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Abstract 
The travelling salesman problem is very famous and very difficult 
combinatorial optimization problem that has several applications 
in operations research, computer science and industrial 
engineering. As the problem is difficult, finding its optimal 
solution is computationally very difficult. Thus, several 
researchers have developed heuristic/metaheuristic algorithms for 
finding heuristic solutions to the problem instances. In this present 
study, a new hybrid genetic algorithm (HGA) is suggested to find 
heuristic solution to the problem. In our HGA we used 
comprehensive sequential constructive crossover, adaptive 
mutation, 2-opt search and a new local search algorithm along with 
a replacement method, then executed our HGA on some standard 
TSPLIB problem instances, and finally, we compared our HGA 
with simple genetic algorithm and an existing state-of-the-art 
method. The experimental studies show the effectiveness of our 
proposed HGA for the problem. 
Keywords: 
Travelling salesman problem; Hybrid genetic algorithm; 
Comprehensive sequential constructive crossover; Adaptive 
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1. Introduction 
 

The travelling salesman problem (TSP) is very famous 
and very difficult NP-hard [1] combinatorial optimization 
problem (COP). It was first recognized  by Euler in 1759 as 
the Knights’ tour problem. The problem is defined as: There 
is a network consisting of n nodes (or cities) containing the 
headquarters at ‘node 1’. For each node-pair (i, j), a distance 
(or travel time or travel cost) matrix, D=[dij], is provided. 
The problem aims to find a minimum distance (or minimum 
cost or minimum time) Hamiltonian cycle (Figure 1) [2]. 
Asymmetric TSP and symmetric TSP are two major types 
of the TSP. If dij = dji, for every node pair (i, j), then the TSP 
is symmetric otherwise, the TSP is asymmetric.   
 

The problem has numerous theoretical and practical 
applications, such as automatic drilling of PCBs and circuits 
[3], scheduling [4], etc. This problem can be solved by exact 
and heuristic algorithms.  Using basic exact methods, one 
has to explore lot of possible solutions to find an optimal 

solution. As the possible number of solutions of the problem 
is very large in each TSP type,  it is very tough problem. 
Furthermore, since the TSP can be applied to model 
numerous other complicated problems, several researchers 
suggested several exact and approximation approaches for 
obtaining solution of the problem.  

 
 
 
 
 
 
 
 

 

Fig. 1. Examples of sub-optimum solutions for different 
TSPs. 

Branch-and-bound [5], integer programming [6], 
branch-and-cut [7], lexisearch [8] are some exact 
algorithms. However, problem instances of size more than 
100 can never be solved easily optimally by any exact 
approach in a sufficient time, and there are numerous real-
life problem instances of sizes more than 100 are available. 
To solve such problem instances, we have to use 
heuristic/metaheuristic algorithms. Generally, heuristic 
algorithms cannot guarantee that the best obtained solution 
is always optimal. Of course, they can obtain solution which 
is very close to the optimal solution very quickly. However, 
sometimes they obtain a constant solution in each iteration 
of the algorithm. So, in that case, it is beneficial to execute 
the algorithm using different starting points to find a better 
solution, because they may not escape from the local 
optimums (Figure 2) and so, get stuck in these local 
optimums [9]. 
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Fig. 2. Local and global optimums in a complex optimization 
problem 

One of important and advanced versions of heuristic 
algorithms are metaheuristic algorithms which have 
resemblances with natural or social systems. They are found 
to be applied successfully to solve several COPs. Guided by 
clients or parameters, they can find very good solutions 
within an acceptable computational time, and generally, 
they do not get stuck in local optimums. Of course, the 
parameters setting is not an easy task and arbitrary 
parameter setting plays an important role. Examples of 
metaheuristic algorithms for solving the TSP are genetic 
algorithm [10], ant colony system [11], tabu search [12], 
simulated annealing [13], particle swarm optimization [14], 
etc. out of these algorithms, genetic algorithm is supposed 
to be better algorithm for the TSP and for the other COPs. 

