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Summary

In this paper, we present the very first time the generalized
notion of (&, 8,y, ) — convex (concave) function in mixed kind,
which is the generalization of (a,f) — convex (concave)
functions in 15° and 2™ kind, (s,7)— convex (concave)
functions in mixed kind, s —convex (concave) functions in 15¢
and 2" kind, P — convex (concave) functions, quasi
convex(concave) functions and the class of convex (concave)
functions. We would like to state the well-known Ostrowski
inequality via SVN-Riemann Integrals for (a,,y,§) — convex
(concave) function in mixed kind. Moreover we establish some
SVN-Ostrowski type inequalities for the class of functions whose
derivatives in absolute values at certain powers are (a,f3,v,)-
convex (concave) functions in mixed kind by using different
techniques including Holder’s inequality and power mean
inequality. Also, various established results would be captured as
special cases with respect to convexity of function.

Keywords:

Ostrowski inequality, (a, 8,¥, 8) —convex functions, Single
valued Neutrosophic sets.

1. Introduction

Ostrowski inequality is most celebratted inequality in
literature, there are many variants and generalizations are given
in literature of Ostrowski inequality, in this article our main focus
on the basis of the generalization of Ostrowski type inequalties
via generalized convex functions. From literature, we recall and
introduce some definitions for various convex (concave)
functions.

Definition 1.1 /3] A function ¢:1 € R — R is said to be convex
(concave) function, if

¢(tx + (1 - )y) < (2)tp(x) + (1 = )P,
Vx,y €1,t € [0,1].
We recall here definition of P —convex(concave) function from
[18].

Definition 1.2 We say that p:1 c R - Risa
P —convex(concave) function, if ¢ is a non-negative and Vx,y €
I and t € [0,1], we have

¢(tx + (1= )y) < (2)$(x) + ¢).

Here we also have definition of quasi—convex(concave) function
(for detailed discussion see [21].

Definition 1.3 4 function ¢:1 € R — R is known as
quasi—convex(concave), if
¢(tx + (1 = )y) < (2)max{p(x), $(y)}
vx,y € 1,t € [0,1].
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Now we present definition of s —convex functions in the first
kind as follows which are extracted from [32]:

Definition 1.4 /5] Let s € [0,1]. A function ¢:1 c [0, 0) -
[0, ) is said to be s —convex (concave) function in the 15 kind,

i
¢(tx + (1 - )y) < (2)t*p(x) + (1 = t)p(),
vx,y €1,t € [0,1].

Remark 1.5 Note that in this definition we also included s = 0.
Further if we put s = 0, we get quasi—convexity (see Definition

0.3).
For second kind convexity we recall definition from [32].

Definition 1.6 Lets € [0,1]. 4 function ¢:1 < [0,00) = [0, 00)

is said to be s —convex (concave) function in the 2™® kind, if
ptx + (1 - t)y) = (2)t°p(x) + (1 = )*¢d (),

vx,y €1,t € [0,1].

Remark 1.7 In the similar manner, we have slightly improved
definition of second kind convexity by including s = 0. Further if
we put s = 0, we easily get P —convexity (see Definition 0.2).

Definition 1.8 /2] Let (s,7) € [0,1]%. 4 function ¢:1 < [0, %) —
[0,00) is said to be (s,1) —convex (concave) function in mixed
kind, if

¢(tx + (1= 0)y) < (2)t7p(x) + (1 =t")°d(),
Vvx,y € 1,t € [0,1].

Definition 1.9 /9] Let (a, §) € [0,1]. A function ¢:1
[0, ) — [0, o) is said to be (a, ) —convex(concave) in the 15
kind, if
btx + (1 -D)y) < (R)t“p() + (1 - tF)p (),
Vx,y € 1,t € [0,1].

Definition 1.10 /19] Let (a, §) € [0,1]%. 4 function ¢:1
[0,0) = [0, ) is said to be (a, B) —convex(concave) function
in the 2™ kind, if

p(tx + (1= 0)y) < ¢ + (1 - F o (),
vx,y €1,t € [0,1].

In almost every field of science, inequalities play an
important role. Although it is very vast discipline but our focus is
mainly on Ostrowski type inequalities. In 1938, Ostrowski
established the following interesting integral inequality for
differentiable mappings with bounded derivatives. This
inequality is well known in the literature as Ostrowski inequality.
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Theorem 1.11 [33] Let @:[pg pp] = R be differentiable
function on (pg, pp) With the property that |@'(t)| < M for all
t € (pg, Pp)- Then
1 Pb 1 x-Plh ’
) ——— w(t)dt| < M(pp — pa) ;+< 2 > ,

Pb=Pa Pb=Pa

Vx € (pg, Pp)- The constant % is the best possible in the kind that
it cannot be replaced by a smaller quantity.

