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Summary  
Deep learning has been incorporating various optimization 
techniques motivated by new pragmatic optimizing algorithm 
advancements and their usage has a central role in Machine 
learning. In recent past, new avatars of various optimizers are 
being put into practice and their suitability and applicability has 
been reported on various domains. The resurgence of novelty 
starts from Stochastic Gradient Descent to convex and non-
convex and derivative-free approaches. In the contemporary of 
these horizons of optimizers, choosing a best-fit or appropriate 
optimizer is an important consideration in deep learning theme 
as these working–horse engines determines the final 
performance predicted by the model. Moreover with increasing 
number of deep layers tantamount higher complexity with 
hyper–parameter tuning and consequently need to delve for a 
befitting optimizer. We empirically examine most popular and 
widely used optimizers on various data sets and networks–like 
MNIST and GAN plus others. The pragmatic comparison 
focuses on their similarities, differences and possibilities of 
their suitability for a given application. Additionally, the recent 
optimizer variants are highlighted with their subtlety. The 
article emphasizes on their critical role and pinpoints buttress 
options while choosing among them.     
Keywords:  
Deep Learning, Optimizers, Convexity, Lottery Ticket, ADAM, 
RMS Prop  
 

  
1. Introduction  

Optimizers are indispensable with statistical 
computations for higher efficiency when the dataset size 
increases in Deep Learning (DL).  Quite interestingly, 
one on the mainstay of optimization process approach is 
to make decision based on previously unseen data using 
statistical methods. This is achieved by carefully chosen 
parameters for an (sub) optimal solution for a given 
learning problem. Manifestly, the idea is to look for those 
optimizing algorithms offering better performance and 
prediction accuracy [1, 2, 3, 4]. For instance, the text 
classification provides the fundamental problem of 
learning from examples. Likewise, speech and image 
recognition have been studied with paramount 
performance and accuracy – yet offers improvements 

avenues. In striving towards these goals, many 
optimizing techniques involving non–convexity and 
convexity principles are cited in the ML literature [5, 6, 
7]. The Stochastic Gradient Descent (SGD) has been 
very well accepted optimizing technique past many years, 
but suffers from ill-conditioning and taking more 
computation time with bigger data sets. Moreover, it also 
requires hyper-parameter tuning and different learning 
rates adaptively.  

Recently with the advent of new variants of 
optimizers offering superior performance and sometime 
outperforming over their counterpart on bigger datasets, 
it is imperative to seek how these new entrants are 
providing such a phenomenal performance improvement.   
We examine the most popularly used optimizers in DL 
framework using known data sets.  We also accentuate 
the significance of role of optimizers and pragmatically 
compare them in response to their learning rate, 
suitability plus other selection criterions.   

1.1 Related work  

Deep Learning (DL) has paved a strapping path in 
engineering applications and has generated keen interest 
in optimizers as working horse solving varied human like 
problems including healthcare, marketing, finance, 
sociology, economics, logistics and others. Importantly, 
we have intelligent products and services like speech 
recognition, computer vision, anomaly detection, game 
playing, disease diagnosis, autonomous drive, animated 
movie making, smart recommended systems and many 
more. The flogging work is due to optimizers—starting 
from Gradient Descent (GD) to Stochastic GD to 
Momentum based optimizers [8-14].  
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In this work, we are addressing some of the pertinent 
questions for optimization, those can be delve deep more 
comprehensively.  

What is the measure of optimal performance?  What are 
those attributes which pragmatically compares them in 
DL? 

 How to transform non-convex (functions) 
techniques into convex ones? 

 Are derivative free algorithms more 
computational efficient?  

 What are hyper-parameter optimization 
methods? 

 How modern optimizers are useful to 
address DL scenarios?  How recently   
known ‘Lottery Ticket Algorithm’ facilitate 
for optimization process? 
 

We also highlight the selection process which offers 
better results while selecting the ‘right’ among vivid 
optimizers. A pragmatic comparison highlights their 
relative importance, merits and other subtleties.  
 
