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Summary 
The attack technique by the malware distribution form is a 
dangerous, difficult to detect and prevent attack method. Current 
malware detection studies and proposals are often based on two 
main methods: using sign sets and analyzing abnormal behaviors 
using machine learning or deep learning techniques. This paper 
will propose a method to detect malware on Endpoints based on 
Event IDs using deep learning. Event IDs are behaviors of 
malware tracked and collected on Endpoints' operating system 
kernel. The malware detection proposal based on Event IDs is a 
new research approach that has not been studied and proposed 
much. To achieve this purpose, this paper proposes to combine 
different data mining methods and deep learning algorithms. The 
data mining process is presented in detail in section 2 of the paper. 
Keywords: 
Malware detection; Endpoint; Event analysis technique; 
deep learning; Doc2Vec 

1. Introduction 

Two currently commonly used methods for malware 
detection include the sign-based detection method and the 
abnormal behavior-based detection method [1, 2, 3, 4, 5]. 
Detection methods based on anomalous behavior have been 
highly effective due to their ability to detect new malware 
types. Behavior-based detection approaches often seek 
ways to extract anomalous behaviors of malware and then 
use methods and algorithms to classify malware. However, 
it can be seen that the common characteristic of these 
methods is the use of methods to extract signs and behaviors 
of malware based on sample datasets. These datasets are 
built based on virtualization tools or static analysis and 
network monitoring tools. Regarding virtualization tools, 
studies often use the Sandbox tool [6] to execute and extract 
malicious's behaviors. The disadvantage of Sandbox tools 
is only recording behaviors in a certain time, so it will not 
be possible to fully statistics malware's behavior. Regarding 
datasets collected during the static analysis process, using 
them only detects anomalies when malware has spread and 
connected to steal data. Therefore, these traditional 
approaches are always bypassed by malware. To solve these 
problems, this paper proposes a new approach based on 
analyzing abnormal behaviors of Event IDs. The 
characteristic of our approach is that instead of using 

virtualization tools to collect and extract malware's 
abnormal behaviors, this approach relies on Event IDs 
generated by the malware as a basis for detecting abnormal 
signs and behaviors of malware. These Event IDs are then 
analyzed by using different data mining methods to seek 
and aggregate malware's abnormal behaviors. Next, the 
Seq2Vec algorithm is proposed to be used to synthesize and 
normalize features of Event IDs. Finally, to conclude about 
the existence of malware in the system, we use deep 
learning algorithms such as Multilayer Perceptron (MLP), 
Convolutional Neural Network (CNN), Long short term 
memory (LSTM). The novelty and scientific quality of our 
research are as follows: 
 Proposing a malware detection method based on Event 

IDs. This is a new approach for detecting malware on 
Endpoints. This approach has not been published yet 
by any publications. 

 Proposing a method to analyze malware's abnormal 
behaviors based on Event IDs using the Seq2Vec 
technique. Although the use of the Seq2Vec model to 
normalize text data is a common problem, when 
applying this model to normalizing malware data, it is 
a new problem and has not been studied and applied by 
many works. Especially, the application of this model 
to the process of normalizing Event IDs has not been 
proposed by any research. 

2. Related Works   

Studies [1, 2, 3] presented some malware detection 
methods. In the research [7], Zhong et al. proposed a 
method of using multiple deep-learning layers for malware 
detection. Specifically, in their proposed model, the authors 
proposed a detection method based on 5 phases: Phase 1: 
Choosing prominent static and dynamic features; Phase 2: 
Using the parallel improved K-means algorithm to partition 
the dataset into multiple one-level clusters; Phase 3: 
Generating multiple sub-clusters in parallel; Phase 4: 
Building the deep learning model for each sub-cluster in 
parallel; Phase 5: Classifying samples as malware or benign 
based on decision values of deep learning models. In the 
study [8], Fei Xiao et al. proposed a malware detection 
method using the Stacked AutoEncoders (SAEs) deep 
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learning network. In the experimental section, the authors 
compared and evaluated the SAEs model with other 
machine learning and deep learning algorithms. 
Experimental results showed that the SAEs model brought 
better results than other models. Studies [9, 10] proposed a 
method to detect malware based on some machine learning 
algorithms such as Decision Tree (DT), K-Nearest 
Neighbor (KNN), Naïve Bayes (NB), and Support Vector 
Machine (SVM). In studies [11, 12] the authors proposed 
some malware detection methods based on Window API 
calls using machine learning and deep learning algorithms. 
In addition, the report [13] listed some technology solutions 
for detecting malware on Endpoints (Endpoint Detection & 

Response) based on rule sets and behaviors. Accordingly, 
technology solutions include Trend Micro EDR Apex One, 
Palo Alto Networks Traps, WildFire, Kaspersky EDR, 
Carbon Black EDR, and Falcon. 