Now we present the extension of definitions of fuzzy numbers
and their results as from the [7], [8], [28] and [20].

Definition 1.12 /4] A SVN-Number is ¢: R = [0,1] can be
defined as
1. [¢]° = Closure({r € R:T¢(r) > 0,1¢(r) > 0, Fp(r) > 0})
is compact.
2. ¢ is Normal.( i.e, 315 € R such that T¢p(rp) = 1,1¢p(1p) =0
and Fp(ry) =0).
3. ¢ is SVN-convex, i.e, Vry, 1, € R, € [0,1]

To(r + (1 —n)r) =2 min{To(r1), Tp(r2)},

1p(nry + (1 —m)rp) < max{iPp(r), [p(r,)},

Fo(nry + (1 —mry) < max{F$(r1), Fo(rz)}-
4. Vry €R and € > 0,3 Neighborhood V(ry), such that Vr €
R, To(r) <Top(ry) +€,1p(r) =1p(ry) — €, and Fo(r) =
() — €.

Definition 1.13 /4, 22] For any ({1,{2,{3) € [0,1]3, and ¢ be
any SVN-number, then ({y,{5,{3) — level set [p]Cré25) =
{reRTH) 2§y, Ip(r) < o, FH(r) < (3}

Moreover [9]° = [Su524), ¢{&55] (¢85, 45) € [0,1)°

Proposition 1.14 /22, 30] Let ¢, p € SVNR (Set of all SVN-
Numbers) and n € R, then the following properties holds:

1. [¢) + (p]({p:z'fs) = [¢]({1:52'{3) + [(p]({1:§2r{3).

2. [17 @ ¢]((1,<2,53) = n[¢]({1'<2'z3)_

3.0D9=0D¢.

4 710¢=00n.

5.10¢ =¢.

v{ € [0,1].

Definition 1.15 /31] Let D: SVNg X SVNg — R, U {0}, defined
as

D(¢,9) = sup max{|T¢£0 - T¢§)| ) |T(pg) _ T(p£:)|}
¢efo]
{00169, 16)
T )

V¢, € SVNg. Then D is metric on SV Ng.

Proposition 1.16 [31] Let ¢4, ¢, 3, P, € SVNR andn € SV Ny,
we have

1. D(¢1 @ 3, P2 D ¢3) = D(d1, ¢2)-

. D O ¢1,1 O ¢2) = [n|D(P1, d2)-

- D(¢1 D d2, 3 D ¢s) < D(P1, $3) + D (P2, Pa)-

- D(¢1 D ¢2,0) < D(¢1,0) + D(¢2,0).

. D(¢p1 B @2, P3) < D(p1, P3) + D (¢, 0),

where 0 € SV N, defined by vr € R,0(r) = (0,0,1).

wn AW

Definition 1.17 /30] Let ¢, ¢ € SV Ny, if 36 € SV Ny, such that
¢ =@ @ 0, then 0 is H —difference of ¢ and ¢, denoted by 0 =
»O 0.

Definition 1.18 /31] A function ¢: [ry, 1 + €] = SV Ng #1)
H —differentiable at r, if 3¢’ (r) € SV Ny, i.e both limits
I Ppr+nOo ) . MO P -h
im , lim
h—0%* h h—0%* h
exists and are equal to ¢'(r).

Definition 1.19 /30, 31] Let ¢: [pg, pp] = SVNg, if V{ >
0,3n > 0, for any partition P = {[u, v]: 6} of [pa, pp] With norm
A(P) < n, we have

D (Z v — W), <p> <q,
P

then we say that ¢ is SVN-Riemann integrable to ¢ € SVNg, we
write it as

Pb

@ = (SVNR) d(x)dx.

Pa
The main aim of our study is to generalize the ostrowski
inequality (1) for (a, B,v¥,8) —convex function, which is given
in Section 2. Moreover we present SVN — Ostrowski type
inequalities for which at the certain powers of absolute
derivatives are (&, B,y,8) —convex functions by using different
techniques including Hélder’s inequality [37] and power mean
inequality [36]. Also we give the special cases of our results of
midpoint inequalities.

2. SVN-Ostrowski type Inequalities via

(a, B,v,6) —convex functions in mixed kind
In this section first we introduce
(a,B,y,6) —convex(concave) in mixed kind.

Definition 2.1Lef (a, 8,7, 8) € [0,1]*. A function ¢:1

[0,00) = [0, o) is said to be (a, B,y,§) —convex(concave)
function in mixed kind, if

p(tx + (1= )y) < (7)) + (1 - tH)’0 (), 2
vx,y € 1,t € [0,1].