2.  Role of Optimizer in DL 

This section highlights about the role of optimizers 
and performance issues and challenges therein.  We need 
some way to evaluate whether our optimizing algorithm 
is performing correctly to reduce difference between the 
current output and the targeted output, and this difference 
is a response indicator to regulate the difference obtained 
by the optimizer to make appropriate adjustments. The 
weights are fundamentally a bunch of numbers and are 
stored as pattern carrying information what a layer does 
with its input data. Hence the learning is primarily to 
update weight values for all the layers such that it 
accurately maps them to their connected targets. Here is 
a problem —a deep network may contain hundreds (or 
even more!) of parameters, so finding their precise values 
for each layer is a formidable task, particularly knowing  
that amending value of one parameter influences the rest. 
To control the output from layers, we calculate them 
against expected ones and their closeness is desired as 
expectation and this is accomplished by loss function of 
the network [1, 3, 4] as depicted in Fig. 1.  

 

  Figure 1 An Optimizer Framework 

Basically this difference is a pointer to regulate the 
value of the weights accordingly leading towards lesser 
loss score. This modification is performed by ‘optimizer’, 
which augments what is conventionally known as back 
propagation algorithm.[11-14]. Initially, the weights are 
given random (smaller) values and the network performs 
a sequence of arbitrary transformations. As expected the 
discrepancy should be lowered against the larger values. 
Nevertheless, the network update weights in correct 
direction for every input and thereby propitiating towards 
decrease of loss. This process continues as iteration and 
the training loop is repeated (aka epoch) — and each 
epoch yields a correct weight update values augmenting 
to reduce the loss further less. Ideally, the idea is to 
reduce it towards near zero. A cost function usually just 
calculates the mean squared error (loss) between an 
actual output and the desired output when performing 
supervised learning tasks. So a loss function can be 
considered synonymously with a cost function [15].  
How to train a NN successfully?  To accomplish this we 
need (i) power engine (latest multi-core CPU / GPU) (ii) 
a suitable network, and (iii) a suitable algorithm with 
accurate training artifices. 

2.1 Deep Network Architecture. 

The architectural and activation functions are most 
important and one can think of a deep network with at 
least 4-5 layers and sufficient connections. Achieving 
good performance, one can go to even a deep level of 20 
or more and add skip connections. Primarily, ReLU 
(Rectified Linear Unit) activation function begins a good 
choice, but depending upon the characteristics of data set, 
using tanh or swish activation functions might prove a 
superior choice while training the algorithm [16]. 
Additionally, another criticality is to use SGD with well-
tuned constant step-size, however, momentum and 
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adaptive step size offers additional profit. A prototypical 
is depicted in Fig.2 interposing 3 aspects with their 
effects.  

 

 

 

 

    
                                    
 
 
 
 
 
Figure2: preferred choices for training of a NN 
 
They offer 3 characteristics of algorithmic 
convergence, namely: (i) make convergence possible, 
(ii) faster convergence and (iii) better global 
solutions. All three aspects are interrelated. 
(i) Lipschitz constant is the maximum ratio 

between variations in the output space and 
variations in the input space of f. This 
measures the sensitivity of the function 
with respect to input perturbations. 

 
A function f : n    m  is called 
Lipschitz continuous if there exists a 
constant  L such that       
    ∀𝑥, 𝑦 ∈ ℝ, ‖fሺxሻ െ fሺyሻ‖ଶ   𝐿‖x െ y‖ଶ                                                    
(1)     
 
For locally Lipschitz functions, it may be computed 
using the differential operator. For more details, one 
can refer to [17, 18].  
(ii) Proper Initialization - is extremely 

significant to start in order to train a 
network having many layers and two extra 
artifices can improvise: adding 
normalization layers and adding skip 

connections. Imperatively, which one is a 
design or a critical choice? Typical these 
include: initialization strategies, 
normalization methods, the skip 
connections, over-parameterization as 
depicted in Figure 3.  

                       

 

   Figure 3.   Three steps towards generalization  

(iii) Representation, Optimization and 
Generalization. For a supervised learning, 
we need to find a function that 
approximates observed samples and 
identify those parameters for minimizing 
the loss. Also, we need to use a function 
from the previous step to make predictions 
on test data and calculate the resultant test 
error.  These can be further divided into 
representation, optimization and 
generalization errors, respectively. 
 

In DL, these errors are often calculated 
disparately—while noting the representation 
supremacy of a certain class of functions; we often 
do not try to look into   optimization problem closely. 
Similarly, while noting the generalization error, we 
often take for granted that the global optima have 
been found and in the same way tend to ignore the 
generalization error while noting optimization 
properties, assuming the representation error is zero 
[19, 20, 21]. 
 
