
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

12

Manuscript received March 5, 2024
Manuscript revised March 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.3.2

Optimization of the Travelling Salesman Problem Using a New Hybrid
Genetic Algorithm

Zakir Hussain Ahmed 1,*, Furat Fahad Altukhaim2, Abdul Khader Jilani Saudagar3, and Shakir Khan4

1Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU),
Riyadh 11432, Saudi Arabia.

2Department of Computer Science, Science Departments at Al Quwaiiyah, Shaqra University, Shaqra, Saudi Arabia.
3Information Systems Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

4College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi
Arabia. *Correspondence: zaahmed@imamu.edu.sa

Abstract
The travelling salesman problem is very famous and very difficult
combinatorial optimization problem that has several applications
in operations research, computer science and industrial
engineering. As the problem is difficult, finding its optimal
solution is computationally very difficult. Thus, several
researchers have developed heuristic/metaheuristic algorithms for
finding heuristic solutions to the problem instances. In this present
study, a new hybrid genetic algorithm (HGA) is suggested to find
heuristic solution to the problem. In our HGA we used
comprehensive sequential constructive crossover, adaptive
mutation, 2-opt search and a new local search algorithm along with
a replacement method, then executed our HGA on some standard
TSPLIB problem instances, and finally, we compared our HGA
with simple genetic algorithm and an existing state-of-the-art
method. The experimental studies show the effectiveness of our
proposed HGA for the problem.
Keywords:
Travelling salesman problem; Hybrid genetic algorithm;
Comprehensive sequential constructive crossover; Adaptive
mutation; Local search; Replacement method.

1. Introduction

The travelling salesman problem (TSP) is very famous
and very difficult NP-hard [1] combinatorial optimization
problem (COP). It was first recognized by Euler in 1759 as
the Knights’ tour problem. The problem is defined as: There
is a network consisting of n nodes (or cities) containing the
headquarters at ‘node 1’. For each node-pair (i, j), a distance
(or travel time or travel cost) matrix, D=[dij], is provided.
The problem aims to find a minimum distance (or minimum
cost or minimum time) Hamiltonian cycle (Figure 1) [2].
Asymmetric TSP and symmetric TSP are two major types
of the TSP. If dij = dji, for every node pair (i, j), then the TSP
is symmetric otherwise, the TSP is asymmetric.

The problem has numerous theoretical and practical
applications, such as automatic drilling of PCBs and circuits
[3], scheduling [4], etc. This problem can be solved by exact
and heuristic algorithms. Using basic exact methods, one
has to explore lot of possible solutions to find an optimal

solution. As the possible number of solutions of the problem
is very large in each TSP type, it is very tough problem.
Furthermore, since the TSP can be applied to model
numerous other complicated problems, several researchers
suggested several exact and approximation approaches for
obtaining solution of the problem.

Fig. 1. Examples of sub-optimum solutions for different
TSPs.

Branch-and-bound [5], integer programming [6],
branch-and-cut [7], lexisearch [8] are some exact
algorithms. However, problem instances of size more than
100 can never be solved easily optimally by any exact
approach in a sufficient time, and there are numerous real-
life problem instances of sizes more than 100 are available.
To solve such problem instances, we have to use
heuristic/metaheuristic algorithms. Generally, heuristic
algorithms cannot guarantee that the best obtained solution
is always optimal. Of course, they can obtain solution which
is very close to the optimal solution very quickly. However,
sometimes they obtain a constant solution in each iteration
of the algorithm. So, in that case, it is beneficial to execute
the algorithm using different starting points to find a better
solution, because they may not escape from the local
optimums (Figure 2) and so, get stuck in these local
optimums [9].

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

13

Fig. 2. Local and global optimums in a complex optimization
problem

One of important and advanced versions of heuristic
algorithms are metaheuristic algorithms which have
resemblances with natural or social systems. They are found
to be applied successfully to solve several COPs. Guided by
clients or parameters, they can find very good solutions
within an acceptable computational time, and generally,
they do not get stuck in local optimums. Of course, the
parameters setting is not an easy task and arbitrary
parameter setting plays an important role. Examples of
metaheuristic algorithms for solving the TSP are genetic
algorithm [10], ant colony system [11], tabu search [12],
simulated annealing [13], particle swarm optimization [14],
etc. out of these algorithms, genetic algorithm is supposed
to be better algorithm for the TSP and for the other COPs.