Remark 2.2/n Definition 0.20, we have the following cases.
1. If we choose y =48 =1 in (2), we get (a,f) — convex
(concave) in 15¢ kind function.
2. If we choose S =y =1 in (2), we get (a,fB) — convex
(concave) in 2™ kind function.
3. If we choose a = 6§ =5, =y =1, where s, r € [0,1] in (2),
we get (s,7) —convex (concave) in mixed kind function.
4. If we choose « = =s and y = § = 1 where s € [0,1] in
(2), we get s —convex (concave) in 15¢ kind function.
5. If we choose a=8=0, and y=6 =1, in (2), we get
quasi—convex (concave) function.
6. If we choosea = 6§ =5, =y = 1 where s € [0,1] in (2), we
get s —convex (concave) in 2™¢ kind function.
7. If we choose a =6 =0, and f =y =1, in (2), we get
P —convex (concave) function.
8. If we choose a = =y =38 =1 1in (2), gives us ordinary
convex (concave) function.

In order to prove our main results, we need the
following lemma that has been obtained in [34].
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Lemma 2.3 Let @:[pg, pp] = Fr be an absolutely continuous

mapping on  (pq,pp) With pg <pp. If @' € Celpa,pp] N
Le[pa Pb]s thenfor X € (pg, pp) the following identity holds:

-0 (SVNR) f p(t)dt ® ﬂ

a

Pp —
©) (SVNR)f tO @' (tx + (1 —t)py)dt
0

= ¢() ® PZLO (SVNR) ) t O ¢'(tx + (1= pp)dt ()

We make use of the beta function of Euler type, which is for
x,y > 0 defined as

_ [ e L1y, PTG
B(x,y) —J; t 1(1—t)y 1dt—m,
where ['(x) = fow e *“u*"du.

Theorem 2.4 Suppose all the assumptions of Lemma 2.3 hold.
Additionally, assume that D(¢’,0) is (a, B,v,8) —convex
function on [pg, pp] and D(¢'(x),0) < M. Then Vx € (pg, pp)
the following inequality holds:

D (<p(x), -0 (SVNR) f <p(t)dt>

Pa
s1w<ﬁ+ (‘m)) ), @

where k(x) = (rpa)+pp=2)” “; +;p" )
b~ Pa

Proof. From the Lemma 2 3
( (x) @ (SVNR)f (t)dt>
Pa
<(x pa)z
Pa

O (SVNR) f O ' (tx + (1 — Dpe)dr,
Pp —

(pp —x)*
Pp ~ Pa ,

(x — pa) ) B
<D ( on—pa © (SVNR)J- tO@'(tx+ (1 —t)py)dt, 0)

o) (SVNR)f tO ¢ (tx+(1— t)pb)dt>

2
+D <(zb ) (SVNR)f O ¢'(tx + (1 — H)py)ds, )

b

G pa)z , _
== Paz D <(SVNR) J;l tO @' (tx + (1 —t)pg)dt,0
+MD <(SVNR) f t O @' (tx + (1 - t)pp)dt, 6),
Pp — Pa - 0
(x = pa) , _ -
2 < mfo tD(¢'(tx + (1 — t)py),0)dt
+—(§Z:Z) J, tD(@'(tx + (1 — O)p,), 0)dt, )

Since D (¢’, f))~ be (a, B,v,8) —convex function in mixed kind
and D(¢'(x),0) < M, we have
D(¢'(tx + (1 —t)p,),0)
<t D (¢ (x),0) + (1 — t#)° (' (pa), 0)
< M|t +(1-tF)’) ©6)
D(¢'(tx + (1= t)pp), 0)
< tD('(x),0) + (1 — t#)°D(¢’ (py), 0)

< M|t + (1- )] ™)

Now using (6) and (7) in (5) we get (4).

Corollary 2.5/n Theorem 2.4, one can see the following.

1. If one takes y =6 = 1,a € [0,1] and 8 € (0,1], in (4), one
has the SVN —Ostrowski inequality for (@, f) —convex functions
in 15¢ kind:

<<ﬂ(x)

O(SVNR)] <p(t)dt>
2

2. If one takes f =y =1,a € [0,1] and § € [0,1], in (4), then
one has the SVN — Ostrowski inequality for (a,d) — convex
functions in 2™ kind:

1

(] 1
_M<a+2+(6+1)(6+2)

K(x).

Pb
(SVNR) f (p(t)dt)
Pa

)K(x).

