
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024 
 

 

 

44

Manuscript received April 5, 2024 
Manuscript revised April 20, 2024 
https://doi.org/10.22937/IJCSNS.2024.24.4.5 

 

Matrix Formation in Univariate and Multivariate General 
Linear Models 

 
Arwa A. Alkhalaf a 

 

a Measurement, Evaluation and Research Methodology 
Department of Psychology, Faculty of Education 

King Abdulaziz University, Jeddah, KSA 
 
 
Abstract 
This paper offers an overview of matrix formation and 
calculation techniques within the framework of General Linear 
Models (GLMs). It takes a sequential approach, beginning with 
a detailed exploration of matrix formation and calculation 
methods in regression analysis and univariate analysis of 
variance (ANOVA). Subsequently, it extends the discussion to 
cover multivariate analysis of variance (MANOVA). The 
primary objective of this study was to provide a clear and 
accessible explanation of the underlying matrices that play a 
crucial role in GLMs. Through linking, essentially different 
statistical methods, by fundamental principles and algebraic 
foundations that underpin the GLM estimation. Insights 
presented here aim to assist researchers, statisticians, and data 
analysts in enhancing their understanding of GLMs and their 
practical implementation in diverse research domains. This 
paper contributes to a better comprehension of the matrix-based 
techniques that can be extended to GLMs.  
Keywords 
Matrix formation, General Linear Models, Univariate Analysis 
of Variance (ANOVA), Multivariate Analysis of Variance 
(MANOVA) 

 
1. Introduction 
 
 Modeling refers to the development of 
mathematical expressions that explains the behavior 
of a random variable of interest. It is aimed at 
describing how the mean of a dependent variable 
changes with changing conditions [1]. General linear 
modeling (GLM) involves solving algebraic 
equations that are complex, which can be 
conceptually simplified with the use of geometry [2]. 
Matrix formation of general linear models provides 
for easier and understandable calculations for large 
models and samples. This paper aims at summarizing 
the matrix formation and calculation of general linear 
models; starting with the regression and univariate 
analysis of variance approaches then multivariate 
analysis of variance. 

The simplest linear model involves only one 
independent variable and states that the true mean of 
the dependent variable (Y) changes at a constant rate 

as the value of the independent variable (X) changes. 
The difference of an observation (Yi) from its 
population mean E(Y) is taken into account by 
adding a random error (e). The functional 
relationship between the dependent variable Y, and 
independent variable X is the equation of a straight 
line, shown in Eq. (1). 

 
Eq(1):       𝒀 ൌ  𝜷𝟎 ൅  𝜷𝟏 𝑿 ൅ 𝒆 
 

Most models will use more than one 
independent variable to explain the behavior of the 
dependent variable. The linear model can be 
extended to include any number of independent 
variables, shown in Eq. (2). 

 
Eq(2): 𝒀 ൌ 𝜷𝟎 ൅ 𝜷𝟏𝑿𝟏 ൅ 𝜷𝟐𝑿𝟐 ൅ 𝜷𝟑𝑿𝟑൅. . .൅𝜷𝒑𝑿𝒑 ൅ 𝒆 

 
The subscript notation on each X and β 

denote each independent variable and its regression 
coefficient. There are p independent variables and p 
+ 1 parameters to be estimated. The least squares 
method of estimation requires that estimates of the p 
+ 1 parameters are minimized, shown in Eq. (3).  