Genetic algorithm (GA) originated from the
evolutionary process of biology. It is supposed to be an
efficient and robust metaheuristic algorithm for solving
large-scale COPs. However, simple GA cannot find optimal
solutions for large-scale problem instances. Hence, many
researchers combined metaheuristic methods to propose
hybrid algorithms to obtain better solutions within very
short time ([15], [16]). In this paper, we are developing a
hybrid genetic algorithm (HGA) for the TSP. First, we plan
to develop simple genetic algorithm (SGA) using
comprehensive sequential constructive crossover [17] and
adaptive mutation [18] for the problem. Then, 2-opt search,
a local search and a replacement method are incorporated
into the SGA for developing a HGA to obtain better
solutions. Effectiveness of the proposed HGA is examined
against ant colony system algorithm [2] to the problem for
some standard TSPLIB instances.

This paper is structured as follows: Section 2 reports a
brief review on the algorithms for the TSP. A hybrid genetic
algorithm is presented in Section 3 for the TSP. Section 4
presents computational experience for our proposed
algorithm. Finally, discussion and concluding remarks are
presented in Section 5.

2. Literature Review

Several exact and heuristic algorithms have been
developed for solving the TSP. Regarding the exact
algorithm, in [19], the TSP was solved by formulating it as
integer programming and then found an optimal solution to
a 42-node problem instance. In [20], a lexisearch algorithm
is developed for obtaining optimal solution to the
asymmetric TSP. It is reported that the algorithm takes
diverse computational times for numerous instances of
same size. In [8], a data-guided lexisearch algorithm is
developed to solve the asymmetric TSP. In [21], a branch
and bound approach based on the assignment relaxation was
developed to solve the TSP instances. In [7], a branch-and-
cut algorithm was developed for solving large-scale
symmetric TSP instances.

Regarding the heuristic algorithm, in [22], an
evolutionary approach was developed to find solution for
the TSP. In [11], ant colony optimization algorithm was
proposed to solve the problem. In [12], a tabu search
algorithm was proposed for the undirected selective TSP. In
[14], a particle swarm optimization algorithm was proposed
to solve the problem. In [9], a simple genetic algorithm
utilizing sequential constructive crossover operator was
developed for obtaining solution to the TSP. In [13], a list-
based simulated annealing algorithm was suggested for the
problem. In [23], a heuristic algorithm based on the
minimum spanning tree is developed for the problem. In
[24[, a discrete spider monkey optimization algorithm,
based on the behavior of monkeys, was proposed to solve
the problem, and compared the algorithm with other
algorithms. In [25], a memetic algorithm using 3-opt
method was developed to find better solution to the problem,
and then compared its results with some state-of-the-art
algorithms. In [26], a discrete grey wolf optimizer algorithm,
based on the behavior of grey wolves, was suggested to
solve the problem. Further, a 2-opt approach was combined
to the algorithm to improve the algorithm and then
compared with some other algorithms. In [27], a Harris
hawk optimization algorithm using the Lin and Kernighan
heuristic, a local search method and Metropolis acceptance
rule was developed to solve the problem, and then solved
some benchmark problem instances. In [28], a colony
optimization algorithm was proposed by combining
searching ants and then compared successfully with the
traditional algorithm. Recently, in [2], a meta-based ant
colony system algorithm was proposed to find solution to
the problem. The algorithm does not apply local pheromone
update but applies global pheromone update. The algorithm
is compared with other algorithms and found effective
results.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

14

3. A Hybrid Genetic Algorithm for the TSP

GA is one of the best heuristic algorithms to solve the
TSP. It originated from the evolutionary process of biology
that imitates the theory of survival of the fittest [10]. The
simple GA starts from a chromosome set, known as initial
population, and then applies three operator- selection,
crossover and mutation, to obtain heuristic solution to the
given problem. Hybrid GA incorporates local search or
other heuristic methods to the simple GA.