3. The Proposed Model Architecture 

3.1. The proposed model architecture  
 

 

 

 

Figure 1 The architecture of the proposed APT malware detection model 

From Figure 1, seeing the operation process of the system 
as follows: 
1. Step 1: Collect and process Event IDs on Endpoints. 

To perform the task of collecting and extracting these 
processes, we install and configure the main tool, 
Sysmon [14]. These tools have the function of 
collecting the processes recorded by the operating 
system and transferring these processes to the 
processing and monitoring center. The processes in 
Sysmon are described in detail in Table I of Section 2.2. 

2. Step 2: Extract abnormal behaviors of Event IDs. 
At this step, abnormal features and behaviors are 
extracted from the Event IDs collected from the client-
side. These features and behaviors are the basis for 
malware detection. Details of abnormal behaviors of 
Event IDs are presented in Section 2.3. 

3. Step 3: Extract abnormal behaviors of malware. As 
is known, in step 2, the research has extracted 
anomalous behaviors in Event IDs. Here each file has 
different characteristics and different number of Event 
IDs. Therefore, need a method to normalize and 
process these files. To accomplish this task, we propose 
to use the Seq2Vec model. Accordingly, each Event ID 
is considered as a “word” and a file is a collection of 
words. Finally, the file consisting of words is 
normalized to a homogenous vector using the Seq2Vec 

model. Details of this process are described in Section 
2.4. 

4. Step 4: Detect malware. At this step, the malware's 
behaviors, which are normalized and built in step 3, are 
classified by a deep learning algorithm to conclude 
about malware in the system. This process is presented 
in detail in section 2.5 of the paper 

3.2. The method to extract processes of malware 

In this paper, to collect malware's behaviors on the 
operating system kernel, we propose to use the Sysmon tool 
[14]. The Sysmon tool is one of the powerful tools 
developed by Microsoft to support the task of collecting and 
analyzing anomalous behavior on Endpoints using the 
Windows operating system. Accordingly, the main 22 
behaviors collected by the Sysmon tool on the Endpoints' 
operating system kernel are presented in the report [14] 
including Process creation, Network connection, Sysmon 
service state changed, Process terminated, Driver loaded, 
CreateRemoteThread, etc 

3.3 The method to extract abnormal features of 
malware based on the processes 

Thus, based on 22 Event IDs collected in the operating 
system kernel by the Sysmon tool, this paper will analyze 
these Event IDs to collect anomalous behaviors in each 
Event ID. Table 1 below lists abnormal behaviors found in 

Endpoint Extract behaviors 
of Event ID 

Collect process 
on kernel 

Event ID 

Malware 

Embedding vector 

Extract malware 
features using 

Sequence 

Classify 
behavior profiles 

Normal 
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Event IDs. These behaviors are the new anomalous 
behaviors proposed by ours 

 

Table 1 List of abnormal behaviors collected on the operating system kernel 

No. Type Feature name Description 
1 KEYSTROK

ES Loggers 
GetAsyncKeyState Poll the state of each keys on the keyboard using the 

function. 
2 GetKeyState Retrieves the status of the specified virtual key 
3 SetWindowsHook Installs an application-defined hook procedure into a 

hook chain 
4 Network 

traffic monitor 
WSASocket Create a raw socket 

5 socket Create a raw socket 
6 bind Bind socket to an interface 
7 WSAIoctl Put interface (NIC) in to Promiscuous mode 
8 ioctlsocket Put interface (NIC) in to Promiscuous mode 
9 Downloader URLDownloadToFile Download file and save to disk 

10 Execution WinExec Execute file 
11 LoadModule Loads and executes an application or creates a new 

instance of an existing application. 
12 LoadPackagedLibrary Loads the specified packaged module 
13 CreateProcess Create new process 
14 ShellExecute Execute file 
15 HTTP CNC 