Genetic algorithm (GA) originated from the 
evolutionary process of biology. It is supposed to be an 
efficient and robust metaheuristic algorithm for solving 
large-scale COPs. However, simple GA cannot find optimal 
solutions for large-scale problem instances. Hence, many 
researchers combined metaheuristic methods to propose 
hybrid algorithms to obtain better solutions within very 
short time ([15], [16]). In this paper, we are developing a 
hybrid genetic algorithm (HGA) for the TSP. First, we plan 
to develop simple genetic algorithm (SGA) using 
comprehensive sequential constructive crossover [17] and 
adaptive mutation [18] for the problem. Then, 2-opt search, 
a local search and a replacement method are incorporated 
into the SGA for developing a HGA to  obtain better 
solutions. Effectiveness of the proposed HGA is examined 
against ant colony system algorithm [2] to the problem for 
some standard TSPLIB instances. 

This paper is structured as follows: Section 2 reports a 
brief review on the algorithms for the TSP. A hybrid genetic 
algorithm is presented in Section 3 for the TSP. Section 4 
presents computational experience for our proposed 
algorithm. Finally, discussion and concluding remarks are 
presented in Section 5. 

 
 
 
 

2. Literature Review 

Several exact and heuristic algorithms have been 
developed for solving the TSP. Regarding the exact 
algorithm, in [19], the TSP was solved by formulating it as 
integer programming and then found an optimal solution to 
a 42-node problem instance. In [20], a lexisearch algorithm 
is developed for obtaining optimal solution to the 
asymmetric TSP. It is reported that the algorithm takes 
diverse computational times for numerous instances of 
same size. In [8], a data-guided lexisearch algorithm is 
developed to solve the asymmetric TSP. In [21], a branch 
and bound approach based on the assignment relaxation was 
developed to solve the TSP instances. In [7], a branch-and-
cut algorithm was developed for solving large-scale 
symmetric TSP instances. 

Regarding the heuristic algorithm, in [22], an 
evolutionary approach was developed to find solution for 
the TSP. In [11], ant colony optimization algorithm was 
proposed to solve the problem. In [12], a tabu search 
algorithm was proposed for the undirected selective TSP. In 
[14], a particle swarm optimization algorithm was proposed 
to solve the problem. In [9], a simple genetic algorithm 
utilizing sequential constructive crossover operator was 
developed for obtaining solution to the TSP. In [13], a list-
based simulated annealing algorithm was suggested for the 
problem. In [23], a heuristic algorithm based on the 
minimum spanning tree is developed for the problem. In 
[24[, a discrete spider monkey optimization algorithm, 
based on the behavior of monkeys, was proposed to solve 
the problem, and compared the algorithm with other 
algorithms. In [25], a memetic algorithm using 3-opt 
method was developed to find better solution to the problem, 
and then compared its results with some state-of-the-art 
algorithms. In [26], a discrete grey wolf optimizer algorithm, 
based on the behavior of grey wolves, was suggested to 
solve the problem. Further, a 2-opt approach was combined 
to the algorithm to improve the algorithm and then 
compared with some other algorithms. In [27], a Harris 
hawk optimization algorithm using the Lin and Kernighan 
heuristic, a local search method and Metropolis acceptance 
rule was developed to solve the problem, and then solved 
some benchmark problem instances. In [28], a colony 
optimization algorithm was proposed by combining 
searching ants and then compared successfully with the 
traditional algorithm. Recently, in [2], a meta-based ant 
colony system algorithm was proposed to find solution to 
the problem. The algorithm does not apply local pheromone 
update but applies global pheromone update. The algorithm 
is compared with other algorithms and found effective 
results.  
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3. A Hybrid Genetic Algorithm for the TSP 
 

GA is one of the best heuristic algorithms to solve the 
TSP. It originated from the evolutionary process of biology 
that imitates the theory of survival of the fittest [10]. The 
simple GA starts from a chromosome set, known as initial 
population, and then applies three operator- selection, 
crossover and mutation, to obtain heuristic solution to the 
given problem. Hybrid GA incorporates local search or 
other heuristic methods to the simple GA. 