3.1 Initial Population and Selection Operator

The TSP solutions are characterized by chromosomes
that are permutation of given nodes. For example, the tour
{1→6→8→7→3→10→2→4→9→ 5 →1} corresponds to
(1, 6, 8, 7, 3, 10, 2, 4, 9, 5) for a 10-node problem instance.
The total distance (or cost) of the tour defines its objective
function, and its multiplicative inverse defines the fitness
function. An initial population of Ps size is generated at
random. To generate a mating pool, the stochastic
remainder selection procedure is applied.

3.2 Crossover Operator

In crossover operation, pair of chromosomes mate to
produce offspring chromosome(s). However, the traditional
crossover operation may not be able to produce valid
offspring chromosomes for the TSP. For the TSP, several
crossover rules are presented in the literature. Some of them
are distance-based and remaining are blind crossover
operators. Distance-based crossover operators use distance
between nodes and blind crossover operators neither use
distances or the problem data to create offspring
chromosome(s). Some common distance-based crossover
operators are greedy crossover [29], heuristic crossover
[30], distance-preserving crossover [31], sequential
constructive crossover (SCX) [32], etc. Some popular blind
crossover operators are partially mapped crossover [33],
ordered crossover [29], cycle crossover [34], etc. In [17], a
comprehensive SCX (CSCX) was proposed by combining
greedy SCX (GSCX) (Algorithm 1) and reverse GSCX
(RGSCX) (Algorithm 2) and compared CSCX with five
other crossover operators. Comparative studies showed the
effectiveness of the CSCX. We consider this CSCSX with
crossover probability, Pc, for our SGA and HGA. Here,
GSCX and RGSCX produce first and second offsprings
respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

15

Let P1: (1, 7, 9, 3, 2, 4, 8, 5, 10, 6) and P2: (1, 6, 3, 9,
4, 5, 7, 8, 2, 10) be parent chromosomes having the
headquarters at ‘node 1’. With respect to the distance
matrix reported in Table 1, total distances of P1 and P2 are
558 and 447 respectively. Using GSCX on P1 and P2, first
offspring O1: (1, 6, 4, 5, 7, 9, 3, 8, 10, 2) with distance 328
can be obtained. The obtained chromosome is further
improved by using 2-opt search method.

Table 1: The Distance matrix

Node 1 2 3 4 5 6 7 8 9 10

1 999 46 54 16 53 12 60 29 54 35

2 46 999 100 56 79 45 75 65 81 32

3 54 100 999 47 65 58 82 48 63 82

4 16 56 47 999 38 12 47 41 38 51

5 53 79 65 38 999 43 18 78 4 85

6 12 45 58 12 43 999 49 41 44 42

7 60 75 82 47 18 49 999 88 21 88

8 29 65 48 41 78 41 88 999 77 38

9 54 81 63 38 4 44 21 77 999 86

10 35 32 82 51 85 42 88 38 86 999

Using RGSCX on the P1 and P2, second offspring O2:
(1, 2, 10, 8, 3, 5, 7, 9, 4, 6, 1) with distance 330 can be
obtained. The obtained chromosome is further improved by
using 2-opt search method.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

16

3.3 Mutation Operator

In mutation operation, a location in a chromosome is
chosen and its value is replaced to produce muted
chromosome. But this traditional mutation operation may
not create valid chromosome for the TSP. For the TSP,
some popular mutation operators are displacement
mutation, exchange mutation, insertion mutation, inversion
mutation, etc. [10]. In [17], an adaptive mutation was
proposed for the quadratic assignment problem. We are
going to apply this adaptive mutation (Algorithm 3) with
mutation probability, Pm, for our SGA and HGA.

3.5 Replacement Method

To further improve our GA search, the population
should be varied, and so, a replacement method is applied.
First an offspring is created using multi-parent sequential
constructive crossover [36], it is then improved using 2-opt
search and finally inserted into the population if the
population is identical. Our hybrid GA is reported in
Algorithm 5.