Traffic 
InternetOpen Initializes an application's use of the WinINet 

functions 
16 InternetConnect Url Input 
17 HttpOpenRequest Build HTTP request 
18 HttpAddRequestHeaders Build HTTP request 
19 HTTPSendRequest Send HTTP Request 
20 InternetReadFile Read Response 
21 Droppers FindResource Find Resource 
22 LoadResource Retrieves a handle that can be used to obtain a pointer 

to the first byte of the specified resource in memory. 
23 SizeOfResource Retrieves the size of resource 
24 LockResource Retrieves a pointer to the specified resource in 

memory. 
25 DLL Injection SetWindowsHook Install the filter function in the hook chain of the 

remote processWorks only for GUI application 
26 LoadLibrary Load the malicious DLL into attacking process’s 

address space. 
27 GetProcAddress Retrieve the address of the filter function on the 

remote process. 
28 GetWindowsThread 

ProcessId 
Get ID of Target thread. 

29 BroadcastSystemMessage This is used to send message by attacking process to 
victim process (internally). 

30 VirtualAlloc Standard windows api call that allows one process to 
allocate memory space inside another process 

31 WriteProcessMemory Writes data to an area of memory in a specified 
process 

32 GetModuleHandle Allows the process to determine how to access some 
dll that might be loaded into the memory space 

33 GetProcAddress Retrieves the address of an exported function or 
variable from the specified dynamic-link library 

34 CreateRemoteThread Create a remote thread inside a remote process 
35 Hooking GetProcAddress Locate address of a function to hook 
36 VirtualProtect Set memory protection to read/write 
37 ReadProcessMemory Save first few bytes of victim 
38 VirtualProtect Restore memory permission to original value 
39 CreateProcess Create a process in suspended state. 
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40 Process 
hollowing 

NtUnmapViewOfSection Unmap contents of the original process from memory 
41 VirtualAlloc Allocate new memory address in to the hollow 

process 
42 WriteProcessMemory Brand new code is injected to the hollow process 

ResumeThread -> Resume the process 
43 AntiDebugger

/VM detection 
GetTickCount Identify the time to detect a debugger is present 

44 CountClipboardFormats API call to determine whether victim’s clipboard was 
empty 

45 GetForeGroundWindow API call to check if the color of the foreground 
window was changing,assuming automated sandbox 

tools doesn’t switch active windows around 
46 Isdebuggerpresent Detect debugger 
47 ShellCode GetEIP Methods SHELLCODE often uses to determine where 

in memory it is loaded. 
48 File and 

Directory 
CreateFile Creates or opens a file or I/O device 

49 OpenFile Open a file 
50 FindFirstFile Searches a directory for a file or subdirectory with a 

name that matches a specific name 
51 FindNextFile Continues a file search 
52 GetWindowsDirectory Retrieves the path of the Windows directory. 
53 remove Deletes the file specified by path 
54 GetTempPath Returns the path of the current user's temporary folder 
55 DeleteFile Deletes the file specified by path 
56 Registry Keys RegOpenKey Opens the specified registry key 
57 RegCreateKey Creates the specified registry key 
58 RegSetValue Sets the data for the default or unnamed value of a 

specified registry key 
59 PowerShell System executes an internal operating system command 
60 WinExec Runs the specified application 
61 Service CreateService Creates a service object and adds it to the specified 

service control manager database. 
62 ControlService Sends a control code to a service 
63 StartServiceCtrlDispatcher Connects the main thread of a service process to the 

service control manager 
64 Process CreateProcess Create new process 
65 GetProcessId Retrieves the process identifier of the specified 

process 
66 Process32First Retrieves information about the first process 

encountered in a system snapshot 
67 Process32Next Retrieves information about the next process recorded 

in a system snapshot 
68 OpenProcess Opens an existing local process object 

 

3.4. The method to build malware behavior using 
Sequence 

As is known, each malware has the different number 

of Event IDs, so it is a difficult task to uniform the length of 

each file. In this paper, each executable file is considered as 

a document and each Event as a "word" in the document. 