2.2 Optimization Issues:  

The challenges for optimization are fairly 
intricate and are being represented in Fig. 4.  
(i)    Making the algorithm to converge to a realistic 
solution.  
(ii)   Speeding convergence rate. 
(iii)  Ensuring convergence like a global minimum.  
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      Figure 4. Optimization: Issues and Challenges  

 
All these challenges are chiefly inspired by 
optimization techniques although the vertical divide 
is never clear-cut due to blur boundaries. For 
instance, some algorithms provide better 
convergence rate—citing it as a global challenge. 
Others visualize these as sub-areas of DL 
optimization techniques as an important artefact. 

 

2.3 Stochastic GD Optimization  

Paradoxically SGD follows the gradient of a 
mini-batch while training a network, we estimate the 
gradient using a suitable loss function. At an 
iteration ‘k’, the gradient will be updated 
accordingly. Hence, the calculation for ‘m’ 
examples input from the training set having y(i) as 
target , is:   

                             (2) 

𝜃 ←  𝜃 െ  𝜂 ĝ 

                                                     

where’η’ (eta)  is the learning rate.  Further, the 
learning rate is of paramount importance as the 
magnitude of an update at ‘ kth ‘  iteration is dictated 
by this. For instance, if η = 0.01, then evidently 
more number of iteration updates will be required 
for convergence.  On the contrary, if η = 0.5 or 
greater, then in this case the recent updates shall be 
highly dependent on the recent instance. Eventually, 

an obvious wise decision is to choose it arbitrary by 
trial—this is one very important hyper-parameter 
tuning in DL systems. On the parallel side of it, yet 
another way could be ‘choose one among several 
learning rates’ which provide smallest loss value. 
This intrigue technique is known as ‘line search’- a 
very popular scheme for DL fraternity to tuning. Yet 
another intuitive way is to monitor for first few 
beginning epochs and make a prudent choice of ‘η’ 
offering best or near-to-best performance [22-26. In 
later part, a more interesting technique MAS 
(Mixing Adam and SGD) is discussed to elaborate.  

 
2.4   Stochastic Gradient Descent with 

Momentum 
 

The SGD algorithms have a trouble to get towards global 
optima, and have a tendency to get stuck into local 
minima (Figure 5).  

 

 

 

        Figure. 5      A 3-D Representation with Local 

and Global Minima (Maxima) 

Furthermore, smaller values of gradient can create 
problem of vanishing gradient! To overcome this, 
momentum based principle is adopted to accelerate the 
process of learning. The method takes running moving 
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average by incorporating previous update in the recent 
change as if there is a momentum due to preceding 
updates.  The momentum based SGD converges faster 
with reducing oscillations– in order to achieve this, we 
use another hyper-parameter ‘ν’ known as velocity.  
Usually ’ν‘ is set as negative of gradient value of 
exponential decaying average. Moving further on, we 
would require yet one more hyper-parameter α (alpha): α 
ϵ [0 , 1], known as momentum parameter and its 
contribution is to find how fast the previous gradient 
exponentially decays. The updated values are computes 
as:           

                      

                         (3)     

From equation (3) it is obvious that the velocity vector ‘ν’ 
keeps on adding the gradient values. Additionally, for a 
bigger value of α (alpha) relative to ϵ, the gradient affects 
the current direction more from previous iteration. This 
in fact the founding principle on which ADAM optimizer 
works.  The commonly used values of α : from 0.5 to 
0.99. Despite being so intuitive and nice technique, the 
limitation of this algorithm is additional parameter 
inclusion and extra calculations involved.   

 

3. Various Optimizers in DL  

The DL practice is fundamentally aimed at 
optimization and regularization techniques.  The 
contemporary optimizers with their process framework 
are briefly described with their relative merits and 
limitations.    

3.1   AdaGrad   

The simplest optimizing algorithm is AdaGrad, 
where dynamically changing learning rates are model 
parameters. Here, for parameters whose partial 
derivatives are higher, for them decrease their 

corresponding learning rate substantially, otherwise, the 
algorithm takes inversely to where derivatives are lower 
instead.  Why one needs different learning rates? We 
need this adaptive feature of learning rate for following 
reasons:    

 
(i) Learning Rate for Sparse Features—where quite a 
large number of zero value features are present–like in a 
bag of words. This necessitates that we should have a 
mechanism to perform larger updates on those features. 

 
(ii)   Learning Rate for Dense Features—where quite a 
large number of non-zero values are present. This kind of 
dense features when present in the data set necessitates 
for the mechanism to perform smaller updates on those 
ones.  

