of NN equivalent to a large container of

1 https://gitlab.com/nicolalandro/multi optimizer

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

123

lottery tickets. In this hypothesis, the model undergoes
optimization techniques-like pruning that remove
unnecessary weights from NN in order reduce model size
without compromising the performance. Thus this is in
turn equivalent to searching of winning tickets from the
container leaving the rest. Such pruning process produces
structures which are almost 90% smaller than the original
NN structure [34]. This idea leads to the hypothesis that
a large NN contains a smaller sub-network that if trained
properly, will attain a similar accuracy in counterpart.
Thus looking at the concision of this hypothesis, it opens
more fronts for understanding and research to become
one of the most important DL fields as it challenges the
conventional wisdom in DL network training. For more
insightfulness, one can refer to [33, 34, 35, 36].

5. Experimental Results

A. Web Resource:

https://scikit-

learn.org/stable/modules/generated/sklearn

.datasets.make_blobs.html

The various optimizers were tested using classification
from the sklearn data sets by generating random
classification. Initially, this creates a cluster of points
normally distributed with standard deviation as 1 about
the vertices of an n_informative hyper cube with sides
of length 2*class_sep and assigns an equal number of
clusters to each class. Further, it also introduces
interdependence between these features and adds various
types of noise to the data. The numbers of samples were
taken as 100(default) and number of features as 20.

Figure. 6 Sample output showing 3 different classes

Figure. 7(a) SGD with ‘lrate’ and accuracy with number of epochs

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

124

Figure.7(b) ADAM with ‘lrate’ and accuracy with number of epochs

Figure. 7(c) AdaGrad with ‘lrate’ and accuracy with number of epochs

Figure. 7(d) RMSProp with ‘lrate’ and accuracy with number of epochs

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

125

 Figure. 7(e) AMSGrad with ‘lrate’ and accuracy with number of epochs

 B . Resource:

Simple MNIST ConvNet (CONVolutional neural NETwork) Handwritten Digit Classification (keras.io)

The MNIST dataset contains 60,000 small square 28×28 pixel grayscale images of handwritten single digits between 0
and 9 and to classify them into one of 10 classes representing integer values from 0 to 9.

 Figure. 8 MNIST Hand-writing data

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

126

 Fig. 9 (a, b) Different Optimizers with Loss and Accuracy

6. Conclusion

The preceding narrations and the pertinent graphs
with different optimizers provide their comparison
with respect to number of epochs and accuracy and
loss as intrinsic parameters. Some emerging points
with the experimental analysis are:

— A starting point that usually works well is ReLU
as activation function

— Decreasing loss provides a way to know the
faster convergence rate and it also reflect the
learning goals providing intuitive learning idea
with approximations

—Begin with a simple dataset having a few samples
with a fitting network and after getting good results,
increase the complexity of data and network with
tuning parameters subsequently

 —Start with a well-known optimizer to seek the
results and then try with another to
 get a reconnaissance and it might lead to
improvement–not always! The correctly
 chosen optimizer with adequate learning rate and
other parameters makes a good deal.
 However, there no single optimizer that solves for
all types of date set.

 — Choice of a Particular Optimizer: Choose a well
known and already experimented
 optimizer with default learning rates and other
parameters settings. Try to run with
 iterations (epochs) and notice the loss (accuracy)
results. Then, shift towards other
 similar-featured optimizer and observe the changes.
Indeed an exhaustive process!
 Nonetheless, keep experimenting by increasing
towards momentum based and
 other current blends of optimizers(like Adam,
AMSGrad or RADam, etc.).

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

127

We have provided with an understanding of reasons

for a particular optimizer for a given data set and its give
s foundation for the pros and cons of their suitability.
The most popular in DL research community are Adam
and RMSProp and the results were shown as promising
ones. However this imperativeness provides an
insightful for making a visionary choice of optimizers.
Also, getting an overview of their criticalities and
understanding the reasons for choice makes a footing
platform in DL [37,38,39]. Furthermore, there are several
promising results one can obtain from different set(s) of
optimizer(s) and this might require more investigations
and deeper delving into. The upcoming and already
announced optimisers – like YOGI has to be integrated
into the DL framework, so that it can be empirical tested
against others. The Lottery Ticket technique is already
gaining momentum in this area and sooner hopefully
more insight shall we be able to explore with.

