
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

107

Manuscript received December 5, 2023
Manuscript revised December 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.12.7

Proposing a New Approach for Detecting Malware Based on the Event
Analysis Technique

Vu Ngoc Son 1†,

Information Assurance dept. FPT University, Hanoi, Vietnam

Summary
The attack technique by the malware distribution form is a
dangerous, difficult to detect and prevent attack method. Current
malware detection studies and proposals are often based on two
main methods: using sign sets and analyzing abnormal behaviors
using machine learning or deep learning techniques. This paper
will propose a method to detect malware on Endpoints based on
Event IDs using deep learning. Event IDs are behaviors of
malware tracked and collected on Endpoints' operating system
kernel. The malware detection proposal based on Event IDs is a
new research approach that has not been studied and proposed
much. To achieve this purpose, this paper proposes to combine
different data mining methods and deep learning algorithms. The
data mining process is presented in detail in section 2 of the paper.
Keywords:
Malware detection; Endpoint; Event analysis technique;
deep learning; Doc2Vec

1. Introduction

Two currently commonly used methods for malware
detection include the sign-based detection method and the
abnormal behavior-based detection method [1, 2, 3, 4, 5].
Detection methods based on anomalous behavior have been
highly effective due to their ability to detect new malware
types. Behavior-based detection approaches often seek
ways to extract anomalous behaviors of malware and then
use methods and algorithms to classify malware. However,
it can be seen that the common characteristic of these
methods is the use of methods to extract signs and behaviors
of malware based on sample datasets. These datasets are
built based on virtualization tools or static analysis and
network monitoring tools. Regarding virtualization tools,
studies often use the Sandbox tool [6] to execute and extract
malicious's behaviors. The disadvantage of Sandbox tools
is only recording behaviors in a certain time, so it will not
be possible to fully statistics malware's behavior. Regarding
datasets collected during the static analysis process, using
them only detects anomalies when malware has spread and
connected to steal data. Therefore, these traditional
approaches are always bypassed by malware. To solve these
problems, this paper proposes a new approach based on
analyzing abnormal behaviors of Event IDs. The
characteristic of our approach is that instead of using

virtualization tools to collect and extract malware's
abnormal behaviors, this approach relies on Event IDs
generated by the malware as a basis for detecting abnormal
signs and behaviors of malware. These Event IDs are then
analyzed by using different data mining methods to seek
and aggregate malware's abnormal behaviors. Next, the
Seq2Vec algorithm is proposed to be used to synthesize and
normalize features of Event IDs. Finally, to conclude about
the existence of malware in the system, we use deep
learning algorithms such as Multilayer Perceptron (MLP),
Convolutional Neural Network (CNN), Long short term
memory (LSTM). The novelty and scientific quality of our
research are as follows:
 Proposing a malware detection method based on Event

IDs. This is a new approach for detecting malware on
Endpoints. This approach has not been published yet
by any publications.

 Proposing a method to analyze malware's abnormal
behaviors based on Event IDs using the Seq2Vec
technique. Although the use of the Seq2Vec model to
normalize text data is a common problem, when
applying this model to normalizing malware data, it is
a new problem and has not been studied and applied by
many works. Especially, the application of this model
to the process of normalizing Event IDs has not been
proposed by any research.

2. Related Works

Studies [1, 2, 3] presented some malware detection
methods. In the research [7], Zhong et al. proposed a
method of using multiple deep-learning layers for malware
detection. Specifically, in their proposed model, the authors
proposed a detection method based on 5 phases: Phase 1:
Choosing prominent static and dynamic features; Phase 2:
Using the parallel improved K-means algorithm to partition
the dataset into multiple one-level clusters; Phase 3:
Generating multiple sub-clusters in parallel; Phase 4:
Building the deep learning model for each sub-cluster in
parallel; Phase 5: Classifying samples as malware or benign
based on decision values of deep learning models. In the
study [8], Fei Xiao et al. proposed a malware detection
method using the Stacked AutoEncoders (SAEs) deep