4. Computational experiments

Our simple GA (SGA) and hybrid GA (HGA) are
encoded in Visual C++ and run on some TSPLIB instances
[37] on a Laptop with Intel(R) Core(TM) i7-1065G7 CPU
@ 1.30GHz and 8.00GB RAM under MS Windows 11. The
following GA parameter values are used: Ps = 100, Pc =
0.95, Pm = 0.15, Maximum generation = 50 for HGA and
Maximum generation = 1500 for SGA. We have performed
the experiments 50 times for each instance. The solution
quality is measured by the percentage of excess (EX(%)) of
the solution (S) to the best known solution (BKS) shown in
[37], by: EX(%) = 100×(S/BKS - 1).

We report the best solution (BS), average solution (AS),
EX(%) of the best solution (BE(%)), and EX(%) of average
solution (AE(%)) over the BKS in 50 runs, standard
deviation (SD) of the obtained solutions in 50 runs,
percentage of improvement of average solution by HGA
over the average solution by SGA (AI(%)). Table 2 reports
comparative study between SGA and HGA for 14
asymmetric TSPLIB problem instances over 50 runs.

Looking at Table 2, the HGA is observed better than the
SGA. Looking at BE(%), the SGA could find the best
known solution for only instance – ftv44, whereas HGA
could find best known solution for all fourteen instances.
Furthermore, looking at AE(%), the SGA could not find the
best known solution on average, whereas HGA could find
best known solution on average for only one instance – p43.
Finally, looking at AI(%), average solution by HGA has
achieved minimum 0.34% of improvement and maximum
11.15% of improvement over SGA. So, it is confirmed that
HGA is the improvement of SGA. The percentage of
average solution excess by both algorithms are also shown
in Figure 3, which demonstrates the effectiveness of HGA.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

17

Also, we compared the solutions obtained by SGA and
HGA in each generation (up to 50 generations) for the

ftv170 instance and it is shown in Figure 4. From this figure
it is also shown that HGA is improved over SGA.

Table 2: Comparative study between SGA and HGA for 14 asymmetric TSPLIB instances.

Instance n BKS
SGA HGA
BS AS SD BE(%) AE(%) BS AS SD BE(%) AE(%) AI(%)

ftv33 34 1286 1314 1365.14 11.33 2.18 6.15 1286 1289.28 23.12 0.00 0.26 5.88
ftv35 36 1473 1497 1518.20 10.88 1.63 3.07 1473 1478.46 5.42 0.00 0.37 2.69

ftv38 39 1530 1548 1585.54 12.51 1.18 3.63 1530 1532.54 4.32 0.00 0.17 3.46

p43 43 5620 5631 5639.04 4.29 0.20 0.34 5620 5620.00 0.00 0.00 0.00 0.34

ftv44 45 1613 1613 1632.64 20.01 0.00 1.22 1613 1615.24 1.54 0.00 0.14 1.08

ftv47 48 1776 1799 1867.22 33.80 1.30 5.14 1776 1793.73 5.22 0.00 1.00 4.10

ry48p 48 14422 14859 15090.70 120.96 3.03 4.64 14422 14550.13 6.23 0.00 0.89 3.72

ft53 53 6905 7529 7793.38 128.28 9.04 12.87 6905 7093.82 11.24 0.00 2.73 9.86

ftv55 56 1608 1620 1663.08 16.87 0.75 3.43 1608 1610.96 2.56 0.00 0.18 3.24

ftv64 65 1839 1862 1891.30 12.92 1.25 2.84 1839 1860.39 6.58 0.00 1.16 1.66

ft70 70 38673 40130 41034.50 457.55 3.77 6.11 38673 39552.01 25.38 0.00 2.27 3.75

ftv70 71 1950 1977 2008.82 16.13 1.38 3.02 1950 1973.46 39.27 0.00 1.20 1.79

kro124p 100 36230 39332 40286.04 458.39 8.56 11.20 36230 37116.79 132.54 0.00 2.45 8.54

ftv170 171 2755 3120 3216.04 46.47 13.25 16.73 2755 2893.32 59.87 0.00 5.02 11.15

0.00

5.00

10.00

15.00

20.00

A
ve

ra
g
e

Ex
ce

ss
(%

)

Instances
Fig. 3. Average Excess(%) by SGA and HGA for some asymmetric TSPLIB instances

SGA HGA

0

5000

10000

15000

20000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

So
lu

ti
o
n
s

Generations

Fig. 4. Solutions obtained by SGA and HGA in each generation for the ftv170 instance

SGA HGA

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

18

Manuscript received March 5, 2024
Manuscript revised March 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.3.2

We further compare SGA and HGA for the symmetric
TSPLIB instances. Table 3 reports comparative study
between SGA and HGA for 14 symmetric TSPLIB problem
instances over 50 runs.