3. If one takesa =& =s,f =y =1, where s € [0,1] and r €
(0,1] in (4), then one has the SVN —Ostrowski inequality for
(s,r) —convex functions in mixed kind:

(<p(x) — O (SVNR) f <p(t>dr) “

1 B(s+1)
rs+2

<M

K(X).

4.Ifonetakesa = f =randy = § = 1, wherer € (0,1] in (4),
then one has the SVN — Ostrowski inequality for r — convex
functions in 15¢ kind:

1 Pb
D (qo(x),pb _ O] (SVNR)[ gv(t)dt)
a Pa
e
=M r2 s ().

5. If one takes f =y =1, =§ =5 where s € [0,1], in (4),
then one has the SVN — Ostrowski inequality for s —convex
functions in 2"¢ kind:

D @), ! Q(SVNR) (p(t)dt <M
Pp —

) K(x).

6. If one takes @ = § = 0 and f = y = 1 in (4), then one has the
SVN —Ostrowski inequality for P —convex functions:

D <(p(x),pb ! ©® (SVNR) ” (p(t)dt) < Mk(x).
Pa

7. If one takes a =B =y =§ =1, in (4), then one has the
SVN —Ostrowski inequality for convex functions:

((p(x) — O (SVNR) f <p(t)dt> < S KO,
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Theorem 2.6 Suppose all the assumptions of Lemma 2.3 hold.
Additionally, assume that [D(¢@',0)]9 is (a, B, v, §) —convex
Sunction on [pg, ppl,q = 1 and D(gv'(x), 6) < M. Then for each
1

O]

Pb=Pa

X € (pg, pp) the following inequality holds: D ((p(x),
(SVNR) [ (p(t)dt)

Q|r

M 1 B(ze+1)
- <ay+2 + —5 K(x).

INC)
(¥
Proof. From the Inequality (5) and power mean inequality [36]

Pb
D <<p(x),pb _— O (SVNR) N (p(t)dt>
— 5 )2/ (1 1‘& 1
< %(L tdt) <JO t[D(o’ (tx
+(1-0py), 6)]th>q
_ 1 1‘§
+ M <f tdt)
Pb — Pa 0
(5 tlo(e'(tx + (1 = 0)py), 0)) dt ). ©)

Since [D(¢’,0)]7 be (a,f,y,8) —convex function in mixed
kind and D (¢’(x),0) < M, we have

[D(¢'(tx + (1 — ©)pa),0)]"
< t“y[D(q)’(x), ﬁ)]q
+(1- ) [D(¢' 00, O)]*
< M9[c + (1- )’ (10)

[D(¢'(tx + (1 = t)pp), 0)]”
< t¥[D(¢'(x), ﬁ)]q
+ (1= 8’ [D(' (o), 0)]"
< M9t + (1-1F)’] (11

Now using (10) and (11) in (9) we get (8).

Corollary 2.7In Theorem 2.6, one can see the following.

1. If one takes g = 1, one has the Theorem 0.23.

2. If one takesy =6 = 1,a € [0,1] and B € (0,1], in (8), one
has the SVN —Ostrowski inequality for (@, f) —convex functions
in 15¢ kind:

1
D <<p(x),

Pb ~ Pa

Pb
® (SVNR) J- <p(t)dt>
Pa

2\
< M ! +B(E'2) K(x)
- (2)1—% a+2 B '

3. If one takes B =y = 1,a € [0,1] and § € [0,1], in (8), then
one has the SVN — Ostrowski inequality for (a,§) — convex
functions in 2™ kind:

1 Pb
D (fp(x), —— o e | fp(t)dt>
a Pa
M 1 1 %
e ((a 2terne+ 2)) ().

4. If one takesa =6 =5, =y =r, where s € [0,1] and 7 €
(0,1] in (8), then one has the SVN —Ostrowski inequality for
(s,r) —convex functions in mixed kind:

D< (), —— O (SVNR) f " (t)dt)
O o = Pa o ¢

M 1 B (%,s + 1) g
= (2)1—% rs+2 r ().

S5.Ifonetakesa = f =randy = § = 1, wherer € (0,1] in (8),
then one has the SVN — Ostrowski inequality for r — convex
functions in 15¢ kind:

1 Pb
D(“’(")'pb—p © Vi) [ w(t)dt)
a Pa
B(%,2)\’
< Ml 12+ (r ) K(x).
(2)1—3 r+ r )

6. If one takes f =y =1,a = § = s where s € [0,1], in (8),
then one has the SVN — Ostrowski inequality for r — convex
functions in 2™ kind:

1
D <<p(X).

Pb ~ Pa

Pb
© (SVNR) f <p(t)dt>
Pa

< # (S-I-Ll); K(x). (9)

