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Abstract 
Predictive maintenance has been considered fundamental in 
industrial applications over the last few years. It contributes to 
improving reliability, availability, and maintainability of the 
systems and decreasing production efficiency in manufacturing 
plants. This article aims to explore the integration of predictive 
maintenance into production scheduling through a systematic 
review of literature. The review includes 165 research articles 
published in international journals indexed in the Scopus database. 
Press articles, conference papers, and non-English papers are not 
considered in this study. After carefully evaluating each study for 
its purpose and scope, 50 research articles are selected for this 
review, following the 2020 Preferred Reporting Items for 
Systematic Review and Meta-Analysis Protocols (PRISMA) 
statement. Benchmarking of predictive maintenance methods was 
used to understand the parameters contributing to improved 
production scheduling. The results of our comparative analysis, 
which assessed various methods for prediction, underscore the 
promising potential of artificial intelligence in anticipating 
breakdowns. An additional insight from this study is that each 
equipment has its own parameters that must be collected, 
monitored, and analyzed. 
Keywords: 
Predictive Maintenance; Production Scheduling; Systematic 
Review; PRISMA; Artificial Intelligence.  

 
1. Introduction 
 

In contemporary times, the primary goal of every 
production plant is to achieve and sustain prosperity 
and success. The maintenance department, an integral 
component of any thriving business enterprise, plays a 
pivotal role in the overall operation. While it may not 
directly contribute to the productive output, its 
significance cannot be overstated. It stands as one of 
the most vital departments within the production plant, 
responsible for maximizing equipment and machinery 
availability and operational efficiency. 
 

The maintenance department's primary objective 
is to ensure continuous machine and equipment 
operation, minimizing failures and production 
interruptions. Achieving this goal necessitates the 

department's prompt resolution of problems to 
minimize losses due to equipment shutdowns and 
prevent future occurrences. 

Fundamentally, maintenance aims to uphold 
optimal equipment and machinery condition 
throughout their operational cycles, ensuring 
functionality. Properly defining, meticulously 
planning, and gaining acceptance for maintenance 
activities are key principles. These activities 
encompass aspects such as product quality, equipment 
usability, cost reduction, safety, and environmental 
protection. Adhering to these activities guarantees that 
machines and equipment remain in optimal condition, 
facilitating safe, efficient, and reliable operation. 

This research aims to explore the benefits of 
predictive maintenance in the context of production 
scheduling. The systematic literature review 
conducted for this research identifies, evaluates, and 
synthesizes existing knowledge and evidence on 
predictive maintenance's application in production 
scheduling.  

This paper is organized into five sections, starting 
with an introduction. In section 2, the paper explores 
foundational aspects of production scheduling and 
predictive maintenance. The third section outlines the 
materials and methods employed in this research. 
Section 4 presents the findings and outcomes of the 
systematic literature review. Finally, section 5 
concludes the study by summarizing key findings and 
suggesting future research directions. 
 
2. Fundamentals of production scheduling 

and predictive maintenance 
 
Industrial systems have experienced significant 

transformations in recent years, necessitating a 
corresponding evolution in maintenance strategies 
toward increased efficiency and sophistication. These 
advancements, however, come with challenges, 
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particularly in managing the usage time of 
increasingly expensive machines. The extensive 
utilization of resources can accelerate their health 
deterioration, ultimately resulting in breakdowns. 
Consequently, there is a pressing need to develop 
decision support tools that facilitate the optimized 
management of machine usage. In this section, we 
provide clear definitions of production scheduling and 
predictive maintenance, elucidating the potential 
impact of predictive maintenance on production 
scheduling. 

 

2.1 Production Scheduling 
Production scheduling is a crucial decision-

making process that facilitates the efficient 
organization of production resources within a 
company. Positioned as a key step in the planning 
process, it integrates essential factors in the production 
system, including customer demands, production 
planning, and resource allocation (refer to Figure 1). 
Scheduling, widely applicable in various industries, 
particularly in manufacturing and services, involves 
allocating existing production resources, such as 
machines, to execute a sequence of tasks or jobs 
within a specified timeframe. The primary objective is 
to meet performance criteria, encompassing both 
customer satisfaction and production efficiency [2]. 
In today's production systems, the pursuit of increased 
productivity and optimized average costs requires the 
development of flexible scheduling systems capable 
of adapting to changes and minimizing downtime. 
Production systems encounter challenges such as 
unpredictable customer demands, machine 
breakdowns, and delivery delays, imposing significant 
constraints. As a result, production management 
extends beyond its core objective of goods production 
to address secondary objectives, categorized as 
external objectives related to customer satisfaction 
and internal objectives linked to optimizing the 
production system's use. 