Table 3: Comparative study between SGA and HGA for 14 symmetric TSPLIB instances.

Instance n BKS
SGA HGA
BS AS SD BE(%) AE(%) BS AS SD BE(%) AE(%) AI(%)

gr21 21 2707 2707 2707.00 0.00 0.00 0.00 2707 2707.00 0.00 0.00 0.00 0.00

fri26 26 937 937 937.00 0.00 0.00 0.00 937 937.00 0.00 0.00 0.00 0.00

bayg29 29 1610 1610 1620.40 4.02 0.00 0.65 1610 1610.00 0.00 0.00 0.00 0.65

dantzig42 42 699 699 699.50 1.51 0.00 0.07 699 699.00 0.00 0.00 0.00 0.07

eil51 51 426 426 427.80 0.63 0.00 0.42 426 426.00 0.00 0.00 0.00 0.42

berlin52 52 7542 7542 7622.71 44.30 0.00 1.07 7542 7542.00 0.00 0.00 0.00 1.07

pr76 76 108159 112050 114277.83 797.23 3.60 5.66 108159 108187.02 89.33 0.00 0.03 5.63

lin105 105 14379 15493 15959.42 98.82 7.75 10.99 14379 14379.00 0.00 0.00 0.00 10.99

pr226 226 80369 89708 90430.06 446.69 11.62 12.52 80369 80920.23 185.48 0.00 0.69 11.75

gil262 262 2378 2612 2723.12 42.12 9.84 14.51 2378 2423.56 107.26 0.00 1.92 12.36

a280 280 2579 2884 2980.23 48.32 11.83 15.56 2579 2617.32 152.02 0.00 1.49 13.87

pr299 299 48191 54230 57120.08 917.27 12.53 18.53 48579 49060.45 198.47 0.81 1.80 16.43

lin318 318 42029 47738 49738.23 480.47 13.58 18.34 42415 42939.78 165.32 0.92 2.17 15.83

gr431 431 171414 195843 204807.66 3481.06 14.25 19.48 173132 175997.02 395.67 1.00 2.67 16.37

Looking at Table 3, the HGA is observed better than the
SGA. Looking at BE(%), the SGA could find the best
known solution for six instances – gr21, fri26, bayg29,
dantzig42, eil51 and berlin52, whereas HGA could find best
known solution for all fourteen instances. Furthermore,
looking at AE(%), the SGA could find the best known
solution on average for two instances, whereas HGA could
find best known solution on average for seven instances.
Finally, looking at AI(%), for two instances, SGA and HGA
could find optimal and same solutions and for the remaining

instances, average solution by HGA has achieved minimum
0.07% of improvement and maximum 16.43% of
improvement over SGA. So, it is confirmed that HGA is the
improvement of SGA for symmetric instances also. The
percentage of average solution excess by both algorithms
are also shown in Figure 5, which too demonstrates the
effectiveness of our proposed HGA. By looking at the
figure it is very clear that as the size of the problem instance
increases the average improvement by the HGA also
increases.

In [2],

0

5

10

15

20

25

A
ve

ra
g
e

Ex
ce

ss
(%

)

Instances

Fig. 5. Average Excess(%) by SGA and HGA for some symmetric TSPLIB instances

SGA HGA

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

19

In [2], a comparative study among eight different

algorithms was presented on some symmetric TSPLIB
instances and found that ant colony system algorithm

(ACSA) is the best one. Now, we compare our HGA with
the ACSA (Table 4).

Table 4: Comparative study between our HGA and ACSA for 14 symmetric TSPLIB instances.