References

[1] Ian Goodfellow, Yoshua Bengio and Aaron Courville,
Deep Learning MIT Press, USA, 2016.

[2] Bishop, C.M., Neural Network for Pattern Recognition,
Clarendon Press, USA 1995

[3] François Chollet, Deep Learning with Python, Manning
Pub., 1st Ed, NY, USA, 2018

[4] Ajeet K. Jain, Dr. PVRD Prasad Rao and Dr. K Venkatesh
Sharma;”A Perspective Analysis of Regularization and
Optimization Techniques in Machine Learning”,
Computational Analysis and Understanding of Deep
Learning or Medical Care: Principles, Methods and
Applications". CUDLMC 2020 , Wiley-Scrivener,
April/May 2021

[5] John Paul Mueller and Luca Massaron, Deep Learning for
Dummies, John Wiley, 2019

[6] Josh Patterson and Adam Gibson, Deep Learning: A
Practitioner’s Approach, O’Reilly Pub. Indian Edition,
2017

[7] Ajeet K. Jain, Dr.PVRD Prasad Rao , Dr. K. Venkatesh
Sharma, Deep Learning with Recursive Neural Network
for Temporal Logic Implementation, International Journal

 of Advanced Trends in Computer Science and
Engineering,Volume 9, No.4, July – August 2020, pp 6829-
6833.

[8] Srivasatava et al.
http://jmlr.org/papers/volume15/srivastava14a.old/srivasta
va14a.pdf

[9] Dimitri P. Bertsekas, Convex Optimization Theory, Athena
Scientific Pub., MIT Press, USA 2009

[10] Stephen Boyd and Lieven Vandenberghe, Convex
Optimization, Cambridge University Press, USA 2004

[11] LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., and Jackel, L. D. (1989).

Backpropagation applied to handwritten zip code
recognition.Neural Computation, 1(4):541–551

[12] Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Improving neural networks by
preventing co-adaptation of feature detectors.

 arXiv:1207.0580, 2012
[13] Glorot, X. and Bengio, Y., Understanding the difficulty of

training deep feedforward neural networks. In Proceedings
of the International Conference on Artificial Intelligence

 and Statistics (AISTATS), pages 249–256. (2010)
[14] Glorot, X., Bordes, A., and Bengio, Y, Deep sparse

rectifier neural networks. In Proceedings of the
International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 315–323. 2011.

[15] Zeiler, M. and Fergus, R. , Stochastic pooling for
regularization of deep convolutional neural networks. In
Proceedings of the International Conference on Learning

 Representations ,ICLR, 2013
[16] Prajit Ramachandran, Barret Zoph, Quoc V. Le, SWISH:

A Self-Gated Activation Function, arXiv:1710.05941v1
[cs.NE] 16 Oct 2017

[17] Fabian Latorre, Paul Rolland and Volkan Cevher,
Lipschitz Constant Estimation Of Neural Networks Via
Sparse Polynomial Optimization, ICLR 2020

[18] Kavosh Asadi , Dipendra Misra and Michael L. Littman,

Lipschitz Continuity in Model-based Reinforcement
Learning, Proceedings of the 35 th International
Conference on Machine Learning, Stockholm, Sweden,
PMLR 80, 2018

[19] Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R., Improving neural networks by
preventing co-adaptation of feature detectors.

 arXiv:1207.0580. (2012)
[20] J. Duchi, E. Hazan and Y. Singer, Adaptive subgradient

methods for online learning and stochastic optimization,
Journal of Machine Learning Research, pp 2121-2159,
2011