Effective scheduling plays a pivotal role in 
improving both external and internal objectives, 
positioning production scheduling as a extensively 
researched topic in operations research, management 
science, and artificial intelligence, all aimed at 
enhancing production efficiency. 
 

 
 

Fig. 1. A summary of production planning and 
control activities in a company [1]. 

 
There are various types of production scheduling, 

each suited to different manufacturing scenarios. 
These include production within a single machine, 
parallel machines, and job production scheduling, 
further categorized into flow shop, open shop, and job 
shop [3]. In flow shop scheduling, jobs follow a 
predetermined sequence of operations, ideal for highly 
standardized assembly line production [1]. Open shop 
scheduling is similar, but with no specific ordering 
constraints on operations. Job shop scheduling (JSS) 
deals with jobs having ordered lists of operations, and 
it's a challenging problem in combinatorial 
optimization, often considered NP-hard [4]. Job shops, 
prevalent in businesses with complete customization, 
pose complexity due to varied production processes 
for each job, resulting in unique finished products [1]. 
JSS can be classified based on job information 
availability, distinguishing between static (classical) 
JSS and dynamic JSS [5]. Additionally, depending on 
whether a job can be processed on more than one 
machine, JSS is categorized into flexible JSS and non-
flexible JSS [6]. 
 

2.2 Predictive Maintenance 
Predictive Maintenance (PdM) employs 

advanced tools to determine the optimal timing for 
maintenance actions [7]. This approach relies on 
continuous monitoring of machine or process integrity, 
allowing for maintenance only when necessary [8]. It 
also facilitates early failure detection through 
predictive tools utilizing historical data (e.g., machine 
learning techniques), integrity factors (e.g., visual 
aspects, wear, discoloration differing from the 
original), statistical inference methods, and 
engineering approaches [8]. 
PdM revolves around real-time monitoring and 
diagnosis of system components, processes, and 
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production chains [9]. The core strategy involves 
taking action when items or parts display behaviors 
indicative of potential machine failure, degraded 
performance, or a decline in product quality. Initially 
driven by system checks at predetermined intervals, 
preventive maintenance focused on analyzing the 
health of equipment, machines, or components within 
machinery [10]. In recent years, PdM has found 
applications in various domains, including (cyber) 
security issues, infrastructure management, energy 
fabrication, power plants, maritime systems, 
exploitation facilities, as well as in production chains 
or in future factories [11]. 

Essentially, predictive maintenance is a 
philosophy that optimizes total plant operation by 
utilizing the actual operating condition of plant 
equipment and systems. A comprehensive predictive 
maintenance management program utilizes cost-
effective tools (e.g., vibration monitoring, 
thermography, tribology) to acquire real-time data and 
schedules maintenance activities based on actual 
needs [12]. The integration of predictive maintenance 
in a comprehensive maintenance management 
program optimizes process machinery availability, 
significantly reduces maintenance costs, and enhances 
product quality, productivity, and profitability in 
manufacturing and production plants [12]. 
 

2.3 Predictive Maintenance Integrated into 

Production Scheduling 
In the management of production and 

maintenance during disturbance conditions, three 
distinct approaches are employed: predictive, 
proactive, and reactive (refer to Figure 2) [13]. The 
goal of the predictive approach is to formulate a 
schedule capable of absorbing disturbances without 
affecting planned external activities, all while 
maintaining heightened system efficiency. 
 

 
Fig. 2. Classification of Production and Maintenance 

Scheduling Approaches [13]. 

By foreseeing future machine conditions and 
assessing the health states of machines before 
executing a production schedule, plant decision-
makers can proactively prevent failures attributed to 
machine degradation, subsequently enhancing the 
overall cost-effectiveness of the manufacturing 
system [14]. The joint optimization of job operations 
and Predictive Maintenance (PdM) actions results in 
improved planning and increased efficiency. 
 