7. If one takes @ = 6 = 0 and f =y = 1 in (8), then one has the
SVN —Ostrowski inequality for P —convex functions:

1 Po M
D ((p(x),pb = 0] (SVNR)f (p(t)dt) < Tk (x).
a Pa

@' (10)

8. If one takes a = =y =3 =1, in (8), then one has the
SVN —Ostrowski inequality for convex functions:

D <(p(x), ! O (SVNR) fpb(p(t)dt> < ﬂ}c(x).
Pb = Pa o 2

Theorem 2.8 Suppose all the assumptions of Lemma 2.3 hold.
Additionally, assume that [D(¢@',0)]? is (a,f,y,8) — convex

function on [pg,ppl,q =1 and D(@'(x),0) <M. Then Vx €

(Pas Pp) the following inequality holds:

1 Pb
D<<p(x),pb_p O (VNR) [ <p(t)dt>
a Pa

1
<M|[11_§ 1 r[ZF]riz + 81\°
- |<E) 6+ 5ay + ay? 2
l Y +ay 2F[2+ﬁ+6]
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1
BB r1+67\4
% K (x).
3r[1+E+5]
(12)
Proof. From the Inequality (5) and improved power mean
inequality

1 Pb d
D <<p<x), —— O (VNR) f,, o t)
1_1
< wam - t)dt> !
Pp — Pa 0

1
q

1
<f t(1 - 0)[D(p(tx + (1 — )py), 6)]%)
0
x—pa)? 1—% ,
+ e (o eae) (5 el

(1— t)pa),())]th)% + %( foll t(1— t)dt)l_% (Jy ea-

B[P (p'(tx + (1 - )py), 0)]dt )*

O (1) e2de) Iy Do er + (L= 0 O] de)”

Since [D(¢',0)]? be (a, B,y,8) —convex function in mixed kind
and D(¢'(x),0) < M, we have
[D(p(tx + (1 = t)p,),0)]"
< t[D(¢'(x),0)]’
+ (1= 1) [D(p' ). D)’
< M9[c + (1 - tﬁ)(s], (14)
[D(g(tx + (1 - t)py),0)]"
<t [D(p'(x),0)]"
+ (1= ¢#)’[D (2. 0)]°
<M e + (1~ ¢F)’] (15)

Now using (14) and (15) in (13) we get,

Pb
D<<p<x), ——oEvR) | qo(t)dt)
a Pa

w2 [a-om) ([l
ol 1-y]a)
([ ([ o 1
O ([ t)dt)“ﬁ ([
_ [tay +(1- tﬁ)‘?] dt)

+M —(ZZ :ZZZ (fol tzdt>1_a <f01 t? [t"‘y +(1- t”’)(s] dt)?

q

Therefore
1 Pb
D<<p(x). O (VNR) [ <o(t)dt)
Pb — Pa Pa
(X_pa)z 1
< MZPad _
=M Pb=Pa [(fo td

1 1
t)alt)1 a (fol L1 —tydt + [, t(1- tﬁ)‘mdt)"

1 -5/ ¢1 1 s %
+<f tzdt> <J t“]’+2dt+f t2(1 - tP) dt>
0 0 0

M ! —_ 1_$ ! ay+1 _
= ['sa-oa) ([ ra-

1

. 1
+f t(1- t5)6+1dt>q
0

1 1‘$ 1 1 s %
+ <f tzdt> <f tY+2dt 4 f t2(1—tF) dt) .
0 0 0

Hence,

D <<p(X).

Pb d
O (SVNR) fp K t)

NSV P ez + o
(g) 6+5ay+ay2+ 2F[2+%+6]

kS
] 1—5 ] r[%]r[u&] a
+ (5) <3+0£Y + 31"[1+%+5]

Theorem 2.10 Suppose all the assumptions of Lemma 2.3 hold.
Additionally, assume that [D(¢',0)]? is (a,B,y,8) — convex

K(x).

function on [pg, ppl,q > 1 and D(¢'(x),0) < M. Then for each

x € (pg, Pp), the following inequality holds:

D <<p(x). Lo | " q)(t)dt)
Pb = Pa  Jra (14)
< (Illl—)l(ﬁﬁ-w)q K(x), (16)
p+1)P

wherep™t +q71 = 1.
Proof. From the Inequality (5) and Holder’s inequality [37]

1 Pb
D<<p(x),pb_p O (VNR) [ w(t)dt>
a Pa

(x - pa)z 1 % 1 , ~\1q %
Spb_—pa<fg tpdt:) <f0 [D(e'(tx + (1 = t)py),0)] dt)

+%(f01 tpdt); (fol [D(o'(tx + (1 — t)pp), 6)]th);.