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

108

learning network. In the experimental section, the authors
compared and evaluated the SAEs model with other
machine learning and deep learning algorithms.
Experimental results showed that the SAEs model brought
better results than other models. Studies [9, 10] proposed a
method to detect malware based on some machine learning
algorithms such as Decision Tree (DT), K-Nearest
Neighbor (KNN), Naïve Bayes (NB), and Support Vector
Machine (SVM). In studies [11, 12] the authors proposed
some malware detection methods based on Window API
calls using machine learning and deep learning algorithms.
In addition, the report [13] listed some technology solutions
for detecting malware on Endpoints (Endpoint Detection &

Response) based on rule sets and behaviors. Accordingly,
technology solutions include Trend Micro EDR Apex One,
Palo Alto Networks Traps, WildFire, Kaspersky EDR,
Carbon Black EDR, and Falcon.

3. The Proposed Model Architecture

3.1. The proposed model architecture

Figure 1 The architecture of the proposed APT malware detection model

From Figure 1, seeing the operation process of the system
as follows:
1. Step 1: Collect and process Event IDs on Endpoints.

To perform the task of collecting and extracting these
processes, we install and configure the main tool,
Sysmon [14]. These tools have the function of
collecting the processes recorded by the operating
system and transferring these processes to the
processing and monitoring center. The processes in
Sysmon are described in detail in Table I of Section 2.2.

2. Step 2: Extract abnormal behaviors of Event IDs.
At this step, abnormal features and behaviors are
extracted from the Event IDs collected from the client-
side. These features and behaviors are the basis for
malware detection. Details of abnormal behaviors of
Event IDs are presented in Section 2.3.

3. Step 3: Extract abnormal behaviors of malware. As
is known, in step 2, the research has extracted
anomalous behaviors in Event IDs. Here each file has
different characteristics and different number of Event
IDs. Therefore, need a method to normalize and
process these files. To accomplish this task, we propose
to use the Seq2Vec model. Accordingly, each Event ID
is considered as a “word” and a file is a collection of
words. Finally, the file consisting of words is
normalized to a homogenous vector using the Seq2Vec

model. Details of this process are described in Section
2.4.

4. Step 4: Detect malware. At this step, the malware's
behaviors, which are normalized and built in step 3, are
classified by a deep learning algorithm to conclude
about malware in the system. This process is presented
in detail in section 2.5 of the paper

3.2. The method to extract processes of malware

In this paper, to collect malware's behaviors on the
operating system kernel, we propose to use the Sysmon tool
[14]. The Sysmon tool is one of the powerful tools
developed by Microsoft to support the task of collecting and
analyzing anomalous behavior on Endpoints using the
Windows operating system. Accordingly, the main 22
behaviors collected by the Sysmon tool on the Endpoints'
operating system kernel are presented in the report [14]
including Process creation, Network connection, Sysmon
service state changed, Process terminated, Driver loaded,
CreateRemoteThread, etc

3.3 The method to extract abnormal features of
malware based on the processes

Thus, based on 22 Event IDs collected in the operating
system kernel by the Sysmon tool, this paper will analyze
these Event IDs to collect anomalous behaviors in each
Event ID. Table 1 below lists abnormal behaviors found in

Endpoint Extract behaviors
of Event ID

Collect process
on kernel

Event ID

Malware

Embedding vector

Extract malware
features using

Sequence

Classify
behavior profiles

Normal

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

109

Event IDs. These behaviors are the new anomalous
behaviors proposed by ours

Table 1 List of abnormal behaviors collected on the operating system kernel

No. Type Feature name Description
1 KEYSTROK

ES Loggers
GetAsyncKeyState Poll the state of each keys on the keyboard using the

function.
2 GetKeyState Retrieves the status of the specified virtual key
3 SetWindowsHook Installs an application-defined hook procedure into a

hook chain
4 Network

traffic monitor
WSASocket Create a raw socket

5 socket Create a raw socket
6 bind Bind socket to an interface
7 WSAIoctl Put interface (NIC) in to Promiscuous mode
8 ioctlsocket Put interface (NIC) in to Promiscuous mode
9 Downloader URLDownloadToFile Download file and save to disk

10 Execution WinExec Execute file
11 LoadModule Loads and executes an application or creates a new

instance of an existing application.
12 LoadPackagedLibrary Loads the specified packaged module
13 CreateProcess Create new process
14 ShellExecute Execute file
15 HTTP CNC