3. Literature Review of Predictive 
Maintenance Integrated into 
Production Scheduling 

 
The Systematic Literature Review (SLR) is a 

well-acknowledged approach utilized to discover, 
evaluate, and interpret pertinent research on a 
particular subject, domain, or phenomenon [15]. 
Functioning as a supplementary examination, SLR 
strives to review studies with comparable objectives, 
rigorously assess methodologies, and consolidate 
results for statistical or meta-analysis when applicable 
[8]. In order to improve reporting transparency and 
consistency, the Quality Of Reporting Of Meta-
analyses (QUOROM) guidelines were initially created 
and subsequently refined through the PRISMA 
statement [16]. 

 

3.1 Literature Review According to PRISMA 

Guidelines 
The PRISMA 2020 statement is primarily crafted 

for systematic reviews examining the effects of health 
interventions, regardless of study design [17]. Despite 
its health focus, the checklist items are versatile and 
can be applied to systematic reviews evaluating 
various interventions like social or educational 
interventions. These guidelines are relevant not only 
for reviews centered on intervention assessment but 
also for those with broader objectives, such as 
examining prevalence or prognosis [16]. PRISMA 
2020 is suitable for systematic reviews with or without 
synthesis, encompassing mixed-methods reviews that 
integrate both quantitative and qualitative studies. 
While it emphasizes original and updated systematic 
reviews, PRISMA 2020 is also pertinent to 
continuously updated ("living") systematic reviews 
[17]. 
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This updated statement empowers academic authors to 
efficiently construct comprehensive systematic 
reviews with significant relevance to the research 
community. It ensures a thorough understanding of the 
research topic and facilitates the identification of new 
questions for future investigation [16, 17, 19]. 
 

3.2 Literature Review Planning Protocol 
This paper follows a systematic planning 

protocol for the review, offering a comprehensive 
framework that serves as a valuable guide for 
researchers to gain a deeper understanding of the 
research topic, recognize limitations, and explore 
future directions for integrating maintenance methods 
into production scheduling. 
Research Questions: The paper addresses two main 
questions: (1) How are predictive maintenance 
methods utilized in production scheduling? and (2) In 
which fields is predictive maintenance widely applied? 
The selection of papers discussed in this work is based 
on these key questions. 
Databases for Literature Searching: The study 
utilized Scopus, a reputable scientific literature 
database. All chosen papers are scientific articles from 
international journals indexed by Scopus, published in 
English between 2011 and 2023. 
Execution: For the execution of the Systematic 
Literature Review (SLR), keywords for constructing 
search strings were selected based on terms commonly 
found in the literature and terms specific to this review 
(i.e., Predictive maintenance applied to production 
scheduling).  
The search on Scopus used the formula: 
TITLE-ABS-KEY(("predictive maintenance" OR 
"PdM") AND ("production schedu*" OR "production 
plan*")) 
 

 
Fig. 3. Literature review according to PRISMA 

guidelines 
 

A total of 165 papers were initially found. After 
completing the PRISMA process (Figure 3), 50 papers 
were identified as relevant to this literature review and 
selected for subsequent analysis. These papers offer 
insights into predictive maintenance within the 
context of production scheduling. 
 

4. Results and Discussions 
 

Adhering to the PRISMA guidelines, 50 research 
papers were identified during the literature review, 
primarily sourced from journals with an engineering 
and manufacturing focus. 

 

4.1 Distribution of publications over the year 
In Figure 4, the publication trend from 2011 to 

2023, complete with a trend line, is evident. This 
analysis reveals that the incorporation of predictive 
maintenance into production scheduling has gained 
attention relatively recently in research. Up until 2017, 
only four papers were published, indicating a growing 
interest in this concept. However, there has been a 
noticeable upswing in research activity post-2017. 
Specifically, the average number of papers rose from 
0.8 articles per year in the period of 2011–2016 to 7.6 
articles per year in 2017–2023. 
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Fig. 4. Publications evolution from 2011 to 2023. 

 
The authors in [20] argue that the limited number 

of works in the PdM domain is attributed to the 
intricacy of implementing effective PdM strategies in 
production settings. 

 

4.2 Journal-wise Publication Distribution 

The chosen papers, focusing on PDM applied to 
production scheduling, are dispersed across a diverse 
set of journals, encompassing a total of 28 journals. 
Notably, the International Journal of Advanced 
Manufacturing Technology holds the top position with 
3 publications, followed by the Robotics and 
Computer-Integrated Manufacturing journal with 2 
publications. The remaining journals each feature 1 
publication (See Figure 5).  
 

 
Fig. 5. Journal-wise Article Distribution. 