3.1 Initial Population and Selection Operator 

The TSP solutions are characterized by chromosomes 
that are permutation of given nodes. For example, the tour 
{1→6→8→7→3→10→2→4→9→ 5 →1} corresponds to 
(1, 6, 8, 7, 3, 10, 2, 4, 9, 5) for a 10-node problem instance. 
The total distance (or cost) of the tour defines its objective 
function, and  its multiplicative inverse defines the fitness 
function. An initial population of Ps size is generated at 
random. To generate a mating pool, the stochastic 
remainder selection procedure is applied.  

 

 

3.2 Crossover Operator 

In crossover operation, pair of chromosomes mate to 
produce offspring chromosome(s). However, the traditional 
crossover operation may not be able to produce valid 
offspring chromosomes for the TSP. For the TSP, several 
crossover rules are presented in the literature. Some of them 
are distance-based and remaining are blind crossover 
operators. Distance-based crossover operators use distance 
between nodes and blind crossover operators neither use 
distances or  the problem data to create offspring 
chromosome(s). Some common distance-based crossover 
operators are greedy crossover [29], heuristic crossover 
[30], distance-preserving crossover [31], sequential 
constructive crossover (SCX) [32], etc. Some popular blind 
crossover operators are partially mapped crossover [33], 
ordered crossover [29], cycle crossover [34], etc. In [17], a 
comprehensive SCX (CSCX) was proposed by combining 
greedy SCX (GSCX) (Algorithm 1) and reverse GSCX 
(RGSCX) (Algorithm 2) and compared CSCX with five 
other crossover operators. Comparative studies showed the 
effectiveness of the CSCX. We consider this CSCSX with 
crossover probability, Pc, for our SGA and HGA. Here, 
GSCX and RGSCX produce first and second offsprings 
respectively. 
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Let P1: (1, 7, 9, 3, 2, 4, 8, 5, 10, 6) and P2: (1, 6, 3, 9, 
4, 5, 7, 8, 2, 10) be parent chromosomes having the 
headquarters at ‘node 1’. With respect to the  distance 
matrix reported in Table 1, total distances of P1 and P2 are 
558 and 447 respectively. Using GSCX on P1 and P2, first 
offspring O1: (1, 6, 4, 5, 7, 9, 3, 8, 10, 2) with distance 328 
can be obtained. The obtained chromosome is further 
improved by using 2-opt search method. 

 

 

 

 

Table 1: The Distance matrix 

Node 1 2 3 4 5 6 7 8 9 10

1 999 46 54 16 53 12 60 29 54 35

2 46 999 100 56 79 45 75 65 81 32

3 54 100 999 47 65 58 82 48 63 82

4 16 56 47 999 38 12 47 41 38 51

5 53 79 65 38 999 43 18 78 4 85

6 12 45 58 12 43 999 49 41 44 42

7 60 75 82 47 18 49 999 88 21 88

8 29 65 48 41 78 41 88 999 77 38

9 54 81 63 38 4 44 21 77 999 86

10 35 32 82 51 85 42 88 38 86 999

Using RGSCX on the P1 and P2, second offspring O2: 
(1, 2, 10, 8, 3, 5, 7, 9, 4, 6, 1) with distance 330 can be 
obtained. The obtained chromosome is further improved by 
using 2-opt search method.

 



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024 
 

 

16

 

 

3.3 Mutation Operator 

In mutation operation, a location in a chromosome is 
chosen and its value is replaced to produce muted 
chromosome. But this traditional mutation operation may 
not create valid chromosome for the TSP. For the TSP, 
some popular mutation operators are displacement 
mutation, exchange mutation, insertion mutation, inversion 
mutation, etc. [10]. In [17], an adaptive mutation was 
proposed for the quadratic assignment problem. We are 
going to apply this adaptive mutation (Algorithm 3) with 
mutation probability, Pm, for our SGA and HGA.  