 
To accomplish these , AdaGrad employs square value of 
the gradient vector using a variable ‘r’ for gradient 
accumulation , as in equation(4).  
                                         

                    
(4) 
Using this equation (6) the square of gradient is collected 
and subsequently the update of parameters is computed 
by a scaling factor ‘ δ + √r ‘ , where δ is a very low 
value constant for numeric stability. The update applied 
as per the following equation (5) now: 

                                        

                           

(5) 

Here ⨀   operator implies element-wise multiplication of 
vectors. As can be inferred from above equations, when 
‘r’ is close to a ‘near-zero’ value, the term in the 
denominator should not be evaluated as ‘NaN = Not A 
Number’ and thus the term δ helps to avoid this to 
happen.   Also, the term ‘ϵ ‘stands for global learning 
rate.  
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Advantages 

 Easier to use for simple learning tasks 

 Manual tuning of learning rate is 
eliminated–set to a value of 0.01 as default  
 

Disadvantages 
 

 Suitable for simple problems having 
quadratic space  

 Stops early while training even medium 
complexity networks, as scaling factor 
affects convergence and also stops before 
trying to get towards better solutions 

 

3.2  RMS Prop 

Root Mean Square Proportional [27] is modified 
version of AdaGrad where it recursively defines a 
decaying average of all past gradients. In so doing, 
the running exponential moving average at each time 
step depends only on the average of previous and 
current gradients. Moreover, AdaGrad contracts the 
learning rate according to the entire history of the 
squared gradient whereas RMSProp exploits an 
exponentially decaying average to discard history 
from the extreme past such that it can converge 
faster after finding a convex bowl. The 
implementing equation is: 

                       𝑟 ←  𝜌𝑟  ሺ1 െ 𝜌ሻ𝑔 ⨀ 𝑔                                                            

(6) 

here ρ is the decay rate. Then parameter update is 
computed and applied as follows: 

                                                   

                                 

(7) 

 

Characteristic features  

 Adapting in increase or decrease of 
learning rate with each epoch, i.e., it 
chooses different learning rate for 
each parameter 

 New input data does not 
dramatically changes the gradient  
and hence convergence to local 
minima faster  

3.3 Adam 

Adam (Adaptive Momentum) is majorly used 
optimization algorithms in DL and combines the 
heuristic of both the momentum and RMS Prop and 
interestingly been designed for DNN [28]. This 
algorithmic technique has the squared gradient feature of 
AdaGrad  and to scale the learning rate analogous to 
RMSProp and feature of momentum using moving 
average. The fine algorithm calculates individual 
learning rate for each parameter using a term called ‘first 
moment’ (like a velocity) and ‘second moment’ (like 
acceleration). The algorism combines the characteristics 
of AdaGrad having sparse gradient and RMSProp having 
the mechanism for on-line and non-stationary data sets.     

Salient features:  

 Momentum term is in-built as an estimate 
of first-order moment  

 In-built bias correction while estimating for 
first and second order moments 

  Update moving exponential averages of 
gradient ‘mt’ and square gradient ‘ut’ with 
hyper-parameters ρ1 and ρ2 (originally 
these are denoted by β1 and β2 , 
respectively by authors) as these control the 
cited decaying rates.  

These moving averages are estimation of mean (first 
moment) and uncentered variance (second moment) 
of gradient. In this process, at time step ‘t’, the 
various estimates are :  
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(8) 

Subsequently, the bias is corrected in first and 
second moments and thus using the corrected 
moment estimates parameter updates are calculated 
and applied as: 

                                

 

                          

                                            
(9)  

From [28], the default values are: ρ1 (β1) = 0.9 and ρ2 
(β2) = 0.999 and δ = 10 -8.  Adam works quite well in 
deep learning scenarios and is one of the most favored 
adaptive learning-method algorithms. 

Advantages :  

(i) Requires no tuning for learning rate as no 
modifications needed to rescale gradients 
(ii) Less memory requirements and hence the algorithm 

is proficient 
(iii) Fitting for gradients having noisy and sparsity 

characteristics 
 

3.4  AdaMax 

Adamax is an algorithm with infinity norm as another 
variant of Adam [28]. The idea borrowed here is that, as 
Adam algorithm updates individual weights with respect 
to inversely proportional to L2 norm, this technique is 

more generalized with Lp norm taken for updating. Here, 
at time step ‘t’, we calculate gradient with respect to 
stochastic way for biased first moment via training 
infinity norm.  Subsequently, the parameters are updated 
according to Equation (12):  

                             

                        

(10) 

The basic advantage of using AdaMax is that we 
need not to make correcting the values of 
initialization bias and parameter updates a much 
easier bound in comparison to Adam    [28, 29]. 