4.3 Overview of Highly Referenced Articles 

Examining the topic in question, the most 
referenced articles (refer to Figure 6) are succinctly 
summarized. Leading the citation count is the research 
paper titled "Digital Twin and Big Data Towards 
Smart Manufacturing and Industry 4.0: 360 Degree 
Comparison," boasting an impressive 939 citations. 
Close behind is the article on "A Deep Learning Model 
for Smart Manufacturing Using Convolutional LSTM 
Neural Network Auto encoders" which has garnered 
145 citations. Additionally, "Machine learning for 
predictive scheduling and resource allocation in large 
scale manufacturing systems" follows suit with 104 
citations, while the remaining articles have each 
accrued fewer than 100 citations. This analysis 
highlights the prominence and impact of key 
contributions within the realm of smart manufacturing 
and Industry 4.0. 

 
 

 
Fig. 6. Highly Cited Articles 
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4.4 Analysis of Research Methods 

Table 1 presents our analyses of eligible articles, 
offering an insight into the most recent papers on PdM 
and production scheduling. Each line corresponds to a 
specific paper, with the first three columns detailing 
its reference, method employed, and equipment used. 
The fourth column provides a description of the data 
applied for prediction, while the fifth column, labeled 
"Data type," indicates whether Real Data (RD) or 
Synthetic Data (SD) was used in the study case. "N/A" 
denotes not applicable. 

 
 
 

 

 

 

 

 

TABLE I.  ANALYSIS OF RESEARCH ARTICLES 

Reference Used Methods Equipment 
Description of the data applied for 

predictive maintenance 
Data type 

[21] Machine Learning Wear on a brake system 
Braking force 
Brake pads thickness 

RD 

[22] Ant colony optimization 
FDM (Fused Deposition 
Molding) 

Data on the environment 
FDM machine generated data 

RD 

[23] Artificial Intelligence Photovoltaic cells Electrical signals RD 
[24] Mathematical Model Micro Gas Turbines Sensors measurement SD 

[25] Hybrid metaheuristic Industrial equipment 
Prognostics and Health management 
(PHM) Signals 

SD 

[26] Artificial Intelligence Production chains Key Indicator Performance Results RD 
[13] Ant colony optimization - Reliability characteristics SD 
[27] Mathematical Model Electric steering gears Reliability characteristics RD 
[28] Deep learning model Machine Speed Direction Historical data RD 

[29] Big data and  Machine learning - 
Manufacturing Execution System & 
Signals data 

SD 

[30] Online measuring device 5axis CNC milling machine Sensor’s data RD 
[31] Genetic Algorithm - Design parameters SD 

[32] Mathematical model Gas compression system 
Historical maintenance data  
Sensor’s data 

RD 

[33] 
Agglomerative hierarchical clustering 
algorithm 

CNC Computer Numerical 
Control 

Electrical power SD 

[34] 
A predictive association rule-based 
maintenance policy 

Oil refinery Input parameters RD 

[35] Genetic Algorithm Hydraulic Pump Wear 
Health state transition probability 
Production parameters 

RD 

[36] Artificial neural networks 
Retrofitted CNC milling 
machine 

Sensor Signal: Vibration data RD 

[37] Monitoring Model Bearings Lubricating oil samples analysis RD 
[38] Big data Smart manufacturing - NA 

[39] Deep digital maintenance Oil cooler 
Enterprise Resource Planning (ERP) 
Manufacturing Execution System 
(MES) 

RD 

[40] Nonlinear optimization Boring tool Parameters setting RD 

[50] 
-Deep learning and mathematical 
programming  
-A long short-term memory model  

- Sensor’s data  RD 

[51] Maintenance driven scheduling cockpit  - - N/A 

[52] 

- Deep neural networks (DNN) and recurrent 
neural networks (RNN) models  
- Regression random forest (RRF)  
- Job Shop algorithms from Google's OR-
Tools  

- 
Sensor telemetry and operating 
information 
 

RD 

[53] Production-inventory model - - RD 
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[54] 

Multi-agent system called SCEMP 
(Supervisor, Customers, Environment, 
Maintainers and Producers) 
 

- - SD 

[55] 
Markov decision model  
 

- 
IoT sensors  
 

RD 

[56] 

- (Log)-location-scale (LLS) regression model 
- Multivariate functional principal component 
analysis (MFPCA) 
- Real-time prognosis updating framework 

- 
Monitoring data 
 
 

RD 

[57] Advanced signal processing techniques  
 

-Inertial vibrator 
-Sieving screen 
- Bearings 
-Vibrating screen 
- Accelerometers 

Signals of vibration  
 
 
 
 
 
 

RD 

Reference Used Methods Equipment 
Description of the data applied for 

predictive maintenance 
Data type 

[59] - - - N/A 

[60] Machine Learning Production line of Cement 
plant  

- RD 

[61] - - - N/A 
[62] -Multilayer bidirectional long short-term 

memory (Bi-LSTM) 
-Convolutional neural networks 
-Fusion network 

- C-MAPSS dataset RD 

[63] Multi-perspective data-oriented services in 
Cyber-Physical Production Networks 

- Cyber Physical Production Network. 
 