Since [D(¢',0)]9 be (a, 8,7, 8) —convex function in mixed kind
and D(¢'(x),0) < M, we have

[D('(tx + (1 - £)p,),0)]”
< t"‘y[D(go’(x), 5)]q
+(1-tF)°[D(¢'(pa), 0)]°
< Mt + (1-1F)’], (18)
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[D(g(tx + (1 - 0)py),0)]"
< t¥[D(p'(x), ﬁ)]q
+ (1= ¢#)’[D(¢(2).0)]"
< M9[e + (1 - tﬂ)s]. (19)
Now using (18) and (19) in (17) we get (16).

Corollary 2.11 In Theorem 2.10, one can see the following.

1. If one takesy =8 = 1,a € [0,1] and B € (0,1], in (16), one
has the SVN —Ostrowski inequality for («, ) —convex functions
in 15¢ kind:

( (0, >——= O (SVNR) f (t)dt>
Pa s
B(%,2)\*
< M T ! 1+ (B ) K(x).
e+ \*7F g

2. If one takes f =y = 1,a € [0,1] and § € [0,1], in (16), then
one has the SVN — Ostrowski inequality for (a,§) — convex
functions in 2™¢ kind

<<p(X) C) (SVNR) f (p(t)dt)
M 1 1 \q
= K (x).
(p+1) (a+1 6+1)

3. If one takesa =6 =s,8 =y =71, where s € [0,1] and r €
(0,1] in (16), then one has the SVN —Ostrowski inequality for
(s, ) —convex functions in mixed kind:

D( () !
¢ ’pb_ a

Pp
O (SVNR) f (p(t)dt)

p Pa
< M1<1 +B(%'S )>Kx
(p+1)5 rs+1 r ( )

4. If one takes a =f =r and y = 8§ = 1, where r € (0,1] in
(16), then one has the SVN — Ostrowski inequality for
r —convex functions in 1“ kind:

(<p(x) -0 (SVNR) f <p(t)dt>
< (L + MY K (x).

(p+1)P

QR

5. If one takes B =y =1, = § = s where s € [0,1] in (16),
then one has the SVN — Ostrowski inequality for s —convex
functions in 2™ kind:

<<p(X)

O (SVNR)f <p(t)dt>
M ( 2

—( +1)p S+_1) K(x)

6. If one takesa = =0and f =y = 1 in (16), then one has
the SVN —Ostrowski inequality for P —convex functions:

1

1 Pb (2)iM
0] (SVNR)f (p(t)dt) < T K(X).
" Pe pa (+ 1)

D (w(X), o

7. If one takes @ = § = y = § = 1in (16), then one has the
SVN —Ostrowski inequality for convex functions: (17)

<<p(x) O (SVNR) J- (p(t)dt> M 7 K (X).
(p+Dp

Theorem 2.12 Suppose all the assumptions of Lemma 2.3 hold.
Additionally, assume that [D(¢’,0)]? is (a,B,y,8) — convex
function on [pg, ppl,q > 1 and D(¢'(x),0) < M. Then for each
X € (pa, Pp), the following inequality holds:

1 Pb
D <qo(x),ph — O (SVNR) L qo(t)dt)
[ 1
I 1 % 2+ 3ay + ay?
SM|(2+3p+p) r[1+5 2r[1+4] r[z]
ll \ rli+s +5] rl1+2+4]

1

248 a
| * ]r[1+5]> ().

21"[1+%+6]

1y

+ (2+p) <ay+2 +

where p~t +q71 = 1. (20)

Proof. From the Inequality (5) and Holder’s Iscan inequality
< (x) Q (SVNR) f (t)dt)

B[P (p'tx + (1 - )p,), 0)]"dt )"

1
— 2 -
ot (o errae)” (4 elp(otex +
1

<8t (1 1 pyear) (1} 1 -

Pb—Pa

(1 - )p), 0)]dt)"

1+ —(Z:ZZ (fo1 tp“dt); ( J, ¢[D(p'(tx +
(1= t)pp),0)]"dt)’

+—(/€Z:Zi (fol 1(1 - t)tpdt); (fol 1-
B[D(e'(ex + (1 = t)py), 0)]"de)". @1
This gives

1 Pb p
D <<p(x),m O (SVNR) fp a o(t) t)
st a-oray (i a-

B[P (p'tx + (1 - )p,), 0)]"dt )"

1 /[t %
+ (f tp+1dt> U t[D(g'(tx + 1 = )pa), 6)]th>
0 0
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+ —‘ﬁjj:;f [(f; t”“dt); ( [ e[D('Cex +
(1 - t)pp), 0)]"dt )’
+(f a-owary (§} @ -o[p(eex+a-