Instance n BKS
ACSA HGA
BS AS BE(%) AE(%) BS AS BE(%) AE(%) AG(%)

GR48 48 5046 5046 5046.00 0.00 0.00 5046 5046.00 0.00 0.00 0.00

ATT48 48 10628 10628 10628.00 0.00 0.00 10628 10628.00 0.00 0.00 0.00

Eil51 51 426 426 426.00 0.00 0.00 426 426.00 0.00 0.00 0.00

Berlin52 52 7542 7542 7542.00 0.00 0.00 7542 7542.00 0.00 0.00 0.00

ST70 70 675 675 682.00 0.00 1.04 675 675.00 0.00 0.00 1.04

Eil76 76 538 538 538.00 0.00 0.00 538 538.00 0.00 0.00 0.00

KroA100 100 21282 21282 21462.00 0.00 0.85 21282 21292.02 0.00 0.05 0.80

KroB100 100 22141 22141 22141.00 0.00 0.00 22141 22141.00 0.00 0.00 0.00

Eil101 101 629 629 636.00 0.00 1.11 629 633.36 0.00 0.69 0.42

Lin105 105 14379 14379 14384.00 0.00 0.03 14379 14379.00 0.00 0.00 0.03

KroA150 150 26524 26524 26726.00 0.00 0.76 26524 26613.92 0.00 0.34 0.42

KroB150 150 26130 26130 26352.00 0.00 0.85 26130 26307.06 0.00 0.68 0.17

KroA200 200 29368 29451 29883.00 0.28 1.75 29368 29761.78 0.00 1.34 0.41

KroB200 200 29437 29506 29802.00 0.23 1.24 29437 29561.32 0.00 0.42 0.81

Looking at Table 4, the HGA is observed better than the
ACSA. Looking at BE(%), the ACSA could find the best
known solution for twelve instances out of fourteen
instances, whereas HGA could find best known solution for
all fourteen instances. Furthermore, looking at AE(%), the
ACSA could find the best known solution on average for
six instances, whereas HGA could find best known solution

on average for eight instances. Finally, looking at AG(%)
(percentage of average solution gap between ACSA and
HGA), HGA has achieved minimum 0.03% and maximum
1.04% of improved solution over ACSA. So, it is confirmed
that HGA is better than ACSA. The percentage of average
solution excess by both algorithms are also shown in Figure
6, which too demonstrates the effectiveness of HGA.

0

0.5

1

1.5

2

A
ve

ra
g
e

Ex
ce

ss
(%

)

Instances

Fig. 6. Average Excess(%) by ACSA and HGA for some symmetric TSPLIB instances

ACSA HGA

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

20

5. Conclusion and Future Works

In this paper, a hybrid GA (HGA) is suggested to obtain
heuristic solution for the TSP. In our proposed algorithm,
comprehensive sequential constructive crossover, adaptive
mutation, 2-opt search and a local search algorithm along
with a replacement method were used. First, our HGA is
compared with simple GA (SGA) for some asymmetric and
symmetric TSPLIB problem instances. On both types of
problem instances, our HGA has achieved very good
improvement over SGA. The productivity of our HGA is
very competent, and the algorithm has found high quality
solutions to the selected problem instances of both
asymmetric and symmetric types. Finally, we compared our
HGA with an ant colony system algorithm (ACSA).
Looking at the comparative study one can conclude that our
suggested HGA is better than ACSA.

Though our proposed HGA could find best known

solution at least once in 50 runs for the problem instances
of size less than 300, however, for the problem instances of
size more than 300, the proposed algorithm could not touch
the best known solution. So, using a better initial population
as well as a better local search algorithm or any other
heuristic algorithm can provide better solutions, and even
optimal solutions to the bigger sized problem instances.
Finally, the proposed algorithm can be applied to other
variants of the TSP, for example, time-dependent TSP, the
general TSP, the TSP with backhauls, etc. The execution of
these ideas would be postponed to our future articles.
Further, we plan to study this problem using other
metaheuristic algorithms, like football game algorithm [38],
etc.

Conflicts of interests

All authors declare that they have no conflicts of financial
interests regarding the publication of this paper.

Data Availability

The data used to support the findings of this study is
available at the website:
http://www.iwr.uni-heidelberg.de/groups/comopt/software
/TSPLIB95/tsp.