 

RD 

[64] - Multiple linear regression 
- GRU model 

 
- 

 
- 

RD 

[65] Heuristic algorithm based on Tabu search. Photolithography machines 
used by a red electronics 
manufacturer. 

- RD 

[66] - Prognostics and Health Management (PHM) 
module 
- Predictive maintenance integrated 
production scheduling (PdM-IPS) module 
- Two-stage Genetic Algorithm (TSGA) 

- - N/A 

[67] Mathematical models - Reliability characteristics N/A 

 
The comprehensive review conducted 

underscores the widespread application of predictive 
maintenance across diverse equipment and fields. 
Notably, a significant observation is the predominant 
use of real data over synthetic data in the analyzed 
papers. This trend may stem from the specific 
characteristics inherent in each predictive 
maintenance application, where synthetic data might 
not effectively represent real-world scenarios [8]. 
Furthermore, table 1 highlights a clear preference for 
certain methods, with artificial intelligence, 
particularly machine learning, being the most 
frequently employed. Additionally, genetic algorithms 
and ant colony algorithms emerge as the preferred 
heuristic search algorithms. 

The breakdown of PdM applications in Table 1 
reveals a correlation between each application and 

specific equipment. This equipment spans various 
domains, including brake systems, molding machines, 
photovoltaic cells, turbines, electric steering gears, 
machine speed direction, CNC milling machines, gas 
compression systems, CNC (Computer Numerical 
Control), oil refineries, hydraulic pumps, bearings, 
and oil coolers. 

An interesting trend identified in Table 1 is the 
prevalent use of sensor data to detect anomalies in 
equipment. Beyond the papers cited in Table 1, 
additional references [41–49] can be considered to 
further enrich the categorization by field (See Figure 
7). 
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Fig. 7. Research Papers Addressing PDM and 

Production Scheduling by subject area. 
 

The identified papers underwent additional 
scrutiny, considering their potential impact on specific 
field categories. On average, Engineering 
predominated, constituting the majority at 34.9% of 
the papers, followed by Computer Science at 22%. 
Papers centered on Material Science comprised 9.2% 
of the research, while Mathematics Sciences 
contributed 6.4%. The insights gleaned from the 
characteristics of the most recent papers on Predictive 
Maintenance (PdM) (refer to Table 1 and Figure 7) 
significantly contribute to addressing the research 
questions. 
 

5. Conclusion  
 

In conclusion, this paper thoroughly explored 
existing literature, delving into crucial research on 
Predictive Maintenance (PdM) and production 
scheduling, addressing outlined research questions 
following PRISMA 2020 guidelines. The findings 
emphasized the specificity of each proposed approach 
to particular equipment, making direct comparisons 
with other techniques challenging. Notably, PdM 
emerged as an innovative tool for effectively 
managing maintenance events, reflecting the evolving 
landscape within the industrial field. 
Within this review, certain efforts utilized standard 
Machine Learning (ML) methodologies without 
parameter tuning, relying on sensor-derived data for 

predictive maintenance. This trend suggests the early 
stage of PdM exploration in the industrial domain. 
A key point is the significance of prior implementation 
of PdM strategies within a facility's processes to 
gather essential data for effective modeling. This data-
driven approach is crucial for designing and validating 
a successful PdM strategy, contributing to improved 
efficiency and reduced downtime. 

However, acknowledging the study's limitations, 
future research directions were identified. These 
include the development of advanced sensing 
technologies, integration of deep learning and AI, 
holistic system optimization, quality impact 
assessments, alignment with Industry 4.0, 
benchmarking, human-machine collaboration, cost-
benefit analyses, and cross-industry knowledge 
transfer. Pursuing these avenues aims to propel the 
ongoing evolution of predictive maintenance and 
production scheduling, fostering smarter, more 
resilient industrial processes. 
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