£)pp). 0)]th)3]- 22)

Since [D(¢’,0)]9 be (a, 8,7, ) —convex function in mixed kind
and D(¢'(x),0) < M, we have

[D(e'(tx + (1 - t)pa),0)]”
< tay[D(qo’(x), 6)]q
+ (1= %)’ [D(0'(pa). 0)]°
< M [c + (1-¢F)’] (23)

[D(g(tx + (1 = t)py),0)]"
<t¥[D(p'(x), f))]q
+(1=t5)’[D(¢' (), 0)]°
< M9t + (1-1F)’] (24)

Now using (23) and (24) in (22) we get,
D ((p(x), O (SVNR)f (p(t)dt)
p

< (x_p“)z (f 1- t)tpdt> <f ¢!

—t) [t“y+(1—t5) ]
+ <f01 tp“dt); (fol t [t“Y +(1- tﬁ)‘s] dt)
+M% <f01 tl’“dt)% <f01t [t“V +(1- tﬁ)‘s] dt)i

+(fy a- t)tpdt)% (ly a=ofer+-
)Y | e3)

Therefore

D<<p(x), Py
<M (fl(l—t)tpdt> U (1—t)[t“y+(1—t5) ]dt>_
0

" (f tP“dt) ( t[t“V +(1-tF) ]dt) ]K(X)

(26)

|

I

Qe

Pb
© (SVNR) f <p(t)dt>

Finally we get

1 Pb
D<<p(x),pb_p O (VNR) [ <p(t)dt>
a Pa

[
(o
SM|l<2+3p+1oz> 2+ 3ay + ay?
[1+5] 2r[1+%]
F[l-ll—%ﬂ—d]
Y
r[1+2+54]
- e ri+s) ‘
+(2+p) <ay+2 2r[1]+ i;]> K (x). 27

3. SVN-Ostrowski type midpoint Ineqﬁa}ﬂities
via (a,fB,7,6) — convex functions in
mixed kind

Remark 3.1/n Theorem 2.6, one can see the following.

(22)
1. If one takes x = @ in (8), one has the SVN —Ostrowski

Midpoint inequality for (a, ,y, ) — convex functions in Mixed

kind:

pa+pb) 1
D<¢< 2 "Pb = Pa

1
< MGpy—pa) (1 B(30+1)\7
= (2)2—% ay+2 B '

2. If one takes x = @,y =§=1a€[0,1] and § € (0,1] in

(8), one has the SVN — Ostrowski Midpoint inequality for
(a, B) —convex functions in 1“ kind:

Pb
D <¢ (”“Zﬂ) 55 O (SVNR) go(t)dt)

Pa
1

< Mb=pa) 5(32)\?
s z—— <a+2+ B '

)

3. If one takes x = 2222 g =y = 1, € [0,1] and § € [0,1] in

(8), then one has the SVN —Ostrowski Midpoint inequality for
(a, 8) —convex functions in 2™ kind:
1

D ((p (pa erpb),pbi O (SVNR) fp zb<p(t)dt>

< Mpp= Pa)( 1 1 )q
(a+2) = (6+1)(6+2)

2-=

)

4. If one takes x = ,a=68=5s,=y=r, where s €

[0,1] and r € (0,1] in (8), then one has the SVN — Ostrowski
Midpoint inequality for (s, r) —convex functions in mixed kind:

D ((p (p“ ;p”) =0 (SVNR)f (p(t)dt)

< M= pa)< 1 +B(?5+1)>

PatpPp
2

Qe

2-2 rs+2 r

2
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5. If one takes x = ,a=F=randy =6 =1, wherer €

(0,1] in (8), then one has the SVN — Ostrowski Midpoint
inequality for v —convex functions in 15¢ kind:

D <(p (Pa er Pb)‘pb ipa O© (SVNR) J:b (p(t)dt>

1

A

< Mes=p) (L N M)
2—— r+2 r

2)

PatPp
2

6. If one takes x=@,ﬁ=y= l,a =6 =s where s €
[0,1], in (8), then one has the SVN — Ostrowski Midpoint
inequality for 7 —convex functions in 2"*¢ kind:
+ 1 Py
D <<p (t32), ——o cvn) w(t)dt)
2 Pb = Pa o

1

M(pp=pa) (1 \a
s (2)2—% (s+1) '
7. If one takes x =p“T+pb,a =¢§ =0and f =y = 11in (8), then

one has the SVN —Ostrowski Midpoint inequality for P —convex
functions:

Pa + pb)
D
<(/)< 2 Pp —

O (SVNR) f <p(t)dt>
< M(Pb—f’a)_
2"

8. If one takes x = @,a =f =y =4§=1,in (8), then one

has the SVN — Ostrowski Midpoint inequality for convex
functions:

oo (B2) -0 cvim) [ ,, oo

< M(p, — pa)_

Remark 3.2 In Theorem 2.10, one can see the following.