 

3.5 Replacement Method 

To further improve our GA search, the population 
should be varied, and so, a replacement method is applied. 
First an offspring is created using multi-parent sequential 
constructive crossover [36], it is then improved using 2-opt 
search and finally inserted into the population if the 
population is identical. Our hybrid GA is reported in 
Algorithm 5.  

4. Computational experiments 

Our simple GA (SGA) and hybrid GA (HGA) are 
encoded in Visual C++ and run on some TSPLIB instances 
[37] on a Laptop with Intel(R) Core(TM) i7-1065G7 CPU 
@ 1.30GHz and 8.00GB RAM under MS Windows 11. The 
following GA parameter values are used: Ps = 100, Pc = 
0.95, Pm = 0.15, Maximum generation = 50 for HGA and 
Maximum generation = 1500 for SGA. We have performed 
the experiments 50 times for each instance. The solution 
quality is measured by the percentage of excess (EX(%)) of 
the solution (S) to the best known solution (BKS) shown in 
[37], by: EX(%) = 100×(S/BKS - 1).  

We report the best solution (BS), average solution (AS), 
EX(%) of the best solution (BE(%)), and EX(%) of average 
solution (AE(%)) over the BKS in 50 runs, standard 
deviation (SD) of the obtained solutions in 50 runs, 
percentage of improvement of average solution by HGA 
over the average solution by SGA (AI(%)). Table 2 reports 
comparative study between SGA and HGA for 14 
asymmetric TSPLIB problem instances over 50 runs. 

Looking at Table 2, the HGA is observed better than the 
SGA. Looking at BE(%), the SGA could find the best 
known solution for only instance – ftv44, whereas HGA 
could find best known solution for all fourteen instances. 
Furthermore, looking at AE(%), the SGA could not find the 
best known solution on average, whereas HGA could find 
best known solution on average for only one instance – p43. 
Finally, looking at AI(%), average solution by HGA has 
achieved minimum 0.34% of improvement and maximum 
11.15% of improvement over SGA. So, it is confirmed that 
HGA is the improvement of SGA. The percentage of 
average solution excess by both algorithms are also shown 
in Figure 3, which demonstrates the effectiveness of HGA.  
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Also, we compared the solutions obtained by SGA and 
HGA in each generation (up to 50 generations) for the 

ftv170 instance and it is shown in Figure 4. From this figure 
it is also shown that HGA is improved over SGA. 

 

Table 2: Comparative study between SGA and HGA for 14 asymmetric TSPLIB instances. 

Instance n BKS 
SGA HGA
BS AS SD BE(%) AE(%) BS AS SD BE(%) AE(%) AI(%)

ftv33 34 1286 1314 1365.14 11.33 2.18 6.15 1286 1289.28 23.12 0.00 0.26 5.88 
ftv35 36 1473 1497 1518.20 10.88 1.63 3.07 1473 1478.46 5.42 0.00 0.37 2.69 

ftv38 39 1530 1548 1585.54 12.51 1.18 3.63 1530 1532.54 4.32 0.00 0.17 3.46 

p43 43 5620 5631 5639.04 4.29 0.20 0.34 5620 5620.00 0.00 0.00 0.00 0.34 

ftv44 45 1613 1613 1632.64 20.01 0.00 1.22 1613 1615.24 1.54 0.00 0.14 1.08 

ftv47 48 1776 1799 1867.22 33.80 1.30 5.14 1776 1793.73 5.22 0.00 1.00 4.10 

ry48p 48 14422 14859 15090.70 120.96 3.03 4.64 14422 14550.13 6.23 0.00 0.89 3.72 

ft53 53 6905 7529 7793.38 128.28 9.04 12.87 6905 7093.82 11.24 0.00 2.73 9.86 

ftv55 56 1608 1620 1663.08 16.87 0.75 3.43 1608 1610.96 2.56 0.00 0.18 3.24 

ftv64 65 1839 1862 1891.30 12.92 1.25 2.84 1839 1860.39 6.58 0.00 1.16 1.66 

ft70 70 38673 40130 41034.50 457.55 3.77 6.11 38673 39552.01 25.38 0.00 2.27 3.75 