Traffic
InternetOpen Initializes an application's use of the WinINet

functions
16 InternetConnect Url Input
17 HttpOpenRequest Build HTTP request
18 HttpAddRequestHeaders Build HTTP request
19 HTTPSendRequest Send HTTP Request
20 InternetReadFile Read Response
21 Droppers FindResource Find Resource
22 LoadResource Retrieves a handle that can be used to obtain a pointer

to the first byte of the specified resource in memory.
23 SizeOfResource Retrieves the size of resource
24 LockResource Retrieves a pointer to the specified resource in

memory.
25 DLL Injection SetWindowsHook Install the filter function in the hook chain of the

remote processWorks only for GUI application
26 LoadLibrary Load the malicious DLL into attacking process’s

address space.
27 GetProcAddress Retrieve the address of the filter function on the

remote process.
28 GetWindowsThread

ProcessId
Get ID of Target thread.

29 BroadcastSystemMessage This is used to send message by attacking process to
victim process (internally).

30 VirtualAlloc Standard windows api call that allows one process to
allocate memory space inside another process

31 WriteProcessMemory Writes data to an area of memory in a specified
process

32 GetModuleHandle Allows the process to determine how to access some
dll that might be loaded into the memory space

33 GetProcAddress Retrieves the address of an exported function or
variable from the specified dynamic-link library

34 CreateRemoteThread Create a remote thread inside a remote process
35 Hooking GetProcAddress Locate address of a function to hook
36 VirtualProtect Set memory protection to read/write
37 ReadProcessMemory Save first few bytes of victim
38 VirtualProtect Restore memory permission to original value
39 CreateProcess Create a process in suspended state.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

110

40 Process
hollowing

NtUnmapViewOfSection Unmap contents of the original process from memory
41 VirtualAlloc Allocate new memory address in to the hollow

process
42 WriteProcessMemory Brand new code is injected to the hollow process

ResumeThread -> Resume the process
43 AntiDebugger

/VM detection
GetTickCount Identify the time to detect a debugger is present

44 CountClipboardFormats API call to determine whether victim’s clipboard was
empty

45 GetForeGroundWindow API call to check if the color of the foreground
window was changing,assuming automated sandbox

tools doesn’t switch active windows around
46 Isdebuggerpresent Detect debugger
47 ShellCode GetEIP Methods SHELLCODE often uses to determine where

in memory it is loaded.
48 File and

Directory
CreateFile Creates or opens a file or I/O device

49 OpenFile Open a file
50 FindFirstFile Searches a directory for a file or subdirectory with a

name that matches a specific name
51 FindNextFile Continues a file search
52 GetWindowsDirectory Retrieves the path of the Windows directory.
53 remove Deletes the file specified by path
54 GetTempPath Returns the path of the current user's temporary folder
55 DeleteFile Deletes the file specified by path
56 Registry Keys RegOpenKey Opens the specified registry key
57 RegCreateKey Creates the specified registry key
58 RegSetValue Sets the data for the default or unnamed value of a

specified registry key
59 PowerShell System executes an internal operating system command
60 WinExec Runs the specified application
61 Service CreateService Creates a service object and adds it to the specified

service control manager database.
62 ControlService Sends a control code to a service
63 StartServiceCtrlDispatcher Connects the main thread of a service process to the

service control manager
64 Process CreateProcess Create new process
65 GetProcessId Retrieves the process identifier of the specified

process
66 Process32First Retrieves information about the first process

encountered in a system snapshot
67 Process32Next Retrieves information about the next process recorded

in a system snapshot
68 OpenProcess Opens an existing local process object

3.4. The method to build malware behavior using
Sequence

As is known, each malware has the different number

of Event IDs, so it is a difficult task to uniform the length of

each file. In this paper, each executable file is considered as

a document and each Event as a "word" in the document.