1. If one takes x = @ in (16), one has the SVN —Ostrowski

Midpoint inequality for (a, 8,7, ) — convex functions in Mixed
kind:

Pa t Pp 1
olo(*27)
<(p 2 Pp —

1
< M@y pa)<;+3(%'5+1)>q'

ay+1 B

Pp
. ©® (SVNR) fp a (p(t)dt)

2(p+1)P

2. If one takes x = @,y =d§=1a€[0,1] and B € (0,1], in
(16), one has the SVN — Ostrowski Midpoint inequality for
(a, B) —convex functions in 15¢ kind:

Pb
D <(p (p‘l;’—p”),pb O (SVNR) (p(t)dt>

Pa
1

< Mpp— pa) ( " B(%'2)>E
- a+1 :

2 +1)P B

3. If one takes x = 2222 g — y = 1,@ € [0,1] and & € [0,1],in
(16), then one has the SVN —Ostrowski Midpoint inequality for
(@, §) —convex functions in Z"d kind:

D <(p (p“ erp") O (SVNR)f (t)dt)

< M= Pa) (a+1 + ﬁ)q.

2(p+1)1’

4. If one takes x = ,a=6=s,=y =1, where s €

[0,1] and r € (0,1] in (16), then one has the SVN —Ostrowski
Midpoint inequality for (s,7) —convex functions in mixed kind:

Pa t P 1
o ey
<<p 2 Pp —

Pp
(O] (SVNR)] (p(t)dt)
pa P
< Mpp— pa)< 1 +B(%'S+1)>

rs+1 T

PatPp
2

QR

2(p+1)P

5. If one takes x = ,a=fF=randy =6 =1, wherer €

(0,1] in (16), then one has the SVN — Ostrowski Midpoint
inequality for r —convex functions in 15¢ kind:

Pat Py 1 i
D<<p( ) >’pb—pa® (SVNR) fp <p(t)dt>

1
< Mpp— pa) B(32)\
S <r+1 + r '

2(p+1)7lJ

PatPp
2

6. Ifonetakesx=@,ﬁ=y= 1,a =6 = s wheres € [0,1]

in (16), then one has the SVN —Ostrowski Midpoint inequality
for s —convex functions in an kind:

D <q) (p“ erp”) = 0 (SVNR)[ (p(t)dt)

(2)4 M(pp= pa)( +1)E_
S

(p+1)"

7. If one takesx=%,a=6=0aﬁdﬁ=y=1in (16),

then one has the SVN — Ostrowski Midpoint inequality for
P —convex functions:

pa+pb> 1
D<<p( 2 )pp—

Pb
o (SVNR) f (p(t)dt)

(2)‘* "M(pp — pa)

@+ 1y
8. If one takes x = p“;pb anda = =y =38 =1in(16), then

one has the SVN —Ostrowski Midpoint inequality for convex
functions:

Pa + Pp 1 Py
D <q) (T) 55 O (SVNR) L a (p(t)dt)
Mpy — pa)
2(p + 1)1’
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4. Conclusion and Remarks:

Ostrowski inequality is one of the most celebrated
inequalities, In this paper, we presented the generalized notion of
(a,B,v,8) —convex (concave) functions in mixed kind. This
class of functions contains many important classes including
class of (a, ) —convex (concave) functions in 15t and 2™¢ kind
[19], (s,r) —convex (concave) functions in mixed kind [2],
s — convex (concave) functions in 15t and 2™¢ kind [5],
P —convex (concave) functions [18], quasi convex(concave)
functions [21] and the class of convex (concave) functions[3]).
We have stated our first main result in section 2, the
generalization of Ostrowski inequality [33] via SVN-Riemann
integrals with (&, 8,y, §) —convex (concave) functions in mixed
kind. Further, we used different techniques including Holder’s
and Holder’s Iscan inequality[37] and power mean and improved
power mean inequality[36] for generalization of SVN-Ostrowski
inequality.

5. Future Ideas:

1. One may do similar work to generalize all results stated in this
article by applying weights.

2. One may also do similar work by using various different
classes of functions.

3. One may also generalize this work in fractional integral form.
4. One may try to state all results stated in this article for
fractional integral with respect to another function.

5. One may also state all results stated in this article for higher
order derivatives.

6. One may also state all results stated in this article for
multivariable real valued functions.

7. One may also state all results stated in this article for quantum
Calculus.

8. One may also state all results stated in this article in time scale
domain.
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