ftv70 71 1950 1977 2008.82 16.13 1.38 3.02 1950 1973.46 39.27 0.00 1.20 1.79 

kro124p 100 36230 39332 40286.04 458.39 8.56 11.20 36230 37116.79 132.54 0.00 2.45 8.54 

ftv170 171 2755 3120 3216.04 46.47 13.25 16.73 2755 2893.32 59.87 0.00 5.02 11.15 
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We further compare SGA and HGA for the symmetric 
TSPLIB instances. Table 3 reports comparative study 
between SGA and HGA for 14 symmetric TSPLIB problem 
instances over 50 runs. 

 

Table 3: Comparative study between SGA and HGA for 14 symmetric TSPLIB instances. 

Instance n BKS 
SGA HGA
BS AS SD BE(%) AE(%) BS AS SD BE(%) AE(%) AI(%)

gr21 21 2707 2707 2707.00 0.00 0.00 0.00 2707 2707.00 0.00 0.00 0.00 0.00 

fri26 26 937 937 937.00 0.00 0.00 0.00 937 937.00 0.00 0.00 0.00 0.00 

bayg29 29 1610 1610 1620.40 4.02 0.00 0.65 1610 1610.00 0.00 0.00 0.00 0.65 

dantzig42 42 699 699 699.50 1.51 0.00 0.07 699 699.00 0.00 0.00 0.00 0.07 

eil51 51 426 426 427.80 0.63 0.00 0.42 426 426.00 0.00 0.00 0.00 0.42 

berlin52 52 7542 7542 7622.71 44.30 0.00 1.07 7542 7542.00 0.00 0.00 0.00 1.07 

pr76 76 108159 112050 114277.83 797.23 3.60 5.66 108159 108187.02 89.33 0.00 0.03 5.63 

lin105 105 14379 15493 15959.42 98.82 7.75 10.99 14379 14379.00 0.00 0.00 0.00 10.99

pr226 226 80369 89708 90430.06 446.69 11.62 12.52 80369 80920.23 185.48 0.00 0.69 11.75

gil262 262 2378 2612 2723.12 42.12 9.84 14.51 2378 2423.56 107.26 0.00 1.92 12.36

a280 280 2579 2884 2980.23 48.32 11.83 15.56 2579 2617.32 152.02 0.00 1.49 13.87

pr299 299 48191 54230 57120.08 917.27 12.53 18.53 48579 49060.45 198.47 0.81 1.80 16.43

lin318 318 42029 47738 49738.23 480.47 13.58 18.34 42415 42939.78 165.32 0.92 2.17 15.83

gr431 431 171414 195843 204807.66 3481.06 14.25 19.48 173132 175997.02 395.67 1.00 2.67 16.37

Looking at Table 3, the HGA is observed better than the 
SGA. Looking at BE(%), the SGA could find the best 
known solution for six instances – gr21, fri26, bayg29, 
dantzig42, eil51 and berlin52, whereas HGA could find best 
known solution for all fourteen instances. Furthermore, 
looking at AE(%), the SGA could find the best known 
solution on average for two instances, whereas HGA could 
find best known solution on average for seven instances. 
Finally, looking at AI(%), for two instances, SGA and HGA 
could find optimal and same solutions and for the remaining 

instances, average solution by HGA has achieved minimum 
0.07% of improvement and maximum 16.43% of 
improvement over SGA. So, it is confirmed that HGA is the 
improvement of SGA for symmetric instances also. The 
percentage of average solution excess by both algorithms 
are also shown in Figure 5, which too demonstrates the 
effectiveness of our proposed HGA. By looking at the 
figure it is very clear that as the size of the problem instance 
increases the average improvement by the HGA also 
increases. 

In [2], 
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In [2], a comparative study among eight different 

algorithms was presented on some symmetric TSPLIB 
instances and found that ant colony system algorithm 

(ACSA) is the best one. Now, we compare our HGA with 
the ACSA (Table 4). 