The next task is how to normalize a document into a

uniform vector. To perform this task, this study proposes to

use the Seq2Vec model. The Seq2Vec method was

proposed by Dhananjay et al. in 2016 [15]. The

characteristic of this method is to vectorize files by using

the Doc2Vec algorithm. In which, Doc2Vec, which was

introduced by Quoc Le and Mikolov [16], includes 2 main

models: Distributed Memory Model of Paragraph Vectors

(PV-DM) and Distributed Bag of Words version of

Paragraph Vector (PV-DBOW). In this paper, we use the

PV-DBOW model. This is a similar model as the Skip-gram

model for word2vec. The difference is that the input of

Skip-gram is a word, while the input of PV-DBOW is a

document ID (in this study, it is an executable file ID). In

this model, only softmax weights need to be stored instead

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

111

of both softmax weights and word vectors as PV-DM model.

As a result, the Doc2Vec model represents processes into

corresponding vectors. Figure 2 below illustrates how to

vectorize an executable file using the PV-DBOW model.

Figure 2 How the PV-DBOW model works for
vectorizing an executable file

The process of applying the Seq2Vec model to the task
of standardizing malware data has the following steps:

Step 1: Sorting the processes in the order of appearance.
Representing a file as a sequence: a file has many
processes, consider a file as a record and a process as a
word.
Step 2: Vectorizing the file by using the Doc2vec
algorithm using the Skip-gram model. This paper
configures the Seq2Vec model with output parameters
of 64, 128, and 256 features, respectively.

3.5. Classification method

After malware's processes are collected, and features
are extracted and normalized, we obtain a unique vector
representing features of the malware. Next, based on this
feature vector, this study evaluates to conclude which are
normal files and which are malicious files. This paper uses
some deep learning and machine learning algorithms to
classify files as normal or malware. Specifically, we
propose to use some deep learning algorithms and models:
Multilayer Perceptron (MLP), Convolutional Neural
Network (CNN), Long short term memory (LSTM),
Random forest (RF). Regarding the MLP network, the study
[17] presented the MLP network architecture in detail. It is
built by simulating how neurons work in the human brain.
MLP networks usually have 3 or more layers: 1 input layer,
1 output layer, and more than 1 hidden layer. Besides, the
efficiency of the MLP network depends on the activation
function. This paper will tune-fine the activation function
parameter to evaluate the effectiveness and suitability of
activation functions for the malware detection task. The
CNN network is a basic layer set consisting of convolution
layer + nonlinear layer, fully connected layer. The structure

and the terms (stride, padding, MaxPooling) of CNN were
presented in detail in the research [18]. In this paper, choose
to use the ReLU activation function for CNN. Regarding the
LSTM network, it was introduced in the study [19] with the
ability to remember information for a long time. This is
expressed in the structure of the ports in each memory cell.
A memory cell consists of three main components: input
gate, forget gate, and output gate. Firstly, the forget gate
decides what information should be discarded in the cell
state. Next, the input gate decides what information is
updated into the cell state. Finally, the output gate calculates
the desired output. During this process, the cell state is
propagated through and updated as it passes through all
nodes

4. Experiments and Evaluation

4.1. Experimental dataset

In this paper, we use normal and malware data from the
source [20]. Specifically, we collected 52,135 malware files
including Agentesla, Azorult, Emotet, Formbook,
Gandcrab, Hawkeye, Lokibot, Njrat, Pony, Qbot, Quasar,
Remcos, Trickbot, Ursnif, Vidar, etc. Regarding normal
data, the research seeks ways to collect files including PE
EXE, PE DLLs, JAVA HTML, Documents, Adobe Flash,
Microsoft Office, etc. The total number of malware files is
25,437.

4.2. Experimental Scenario

This study divides the experimental dataset into
different components and then conducts experiments and
evaluates the accuracy of the proposed models based on
these experimental sub-datasets. The whole process of
dividing the experimental dataset for the scenarios is chosen
at random in which 80% of the dataset is used for training,
the remaining 20% is used for testing. To evaluate the
effectiveness of the proposal in the study, we conduct 2
evaluation scenarios as follows:

Scenario 1: Compare and evaluate the effectiveness of
deep learning methods. For this scenario, we conduct
the evaluation with the following algorithms: MLP,
CNN, LSTM. During the experiment, we tune-fine the
parameters to see the effectiveness of the deep learning
models. Thus, in this scenario, the paper evaluates 3
models including Seq2Vec-MLP, Seq2Vec-CNN, and
Seq2V-LSTM.
Scenario 2: Compare and evaluate the deep learning
models with some other approaches on the same dataset.