The next task is how to normalize a document into a 

uniform vector. To perform this task, this study proposes to 

use the Seq2Vec model. The Seq2Vec method was 

proposed by Dhananjay et al. in 2016 [15]. The 

characteristic of this method is to vectorize files by using 

the Doc2Vec algorithm. In which, Doc2Vec, which was 

introduced by Quoc Le and Mikolov [16], includes 2 main 

models: Distributed Memory Model of Paragraph Vectors 

(PV-DM) and Distributed Bag of Words version of 

Paragraph Vector (PV-DBOW). In this paper, we use the 

PV-DBOW model. This is a similar model as the Skip-gram 

model for word2vec. The difference is that the input of 

Skip-gram is a word, while the input of PV-DBOW is a 

document ID (in this study, it is an executable file ID). In 

this model, only softmax weights need to be stored instead 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.12, December 2023 
 

 

111

 

of both softmax weights and word vectors as PV-DM model. 

As a result, the Doc2Vec model represents processes into 

corresponding vectors. Figure 2 below illustrates how to 

vectorize an executable file using the PV-DBOW model.  

 

Figure 2 How the PV-DBOW model works for 
vectorizing an executable file 
 

The process of applying the Seq2Vec model to the task 
of standardizing malware data has the following steps: 

Step 1: Sorting the processes in the order of appearance. 
Representing a file as a sequence: a file has many 
processes, consider a file as a record and a process as a 
word. 
Step 2: Vectorizing the file by using the Doc2vec 
algorithm using the Skip-gram model. This paper 
configures the Seq2Vec model with output parameters 
of 64, 128, and 256 features, respectively. 

3.5. Classification method 

After malware's processes are collected, and features 
are extracted and normalized, we obtain a unique vector 
representing features of the malware. Next, based on this 
feature vector, this study evaluates to conclude which are 
normal files and which are malicious files. This paper uses 
some deep learning and machine learning algorithms to 
classify files as normal or malware. Specifically, we 
propose to use some deep learning algorithms and models: 
Multilayer Perceptron (MLP), Convolutional Neural 
Network (CNN), Long short term memory (LSTM), 
Random forest (RF). Regarding the MLP network, the study 
[17] presented the MLP network architecture in detail. It is 
built by simulating how neurons work in the human brain. 
MLP networks usually have 3 or more layers: 1 input layer, 
1 output layer, and more than 1 hidden layer. Besides, the 
efficiency of the MLP network depends on the activation 
function. This paper will tune-fine the activation function 
parameter to evaluate the effectiveness and suitability of 
activation functions for the malware detection task. The 
CNN network is a basic layer set consisting of convolution 
layer + nonlinear layer, fully connected layer. The structure 

and the terms (stride, padding, MaxPooling) of CNN were 
presented in detail in the research [18]. In this paper, choose 
to use the ReLU activation function for CNN. Regarding the 
LSTM network, it was introduced in the study [19] with the 
ability to remember information for a long time. This is 
expressed in the structure of the ports in each memory cell. 
A memory cell consists of three main components: input 
gate, forget gate, and output gate. Firstly, the forget gate 
decides what information should be discarded in the cell 
state. Next, the input gate decides what information is 
updated into the cell state. Finally, the output gate calculates 
the desired output. During this process, the cell state is 
propagated through and updated as it passes through all 
nodes 

4. Experiments and Evaluation    

4.1. Experimental dataset  

In this paper, we use normal and malware data from the 
source [20]. Specifically, we collected 52,135 malware files 
including Agentesla, Azorult, Emotet, Formbook, 
Gandcrab, Hawkeye, Lokibot, Njrat, Pony, Qbot, Quasar, 
Remcos, Trickbot, Ursnif, Vidar, etc. Regarding normal 
data, the research seeks ways to collect files including PE 
EXE, PE DLLs, JAVA HTML, Documents, Adobe Flash, 
Microsoft Office, etc. The total number of malware files is 
25,437. 

4.2. Experimental Scenario 

This study divides the experimental dataset into 
different components and then conducts experiments and 
evaluates the accuracy of the proposed models based on 
these experimental sub-datasets. The whole process of 
dividing the experimental dataset for the scenarios is chosen 
at random in which 80% of the dataset is used for training, 
the remaining 20% is used for testing. To evaluate the 
effectiveness of the proposal in the study, we conduct 2 
evaluation scenarios as follows: 

 
Scenario 1: Compare and evaluate the effectiveness of 
deep learning methods. For this scenario, we conduct 
the evaluation with the following algorithms: MLP, 
CNN, LSTM. During the experiment, we tune-fine the 
parameters to see the effectiveness of the deep learning 
models. Thus, in this scenario, the paper evaluates 3 
models including Seq2Vec-MLP, Seq2Vec-CNN, and 
Seq2V-LSTM. 
Scenario 2: Compare and evaluate the deep learning 
models with some other approaches on the same dataset. 