Acknowledgement

The authors extend their appreciation to the Deanship of
Scientific Research, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Saudi Arabia, for funding this research
work through Grant No. (221412020).

References

[1]. Arora S. (1998). Polynomial time approximation schemes
for Euclidean traveling salesman and other geometric
problems, Journal of ACM, 45(5), pp. 753–782.

[2]. Ahmed ZH, Yousefikhoshbakht M, Saudagar AK, and
Khan S. (2023). Solving travelling salesman problem
using an ant colony system algorithm, International
Journal of Computer Science and Network Security, 23(2),
pp. 55-64.

[3]. Ravikumar CP. (1992). Solving large-scale travelling
salesperson problems on parallel machines,
Microprocessors and Microsystems, 16(3), pp. 149-158.

[4]. Su F, Kong L, Wang H, and Wen Z. (2021). Modeling and
application for rolling scheduling problem based on TSP,
Applied Mathematics and Computation, 407, 126333.

[5]. Little JDC, Murthy KG, Sweeny DW, and Karel C. (1963).
An algorithm for the travelling salesman problem,
Operations Research, 11, pp. 972-989.

[6]. Sherali HD, Sarin SC, and Tsai Pei-F. (2006). A class of
lifted path and flow-based formulations for the asymmetric
traveling salesman problem with and without precedence
constraints, Discrete Optimization, 3 , pp. 20-32.

[7]. Padberg M, and Rinaldi G. (1991). A branch-and-cut
algorithm for the resolution of large-scale symmetric
traveling salesman problems, SIAM Review, 33(1), pp. 60–
100.

[8]. Ahmed ZH. (2011). A data-guided lexisearch algorithm
for the asymmetric traveling salesman problem,
Mathematical Problems in Engineering, 2011, Article ID
750968, 18 pages.

[9]. Ahmed ZH. (2010). Genetic algorithm for the traveling
salesman problem using sequential constructive crossover
operator, International Journal of Biometrics and
Bioinformatics, 6(3), 96-105.

[10]. Goldberg DE. (1989). Genetic algorithms in search,
optimization, and machine learning, Addison-Wesley,
New York.

[11]. Dorigo M, and Gambardella LM. (1997). Ant colonies for
the traveling salesman problem, Biosystems, 43(2), pp. 73–
81.

[12]. Gendreau M, Laporte G, and Semet F. (1998). A tabu
search heuristic for the undirected selective travelling
salesman problem, European Journal of Operational
Research, 106(2–3), pp. 539-545.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

21

[13]. Zhan S-H, Lin J, Zhang Z-J, and Zhong Y-W. (2016). List-
based simulated annealing algorithm for traveling
salesman problem, Computational Intelligence and
Neuroscience, 2016, Article ID 1712630, 12 pages.

[14]. Wang K-P, Huang L, Zhou C-G, and Pang W. (2003).
Particle swarm optimization for traveling salesman
problem, Proceedings of the 2003 International
Conference on Machine Learning and Cybernetics (IEEE
Cat. No.03EX693), Xi'an, 3, pp. 1583-1585.

[15]. Ahmed ZH. (2014). The ordered clustered travelling
salesman problem: A hybrid genetic algorithm, The
Scientific World Journal, 2014, Article ID 258207, 13
pages.

[16]. Ahmed ZH. (2018). A hybrid algorithm combining
lexisearch and genetic algorithms for the quadratic
assignment problem, Cogent engineering, 5(1), Article No.
1423743.

[17]. Ahmed ZH. (2020). Genetic algorithm with
comprehensive sequential constructive crossover for the
travelling salesman problem, International Journal of
Advanced Computer Science and Applications(IJACSA),
11(5), pp. 245-254.

[18]. Ahmed ZH. (2014). An improved genetic algorithm using
adaptive mutation operator for the quadratic assignment
problem, Proceedings of 37th International Conference on
Telecommunications and Signal Processing 2014 (TSP
2014), Berlin, Germany, pp. 616-620.

[19]. Dantzig GB, Fulkerson DR, and Johnson SM. (1954).
Solution of a Large-scale Travelling Salesman Problem,
Operations Research, 2, pp. 393-410.