4.3. Classification Measures

This paper uses 4 following measures to evaluate the
accuracy of models:

Executable
File ID

Event i

Event
i+1

Event
i+2

Event
i+3

Input Layer Output Layer Hidden Layer

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

112

1. Accuracy: The ratio between the number of samples
classified correctly and total number of samples.

2. Precision: The ratio between the true positive value
and total number of samples classified as positive. The
higher value of precision, the more accurate in
malicious sample detection.

3. Recall: The ratio between the true positive value and
the total real malicious samples. The higher value of
recall, the lower rate of missing positive samples.

F1-score: The harmonic mean of precision and recall

4.4. Experimental results

4.4.1. Experimental results of scenario 1

Our purpose in scenario 1 is to compare and evaluate
the classification ability of the deep learning model in the
malware detection problem based on the different measures
presented in the previous sub-section. The experimental
results of scenario 1 are presented in tables 2, 3, 4 below

Table 2. Experimental results using Seq2Vec-MLP model

Parameter Evaluation
Features Layers Acc Pre Rec F1 Train time Test time

64 features 2 96.86 94.47 89.15 91.43 1144.02 2.69
4 96.9 94.65 89.14 91.82 1282.52 2.65

128 features 2 96.88 93.87 89.89 90.11 1222.44 2.24
4 97.07 95.2 89.53 92.28 1282.52 2.65

256 features 2 96.96 94.86 89.27 91.98 1185.45 2.21
4 96.05 94.53 89.06 92.18 1282.63 2.68

Table 3. Experimental results using Seq2Vec-CNN model

Parameter Evaluation
Features Layers Acc Pre Rec F1 Train time Test time

64 features 96 96.64 92.34 90.3 91.3 1552.34 2.89
32-64 96.86 94.85 88.73 91.69 1762.69 3.2

128 features 512 96.88 93.96 89.81 91.84 2895.74 5.22
128-256 96.88 93.84 89.94 91.85 2482.65 5.25

256 features 512 96.87 93.23 90.52 91.85 2962.68 5.23
64-128 96.89 94.03 89.77 91.85 2242.75 3.59

Table 4. Experimental results using Seq2Vec-LSTM model

Parameter Evaluation
Features Layers Acc Pre Rec F1 Train time Test time

64
features

512-512-
128

96.73 93.97 88.98 91.41 1105 8.2

256-256-
512-128

96.78 94.13 89 91.53 1119 9.4

128
features

128-512-
256

96.88 94.6 89.14 91.8 925.43 8.64

256-512-
256-128

96.85 94.26 89.3 91.71 1141 9.6

256
features

128-172-
256

96.93 94.43 89.57 91.94 1309.8 10.5

172-512-
256-512

96.86 94.57 89 91.74 1826.8 12.67

Based on the experimental results in Table 2, the
Seq2Vec-MLP model gave different efficiency when
changing the parameters of this model. However, this
change is not too large because the difference between
models is only about 0.1%. Regarding the time variation
between models, obviously, when increased the number of

hidden layers of the MLP model and the number of features
of the Seq2Vec model, the training time increased markedly.
Regarding the accuracy of the Seq2Vec-MLP model, the
model gave the highest results at the parameter {Seq2Vec:
256 features, MLP: 2 layers}.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

113

From the results in Table 3, seeing that the Seq2Vec-
CNN model has many similarities with the Seq2Vec-MLP
model. Specifically, in terms of training and testing time,
when increased the number of layers and features in the
model, the training and testing time increased greatly.
Besides, regarding the efficiency of the detection process,
the models also gave different results when changing the
parameters. However, this change is irregular. When the
complexity increased, the accuracy did not always increase.
Seq2Vec-CNN model had the best results with Accuracy,
Precision, Recall, F1-score measures of 96.89%, 94.03%,
89.77%, and 91.85%, respectively.