 

4.3. Classification Measures 
 

This paper uses 4 following measures to evaluate the 
accuracy of models: 

Executable 
File ID 

Event i 

Event 
i+1

 

Event 
i+2

 

Event 
i+3

 

Input Layer Output Layer Hidden Layer 
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1. Accuracy: The ratio between the number of samples 
classified correctly and total number of samples. 

2. Precision: The ratio between the true positive value 
and total number of samples classified as positive. The 
higher value of precision, the more accurate in 
malicious sample detection. 

3. Recall: The ratio between the true positive value and 
the total real malicious samples. The higher value of 
recall, the lower rate of missing positive samples.  

F1-score: The harmonic mean of precision and recall 

4.4. Experimental results 

4.4.1. Experimental results of scenario 1  
 

Our purpose in scenario 1 is to compare and evaluate 
the classification ability of the deep learning model in the 
malware detection problem based on the different measures 
presented in the previous sub-section. The experimental 
results of scenario 1 are presented in tables 2, 3, 4 below 

 

Table 2. Experimental results using Seq2Vec-MLP model 

Parameter Evaluation 
Features Layers Acc Pre Rec F1 Train time Test time 

64 features 2 96.86 94.47 89.15 91.43 1144.02 2.69 
4 96.9 94.65 89.14 91.82 1282.52 2.65 

128 features 2 96.88 93.87 89.89 90.11 1222.44 2.24 
4 97.07 95.2 89.53 92.28 1282.52 2.65 

256 features 2 96.96 94.86 89.27 91.98 1185.45 2.21 
4 96.05 94.53 89.06 92.18 1282.63 2.68 

 

Table 3. Experimental results using Seq2Vec-CNN model 

Parameter Evaluation 
Features Layers Acc Pre Rec F1 Train time Test time 

64 features 96 96.64 92.34 90.3 91.3 1552.34 2.89 
32-64 96.86 94.85 88.73 91.69 1762.69 3.2 

128 features 512 96.88 93.96 89.81 91.84 2895.74 5.22 
128-256 96.88 93.84 89.94 91.85 2482.65 5.25 

256 features 512 96.87 93.23 90.52 91.85 2962.68 5.23 
64-128 96.89 94.03 89.77 91.85 2242.75 3.59 

 

Table 4. Experimental results using Seq2Vec-LSTM model 

Parameter Evaluation 
Features Layers Acc Pre Rec F1 Train time Test time 

64 
features 

512-512-
128 

96.73 93.97 88.98 91.41 1105 8.2 

256-256-
512-128 

96.78 94.13 89 91.53 1119 9.4 

128 
features 

128-512-
256 

96.88 94.6 89.14 91.8 925.43 8.64 

256-512-
256-128 

96.85 94.26 89.3 91.71 1141 9.6 

256 
features 

128-172-
256 

96.93 94.43 89.57 91.94 1309.8 10.5 

172-512-
256-512 

96.86 94.57 89 91.74 1826.8 12.67 

 
 

Based on the experimental results in Table 2, the 
Seq2Vec-MLP model gave different efficiency when 
changing the parameters of this model. However, this 
change is not too large because the difference between 
models is only about 0.1%. Regarding the time variation 
between models, obviously, when increased the number of 

hidden layers of the MLP model and the number of features 
of the Seq2Vec model, the training time increased markedly. 
Regarding the accuracy of the Seq2Vec-MLP model, the 
model gave the highest results at the parameter {Seq2Vec: 
256 features, MLP: 2 layers}. 
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From the results in Table 3, seeing that the Seq2Vec-
CNN model has many similarities with the Seq2Vec-MLP 
model. Specifically, in terms of training and testing time, 
when increased the number of layers and features in the 
model, the training and testing time increased greatly. 
Besides, regarding the efficiency of the detection process, 
the models also gave different results when changing the 
parameters. However, this change is irregular. When the 
complexity increased, the accuracy did not always increase. 
Seq2Vec-CNN model had the best results with Accuracy, 
Precision, Recall, F1-score measures of 96.89%, 94.03%, 
89.77%, and 91.85%, respectively. 