[20]. Pandit SNN. (1964). An Intelligent approach to Travelling
Salesman Problem, Symposium in Operations Research,
Khragpur: Indian Institute of Technology.

[21]. Balas E, and Tooth P. (1992). Branch and Bound method.
In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.,
Shmoys, D.B. (Eds.). The Travelling Salesman Problem.
New York: Wiley, pp. 361-402.

[22]. Fogel DB. (1988). An evolutionary approach to the
travelling salesman problem, Biological Cybernetics,
60(2), pp. 139-144.

[23]. Kumar S, Munapo E, Lesaoana M, and Nyamugure P.
(2018). A minimum spanning tree based heuristic for the
travelling salesman tour, Opsearch, 55, pp. 150–164.

[24]. Akhand MAH, Ayon SI, Shahriyar SA, Siddique N, and
Adeli H. (2019). Discrete spider monkey optimization for
travelling salesman problem, Applied Soft Computing, 86,
105887.

[25]. Eremeev AV, and Kovalenko YV. (2020). A memetic
algorithm with optimal recombination for the asymmetric
travelling salesman problem, Memetic Computing, 12, pp.
23–36.

[26]. Panwar K, and Deep K. (2021). Discrete grey wolf
optimizer for symmetric travelling salesman problem,
Applied Soft Computing, 105, pp. 1–12.

[27]. Gharehchopogh FS, and Abdollahzadeh B. (2022). An
efficient harris hawk optimization algorithm for solving
the travelling salesman problem, Cluster Computing, 25,
pp. 1981–2005.

[28]. Gao W. (2020). New ant colony optimization algorithm for
travelling salesman problem, International Journal of
Computing and Intelligence System, 13, pp. 44–55.

[29]. Davis L. (1985). Job-shop scheduling with genetic
algorithms, Proceedings of an International Conference
on Genetic Algorithms and Their Applications, pp. 136-
140.

[30]. Grefenstette JJ. (1987). Incorporating problem specific
knowledge into genetic algorithms, In L. Davis (Ed.),
Genetic algorithms and simulated annealing, London, UK:
Pitman / Pearson, pp. 42–60.

[31]. Freisleben B, and Merz P. (1996). A genetic local search
algorithm for solving symmetric and asymmetric traveling
salesman problems, in Proceedings of the 1996 IEEE
International Conference on Evolutionary Computation,
Nagoya, Japan, pp.616-621.

[32]. Ahmed ZH. (2014). Improved genetic algorithms for the
traveling salesman problem, International Journal of
Process Management and Benchmarking, 4(1), pp. 109-
124.

[33]. Goldberg DE, and Lingle R. (1985). Alleles, loci and the
travelling salesman problem, In J.J. Grefenstette (ed.)
Proceedings of the 1st International Conference on
Genetic Algorithms and Their Applications, Lawrence
Erlbaum Associates, Hilladale, NJ.

[34]. Oliver IM, Smith DJ, and Holland JRC. (1987). A study of
permutation crossover operators on the travelling salesman
problem, In J.J. Grefenstette (ed.). Genetic Algorithms and
Their Applications: Proceedings of the 2nd International
Conference on Genetic Algorithms, Lawrence Erlbaum
Associates, Hilladale, NJ.

[35]. Ahmed ZH (2010). A hybrid sequential constructive
sampling algorithm for the bottleneck traveling salesman
problem, International Journal of Computing and
Intelligence Research, 6 , pp. 475-484.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.3, March 2024

22

[36]. Ahmed ZH. (2015). A multi-parent genetic algorithm for
the quadratic assignment problem, Opsearch, 52, pp. 714-
7325.

[37]. Reinelt G. (1991). TSPLIB—A traveling salesman
problem library, ORSA Journal on Computing, 3(4), pp.
376-384. (http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/ Accessed on 20th
December 2023)

[38]. Ahmed ZH, Maleki F, Yousefikhoshbakht M, and Haron
H. (2023). Solving the vehicle routing problem with time
windows using modified football game algorithm,
Egyptian Informatics Journal, 24(4), 100403.