3.5  AMSGrad 

Can we have a technique where the exponential 
moving average guarantees convergence as one of 
prominent features? Obviously ‘yes’ and this is what 
AMSGrad technique provides by combining the 
features of Adam and RMS Prop together [30]. As 
noticed from the previous discussions, the first and 
second order moments variables are modified as per 
Equation (13) as: .                                  

                                                 
(11) 

The fundamental differentiation from Adam 
algorithm is as per Equation (14): 
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(12) 

Noting that, it keeps the maximum of all ut   until present 
time step and takes this value for normalizing averages 
successively instead of ut as their counterpart in Adam. 
By accomplishing this way, AMSGrad achieves a non-
increasing step size and the parameters are revised as per 
(14).  The most noticeable feature is that AMSGrad 
neither way decreases nor increases the learning rate. In 
addition to this, it reduces ut - which guides to non-
decreasing rate in the event when gradient is huge in 
future expected iterations.   

4. Recent Optimizers in the Fray  

Recently, many things in the optimization 
techniques are in forefront of research community in ML 
and DL are striving for more with better parameter 
tuning and exponential decay rates and using state-of-
the-art technology to improve the performance on CNN, 
GAN, RNN and other data sets. Here, we highlight a few 
recent optimizers with different blends which they 
exhibit close relationships with the optimizers presented 
so far [31].  

4.1 EVE  

There are two learning rates of paramount interest 
as depicted in Figure 4 (sec.4) and these influence the 
convergence and other virtues of optimizer. Recapturing 
the thinking towards this,   we can have the adaptive 
gradient feature of SGD where the intended these is well 
suited too. So, this one is cited as modification of Adam 
optimizer with coefficient confining two themes—firstly 
adapting the learning rate locally for each parameter and 
secondly combining all parameters together and 
performing an update globally. This sounds great!  And 
in fact it has shown to be outperforming Adam and 
others while training deep neural networks (DNN)-like 
CNN for classification of pictures (photographs) and 
RNN for language translation task [32].  

 

4.2. RAdam  

      The problem of adaptive learning rate and its big 
variance is usually noticed in the early stage of training 
the network and the idea of ‘warmup’ works as a 
supplement in order to reduce the variance. The term 
‘warmup’ step is just a parameter used to lower the 
learning rate to reduce impact of model deviation from 
learning on new data suddenly. This implies that we can 
use a very low learning rate for a set number of training 
steps, i.e., ‘warmup steps’. Afterwards we use our 
"regular" learning rate or better known as ‘learning rate 
scheduler’. We can also gradually increase your learning 
rate over the number of warmup steps. The proposed 
Rectified Adam (RAdam) is a modification by 
introducing a term to rectify the variance of the adaptive 
learning rate. The experimental results on image 
classification, language modeling,  and neural machine 
translation verify our intuition and demonstrate the 
efficacy of this new variant  [33,34] . 

4.3. MAS1 (Mixing ADAM and SGD) 
 

Another variant that join together Adam and SGD 
by weighing the contributions collectively with the task 
of regular (constant) weights and exploit them at the 
same time by taking the best of them. This intuitive 
blending idea is illustrated in Figure 5 with a side caption 
therein.    Recently various demonstrations are cited with 
CNN DNN incorporating different images and the 
conventional classification of text data with MAS 
optimizer and cited that it produced better results than 
their single SGD or ADAM counterpart optimizers 
individually [35].  

 

4.4 Lottery Ticket Hypothesis 

From the passion of gambling world, the 
inspiration is to select (get) a ticket whose chance of 
winning is highest! In the same way, the training of DL 
models is often compared with lottery to buy every 
possible ticket. However, if we know the winning 
process, it seems we can make a prudence choice about 
selection process. By the same token, in DL models, the 
training processes produce large structures of inter-
connections of NN equivalent to a   large container of 

                                                            
1 https://gitlab.com/nicolalandro/multi optimizer 
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lottery tickets. In this hypothesis, the model undergoes 
optimization techniques-like pruning that remove 
unnecessary weights from NN in order reduce model size 
without compromising the performance. Thus this is in 
turn equivalent to searching of winning tickets from the 
container leaving the rest. Such pruning process produces 
structures which are almost 90% smaller than the original 
NN structure [34].  This idea leads to the hypothesis that 
a large NN contains a smaller sub-network that if trained 
properly, will attain a similar accuracy in counterpart.  
Thus looking at the concision of this hypothesis, it opens 
more fronts for understanding and research to become 
one of the most important DL fields as it challenges the 
conventional wisdom in DL network training. For more 
insightfulness, one can refer to [33, 34, 35, 36].  