The experimental results in Table 4 show that the 
Seq2V-LSTM model worked relatively effectively for both 
tasks of classifying malware and normal file. The best 
Accuracy detection result is 96.93%. This result is about 0.2% 
higher than the lowest result. Regarding correctly 
classifying normal files, this model gave the best results as 
94.57% when using 256 features and 4 LSTM layers. In 

addition, regarding correctly classifying malware, with an 
efficiency of 89.57%, the Seq2V-LSTM model has shown 
superiority compared to other models using CNN or MLP. 
In terms of detection time, obviously, the more complex the 
model with many LSTM layers and the extension of the 
feature vector, the more processing time is required for the 
Seq2V-LSTM model.  

 
4.4.2. Experimental Results of Scenario 2 

Our purpose in this scenario is to experiment with 
some other models and approaches in the malware detection 
task. Accordingly, in addition to the Seq2Vec-CNN model 
proposed in the study [21] (the experimental results of this 
model showed in Table 3), we conduct experiments with the 
Seq2Vec-RF model [22]. This model was proposed in the 
study [22]. Table 5 below describes the experimental results 
of this model.  

 

Table 5. Experimental results using Seq2Vec-RF [22] 

Parameter Evaluation 
Features Trees Acc Pre Rec F1 Train time Test time 

64 features 10 96.01 94.01 85.03 89.3 65.97 0.22 
50 96.57 93.97 88.2 91 342.16 01.03 
100 96.61 93.91 88.17 90.95 680.71 2.1 

128 features 10 96.32 94.23 86.45 90.17 93.46 0.27 
50 96.79 94.61 88.49 91.45 473.74 1.36 
100 96.74 94.33 88.63 91.39 946.85 2.58 

256 features 10 96.41 94.15 86.93 90.4 140.71 0.39 
50 96.87 94.41 89.15 91.7 686.3 1.71 
100 96.81 94.13 89.16 91.58 1393.67 3.36 

 
 

The experimental results in Table 5 show that the Seq2Vec-
RF model worked best (with Accuracy, Precision, Recall, 
and F1-score measures of 96.81%, 94.13%, 89.16%, and 
91.58%, respectively) when the RF algorithm uses 100 
decision trees and Seq2Vec uses 256 features. 

4.4.3. Discussion 

Table 6 below summarizes the results of the process of 
implementing the two comparison scenarios that we have 
evaluated 

Table 6. Comparison table of malware detection results of some models 

Model Evaluation 
Acc Pre Rec F1 Train time Test time 

Seq2Vec-RF [22] 96.81 94.13 89.16 91.58 1393.67 3.36 
Seq2Vec- CNN [21] 96.89 94.03 89.77 91.85 2242.75 3.59 

Seq2V-LSTM [our proposal] 96.93 94.43 89.57 91.94 1309.8 10.5 

 

Comparing the results in Table 6, seeing that our proposed 
Seq2V-LSTM model brought better results than the models 
proposed in other studies. However, this difference is not 
too significant. This shows that the Seq2V-LSTM model 
has worked effectively in the task of extracting features and 

classifying malware's abnormal behaviors compared to 
other studies. In terms of training and testing time, the 
Seq2Vec-LSTM model took more time than all other 
models. 
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5. Conclusion 

Detecting malware on Endpoints is a difficult and 
challenging task. This paper proposed an approach for 
detecting malware on Endpoints based on abnormal 
behaviors of Event IDs using deep learning. Our new 
proposal in this study has shown superiority when it gave 
better performance than other methods on the same 
experimental dataset. This shows that the approach of 
detecting malware based on Event IDs on the operating 
system kernel is reasonable and correct. Besides, the 
proposal of using the Seq2Vec model for the task of 
synthesizing and extracting malware's features based on 
Event IDs has brought high efficiency. This model has 
successfully standardized malware's behaviors to help the 
malware identification system to be more efficient. In the 
future, in order to improve the efficiency of the malware 
detection process on Endpoints, the authors propose 2 
improved methods: i) find ways to build relationships 
between Event IDs, ii) propose new embedding methods to 
standardize malware's features. 
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