 

Table 4: Comparative study between our HGA and ACSA for 14 symmetric TSPLIB instances. 

Instance n BKS 
ACSA HGA
BS AS BE(%) AE(%) BS AS BE(%) AE(%) AG(%)

GR48 48 5046 5046 5046.00 0.00 0.00 5046 5046.00 0.00 0.00 0.00 

ATT48 48 10628 10628 10628.00 0.00 0.00 10628 10628.00 0.00 0.00 0.00 

Eil51 51 426 426 426.00 0.00 0.00 426 426.00 0.00 0.00 0.00 

Berlin52 52 7542 7542 7542.00 0.00 0.00 7542 7542.00 0.00 0.00 0.00 

ST70 70 675 675 682.00 0.00 1.04 675 675.00 0.00 0.00 1.04 

Eil76 76 538 538 538.00 0.00 0.00 538 538.00 0.00 0.00 0.00 

KroA100 100 21282 21282 21462.00 0.00 0.85 21282 21292.02 0.00 0.05 0.80 

KroB100 100 22141 22141 22141.00 0.00 0.00 22141 22141.00 0.00 0.00 0.00 

Eil101 101 629 629 636.00 0.00 1.11 629 633.36 0.00 0.69 0.42 

Lin105 105 14379 14379 14384.00 0.00 0.03 14379 14379.00 0.00 0.00 0.03 

KroA150 150 26524 26524 26726.00 0.00 0.76 26524 26613.92 0.00 0.34 0.42 

KroB150 150 26130 26130 26352.00 0.00 0.85 26130 26307.06 0.00 0.68 0.17 

KroA200 200 29368 29451 29883.00 0.28 1.75 29368 29761.78 0.00 1.34 0.41 

KroB200 200 29437 29506 29802.00 0.23 1.24 29437 29561.32 0.00 0.42 0.81 

 

Looking at Table 4, the HGA is observed better than the 
ACSA. Looking at BE(%), the ACSA could find the best 
known solution for twelve instances out of fourteen 
instances, whereas HGA could find best known solution for 
all fourteen instances. Furthermore, looking at AE(%), the 
ACSA could find the best known solution on average for 
six instances, whereas HGA could find best known solution 

on average for eight instances. Finally, looking at AG(%) 
(percentage of average solution gap between ACSA and 
HGA), HGA has achieved minimum 0.03% and maximum 
1.04% of improved solution over ACSA. So, it is confirmed 
that HGA is better than ACSA. The percentage of average 
solution excess by both algorithms are also shown in Figure 
6, which too demonstrates the effectiveness of HGA.  
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5. Conclusion and Future Works 

In this paper, a hybrid GA (HGA) is suggested to obtain 
heuristic solution for the TSP.  In our proposed algorithm, 
comprehensive sequential constructive crossover, adaptive 
mutation, 2-opt search and a local search algorithm along 
with a replacement method were used. First, our HGA is 
compared with simple GA (SGA) for some asymmetric and 
symmetric TSPLIB problem instances. On both types of 
problem instances, our HGA has achieved very good 
improvement over SGA.  The productivity of our HGA is 
very competent, and the algorithm has found high quality 
solutions to the selected problem instances of both 
asymmetric and symmetric types. Finally, we compared our 
HGA with an ant colony system algorithm (ACSA). 
Looking at the comparative study one can conclude that our 
suggested HGA is better than ACSA.  

 
Though our proposed HGA could find best known 

solution at least once in 50 runs for the problem instances 
of size less than 300, however, for the problem instances of 
size more than 300, the proposed algorithm could not touch 
the best known solution. So, using a better initial population 
as well as a better local search algorithm or any other 
heuristic algorithm can provide better solutions, and even 
optimal solutions to the bigger sized problem instances. 
Finally, the proposed algorithm can be applied to other 
variants of the TSP, for example, time-dependent TSP, the 
general TSP, the TSP with backhauls, etc. The execution of 
these ideas would be postponed to our future articles. 
Further, we plan to study this problem using other 
metaheuristic algorithms, like football game algorithm [38], 
etc. 
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