5.  Experimental Results 

A.  Web Resource:  

https://scikit-

learn.org/stable/modules/generated/sklearn

.datasets.make_blobs.html 

The various optimizers were tested using classification 
from the sklearn data sets by generating random 
classification.  Initially, this creates a cluster of points 
normally distributed with standard deviation  as 1 about 
the vertices of an n_informative hyper cube with sides 
of length 2*class_sep and assigns an equal number of 
clusters to each class. Further, it also introduces 
interdependence between these features and adds various 
types of noise to the data.  The numbers of samples were 
taken as 100(default) and number of features as 20.  

 

Figure. 6 Sample output showing 3 different classes  

          

Figure. 7(a) SGD with ‘lrate’ and accuracy with number of epochs    
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Figure.7(b) ADAM with ‘lrate’ and accuracy with number of epochs       

                      

Figure. 7(c)  AdaGrad   with ‘lrate’ and accuracy with number of epochs     

                   

Figure. 7(d) RMSProp   with ‘lrate’ and accuracy with number of epochs 
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                         Figure. 7(e) AMSGrad   with ‘lrate’ and accuracy with number of epochs   

  B .  Resource:  

 
Simple MNIST ConvNet (CONVolutional neural NETwork) Handwritten  Digit Classification ( keras.io) 
 
The MNIST dataset contains 60,000 small square 28×28 pixel grayscale images of handwritten single digits between 0 
and 9 and to classify them into one of 10 classes representing integer values from 0 to 9. 

 

                                      Figure. 8  MNIST Hand-writing data   
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                              Fig.  9 (a, b) Different Optimizers with Loss and Accuracy  

 

6.   Conclusion 

The preceding narrations and the pertinent graphs 
with different optimizers provide their comparison 
with respect to number of epochs and accuracy and 
loss as intrinsic parameters. Some emerging points 
with the experimental analysis are:  

— A starting point that usually works well is ReLU 
as activation function  

— Decreasing loss provides a way to know the 
faster convergence rate and it also reflect the 
learning goals providing  intuitive  learning idea 
with  approximations  
 

—Begin with a simple dataset having a few samples 
with a fitting network and after getting good results, 
increase the complexity of data and network with   
tuning parameters subsequently 
 

      —Start with a well-known optimizer to seek the 
results and then try with another to  
          get a reconnaissance and it might lead to 
improvement–not always! The correctly  
          chosen optimizer with adequate  learning rate and 
other parameters makes a good deal.  
          However, there no single optimizer that solves for 
all types of date set.  
 
     — Choice of a Particular Optimizer: Choose a well 
known and already experimented    
          optimizer with default  learning rates and other 
parameters settings. Try to run with  
          iterations (epochs) and notice the loss (accuracy) 
results. Then, shift towards other  
         similar-featured optimizer  and observe the changes. 
Indeed an exhaustive process!  
         Nonetheless, keep experimenting by increasing 
towards momentum based and  
         other current blends of optimizers( like  Adam, 
AMSGrad or RADam, etc.).          
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We have provided with an understanding of reasons 

for a particular optimizer for a given data set and its give 
s foundation for the pros and cons of their suitability.  
The most popular in DL research community are Adam 
and RMSProp and the results were shown as promising 
ones.  However this imperativeness provides an 
insightful for making a visionary choice of optimizers.  
Also, getting an overview of their criticalities and 
understanding the reasons for choice makes a footing 
platform in DL [37,38,39]. Furthermore, there are several 
promising results one can obtain from different set(s) of 
optimizer(s) and this might require more investigations 
and deeper delving into. The upcoming and already 
announced optimisers – like YOGI has to be integrated 
into the DL framework, so that it can be empirical tested 
against others. The Lottery Ticket technique is already 
gaining momentum in this area and sooner hopefully 
more insight shall we be able to explore with.   
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