The experimental results in Table 4 show that the
Seq2V-LSTM model worked relatively effectively for both
tasks of classifying malware and normal file. The best
Accuracy detection result is 96.93%. This result is about 0.2%
higher than the lowest result. Regarding correctly
classifying normal files, this model gave the best results as
94.57% when using 256 features and 4 LSTM layers. In

addition, regarding correctly classifying malware, with an
efficiency of 89.57%, the Seq2V-LSTM model has shown
superiority compared to other models using CNN or MLP.
In terms of detection time, obviously, the more complex the
model with many LSTM layers and the extension of the
feature vector, the more processing time is required for the
Seq2V-LSTM model.

4.4.2. Experimental Results of Scenario 2

Our purpose in this scenario is to experiment with
some other models and approaches in the malware detection
task. Accordingly, in addition to the Seq2Vec-CNN model
proposed in the study [21] (the experimental results of this
model showed in Table 3), we conduct experiments with the
Seq2Vec-RF model [22]. This model was proposed in the
study [22]. Table 5 below describes the experimental results
of this model.

Table 5. Experimental results using Seq2Vec-RF [22]

Parameter Evaluation
Features Trees Acc Pre Rec F1 Train time Test time

64 features 10 96.01 94.01 85.03 89.3 65.97 0.22
50 96.57 93.97 88.2 91 342.16 01.03
100 96.61 93.91 88.17 90.95 680.71 2.1

128 features 10 96.32 94.23 86.45 90.17 93.46 0.27
50 96.79 94.61 88.49 91.45 473.74 1.36
100 96.74 94.33 88.63 91.39 946.85 2.58

256 features 10 96.41 94.15 86.93 90.4 140.71 0.39
50 96.87 94.41 89.15 91.7 686.3 1.71
100 96.81 94.13 89.16 91.58 1393.67 3.36

The experimental results in Table 5 show that the Seq2Vec-
RF model worked best (with Accuracy, Precision, Recall,
and F1-score measures of 96.81%, 94.13%, 89.16%, and
91.58%, respectively) when the RF algorithm uses 100
decision trees and Seq2Vec uses 256 features.

4.4.3. Discussion

Table 6 below summarizes the results of the process of
implementing the two comparison scenarios that we have
evaluated

Table 6. Comparison table of malware detection results of some models

Model Evaluation
Acc Pre Rec F1 Train time Test time

Seq2Vec-RF [22] 96.81 94.13 89.16 91.58 1393.67 3.36
Seq2Vec- CNN [21] 96.89 94.03 89.77 91.85 2242.75 3.59

Seq2V-LSTM [our proposal] 96.93 94.43 89.57 91.94 1309.8 10.5

Comparing the results in Table 6, seeing that our proposed
Seq2V-LSTM model brought better results than the models
proposed in other studies. However, this difference is not
too significant. This shows that the Seq2V-LSTM model
has worked effectively in the task of extracting features and

classifying malware's abnormal behaviors compared to
other studies. In terms of training and testing time, the
Seq2Vec-LSTM model took more time than all other
models.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023

114

5. Conclusion

Detecting malware on Endpoints is a difficult and
challenging task. This paper proposed an approach for
detecting malware on Endpoints based on abnormal
behaviors of Event IDs using deep learning. Our new
proposal in this study has shown superiority when it gave
better performance than other methods on the same
experimental dataset. This shows that the approach of
detecting malware based on Event IDs on the operating
system kernel is reasonable and correct. Besides, the
proposal of using the Seq2Vec model for the task of
synthesizing and extracting malware's features based on
Event IDs has brought high efficiency. This model has
successfully standardized malware's behaviors to help the
malware identification system to be more efficient. In the
future, in order to improve the efficiency of the malware
detection process on Endpoints, the authors propose 2
improved methods: i) find ways to build relationships
between Event IDs, ii) propose new embedding methods to
standardize malware's features.

References
[1] Yanfang Ye, Tao Li, Donald Adjeroh, S. Sitharama

Iyengar, A survey on malware detection using data mining
techniques, ACM Comput. Surv, 50, 2017.
https://doi.org/10.1145/3073559.

[2] Daniel Gibert, Carles Mateu, Jordi Planes, The rise of
machine learning for detection and classification of
malware: Research developments, trends and challenges,
Journal of Network and Computer Applications, 153, pp.
1-22, 2020.