[21] Prabhu CSR, Gandhi R, Jain A K, Lalka VS, Thottempudi
SG, Prasada Rao PVRD; “A Novel Approach to Extend
KM Models with Object Knowledge Model (OKM) and

 Kafka for Big Data and Semantic Web with Greater
Semantics”, Advances in Intelligent Systems and
Computing 993, pp.544, 2020

[22] Bottou, L. Online algorithms and stochastic
approximations. In Saad, D., editor, Online Learning and
Neural Networks. Cambridge University Press, Cambridge,

 1998
[23] I. Sutskever, J. Martens, G. Dahl and G. Hinton, On

importance of initialization and momentum in deep
learning, International Conference on Machine Learning,
Atlanta, USA, pp. 1139-1147, 2013

[24] Y. Nesterov, A method of solving a convex programming
problem with convergence rate O(1/k2), Soviet
Mathematics Doklady, 27, pp 372-376, 1983

[25] J. Duchi, E. Hazan and Y. Singer, Adaptive subgradient
methods for online learning and stochastic optimization,
Journal of Machine Learning Research, pp 2121-2159,
2011

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.10, October 2023

128

 [26] Ajeet K Jain, Dr.PVRD Prasad Rao and Dr.K Venkatesh
Sharma;”Extending Description Logics for Semantic
Web Ontology Implementation Domains”,

 Test Engineering and Management 83, pp.7385, 2020
[27] G. Hinton, Neural networks for machine learning,

Coursera, video lectures, 2018
[28] D. Kingma and J. Ba, Adam: A method for stochastic

optimization, arXiv:1412.6980, 2014.
[29] S.J. Reddi, S. Kale and S. Kumar, On the convergence of

Adam and beyond, International Conference on Learning
Representations, Vancouver, Canada, 2018.

[30] Zaheer, M., Reddi, S., Sachan, D., Kale, S., & Kumar, S.
Adaptive methods for nonconvex optimization. Advances
in Neural Information Processing Systems

 (pp. 9793–9803), 2018
[31] Londhe, A., Prasada Rao, P.V.R.D. “Platforms

for big data analytics: Trend towards hybrid era”
International Conference on Energy, Communication,
Data Analytics and Soft Computing, ICECDS 2017
DOI: 10.1109/ICECDS.2017.8390056

[32] Hiroaki Hayashi, Jayanth Koushik and Graham Neubig ;
Eve: A Gradient Based Optimization Method with Locally
and Globally Adaptive Learning Rates ,
arXiv:1611.01505v3 [cs.LG] 11 Jun 2018

[33] Liyuan Liu , et al., On The Variance Of The Adaptive
Learning Rate And Beyond, arXiv:1908.03265v3 [cs.LG]
17 Apr 2020

[34] https://d2l.ai/chapter_optimization/lr-scheduler.html
[35] Nicola Landro, Ignazio Gallo, Riccardo La Grassa, Mixing

ADAM and SGD: a Combined Optimization Method,
arXiv:2011.08042v1 [cs.LG] 16 Nov 2020

[36] Jonathan Frankle and Michael Carbin, The Lottery Ticket
Hypothesis: Finding Sparse, Trainable Neural Networks,
arXiv:1803.03635v5 [cs.LG] 4 Mar 2019

[37] Yadla, H.K., Rao, P.V.R.D.P. “Machine learning
based text classifier centered on TF-IDF vectoriser,
International Journal of Scientific and Technology
Research, 2020

[38]Varakumari, S., Prasad Rao, P.V.R.D., Sirisha, M., Mohan
Rao, K.R.R. MANOVA- A multivariate statistical
variance analysis for WSN using PCA 2018 International

 Journal of Engineering and Technology(UAE) 7,
2018

[39] Phani Madhuri, N., Meghana, A., Prasada Rao, P.V.R.D.,
Prem Kumar, P.“Ailment prognosis and propose antidote
for skin using deep learning”, International Journal of

 Innovative Technology and Exploring Engineering, 2019.