[3] Ucci, Daniele & Aniello, Leonardo, Survey on the Usage
of Machine Learning Techniques for Malware Analysis,
Computers & Security, 81, 2017.
https://doi.org/10.1016/j.cose.2018.11.001.

[4] Sanjay Sharma, C. Rama Krishna, Sanjay K. Sahay,
Detection of Advanced Malware by Machine Learning
Techniques, 2019. arXiv:1903.02966.

[5] Alireza Souri, Rahil Hosseini, A state‑of‑the‑art survey of
malware detection approaches using data mining
techniques, 8, no. 3, pp 1-22, 2018.
https://doi.org/10.1186/s13673-018-0125-x.

[6] Important Information Regarding Sandboxie Versions.
https://www.sandboxie.com/. (Accessed on 26 August
2020)

[7] Zhong Wei, Gu Feng, A Multi-Level Deep Learning
System for Malware Detection, Expert Systems with
Applications, 133, 2019.
https://doi.org/10.1016/j.eswa.2019.04.064.

[8] Fei Xiao, Zhaowen Lin, Yi Sun, Yan Ma, Malware
Detection Based on Deep Learning of Behavior Graphs,
Mathematical Problems in Engineering.
https://doi.org/10.1155/2019/8195395

[9] M. Fan, J. Liu, X. Luo et al., Android malware familial
classification and representative sample selection via
frequent subgraph analysis, IEEE Transactions on

Information Forensics and Security, 13, no. 8, pp. 1890–
1905, 2018.

[10] Z. Lin, X. Fei, S. Yi, Y. Ma, C.-C. Xing, J. Huang, A
secure encryption-based malware detection system, KSII
Transactions on Internet and Information Systems, 12, no.
4, pp. 1799–1818, 2018.

[11] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, Deep
learning for classification of malware system call
sequences, in proceedings of the Australasian Joint
Conference on Artificial Intelligence, Lecture Notes in
Comput. Sci., pp. 137–149, 2016.

[12] B. S. Abhishek and B. A. Prakash, Graphs for malware
detection: the next frontier, in proceedings of the 13th
International Workshop on Mining and Learning with
Graphs (MLG), 2017.

[13] Endpoint Detection and Response Solutions Market-
https://www.gartner.com/reviews/market/endpoint-
detection-and-response-solutions. (Accessed on 26
August 2020).

[14] Sysmon v10.42. https://docs.microsoft.com/en-
us/sysinternals/downloads/sysmon (Accessed on 26
August 2021).

[15] Dhananjay Kimothi, Akshay Soni, Pravesh Biyani, James
M. Hogan, Distributed Representations for Biological
Sequence Analysis. arXiv:1608.05949v2.

[16] Quoc V. Le, Tomas Mikolov, Distributed Representations
of Sentences and Documents. arXiv:1405.4053.

[17] Daniel Svozil, Vladimir Kvasnicka, Jiří Pospíchal,
Introduction to multi-layer feed-forward neural networks,
Chemometrics and Intelligent Laboratory Systems, 39, no.
1, pp. 43-62, 1997

[18] Keiron O’Shea, Ryan Nash, An Introduction to
Convolutional Neural Networks. arXiv, arXiv:1511.08458.

[19] Sepp Hochreiter, Jürgen Schmidhuber, Long Short-Term
Memory, Neural Computation, 9, no. 8, pp. 1735 - 1780,
1997.

[20] Malware hunting with live access to the heart of an
incident. https://app.any.run/ (Accessed on 26 August
2021).

[21] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, T.
Yagi, Malware Detection with Deep Neural Network
Using Process Behavior, in proceedings of 2016 IEEE
40th Annual Computer Software and Applications
Conference (COMPSAC), pp. 577-582, 2016.
https://doi.org/10.1109/COMPSAC.2016.151

[22] Mehadi Hassen, Mehadi Hassen, Scalable Function Call
Graph-based Malware Classification, in proceedings of
the Seventh ACM on Conference on Data and Application
Security and Privacy, pp. 239–248, 2017.
https://doi.org/10.1145/3029806.3029824.