 

Eq(3): 𝑺𝑺𝑹𝒆𝒔 ൌ  ∑𝒆𝒊
𝟐 ൌ ∑൫𝒀𝒊 െ  𝒀෡𝒊൯

𝟐
ൌ  ∑൫𝒀𝒊 െ 𝜷𝟎 െ

 𝜷𝟏 𝑿𝟏 െ  𝜷𝟐 𝑿𝟐 െ  𝜷𝟑 𝑿𝟑െ . . .െ 𝜷𝒑 𝑿𝒑൯
𝟐
  

 
The estimated values of the parameter that 

minimize sums of squares of the residuals, denoted  
(SSRes), are obtained by derivation of SSRes with 
respect to each β in turn equal to zero. This gives p + 
1 normal equations that must be solved 
simultaneously to obtain the least squares estimates 
of the parameters [1]. In the simplest form of a 
multiple linear model with two independent 
variables three equations must be solved 
simultaneously to obtain the estimates of β0, β1, and 
β2, shown in Eq. (4-6). 
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Eq(4): 

𝝏 𝑺𝑺𝑹𝒆𝒔
𝝏𝜷𝟎

ൌ െ𝟐෍ሺ𝒀𝒊 െ 𝜷𝟎 െ 𝜷𝟏𝑿𝟏 െ 𝜷𝟐𝑿𝟐ሻ
𝒏

𝒊ୀ𝟏

ൌ 𝟎 

 ෍𝒀𝒊

𝒏

𝒊ୀ𝟏

ൌ 𝒏𝜷𝟎 ൅  𝜷𝟏  ෍𝑿𝟏

𝒏

𝒊ୀ𝟏

൅  𝜷𝟐  ෍𝑿𝟐

𝒏

𝒊ୀ𝟏

 

 
 
Eq(5): 

𝝏 𝑺𝑺𝑹𝒆𝒔
𝝏𝜷𝟏

ൌ െ𝟐෍ሺ𝒀𝒊 െ 𝜷𝟎 െ 𝜷𝟏𝑿𝟏 െ 𝜷𝟐𝑿𝟐ሻ
𝒏

𝒊ୀ𝟏

𝑿𝟏 ൌ 𝟎 

෍𝑿𝟏𝒀𝒊

𝒏

𝒊ୀ𝟏

ൌ 𝜷𝟎  ෍𝑿𝟏

𝒏

𝒊ୀ𝟏

൅  𝜷𝟏  ෍𝑿𝟏
𝟐

𝒏

𝒊ୀ𝟏

൅  𝜷𝟐  ෍𝑿𝟏𝑿𝟐

𝒏

𝒊ୀ𝟏

 

 
 
Eq(6): 

𝝏 𝑺𝑺𝑹𝒆𝒔
𝝏𝜷𝟐

ൌ െ𝟐෍ሺ𝒀𝒊 െ 𝜷𝟎 െ 𝜷𝟏𝑿𝟏 െ 𝜷𝟐𝑿𝟐ሻ
𝒏

𝒊ୀ𝟏

𝑿𝟐 ൌ 𝟎 

෍𝑿𝟏𝒀𝒊

𝒏

𝒊ୀ𝟏

ൌ 𝜷𝟎  ෍𝑿𝟏

𝒏

𝒊ୀ𝟏

൅  𝜷𝟏  ෍𝑿𝟏𝑿𝟐

𝒏

𝒊ୀ𝟏

൅  𝜷𝟐  ෍𝑿𝟐
𝟐

𝒏

𝒊ୀ𝟏

 

 
It is clear that estimating parameters through 

algebraic methods becomes increasingly difficult as 
the number of dependent and independent variables 
increases. For this reason, matrices are used to 
estimate parameters in complicated general linear 
models.  

 
2. Matrices in Regression 
  

Regression provides the basic machinery that 
all general linear models are based upon. Four 
matrices are needed to express the regression model: 
1) the observed dependent variable matrix, which is 
a n × 1 column vector, 2) the observed independent 
variable, which is a n × p+1 matrix where the first 
column consists of ones, 3) the parameters β matrix, 
which is a p+1 × 1 column vector, and 4) the n × 1 
column vector of random errors. The linear model 
can be written as shown in Eq. (7). 
 
 
 
 
 
 
 
 

 
Eq(7): 
𝒀 ൌ 𝑿 𝜷 ൅ 𝑬 

⎣
⎢
⎢
⎢
⎡
𝒚𝒊
𝒚𝟐
⋮
𝒚𝒊
⋮
𝒚𝒏⎦
⎥
⎥
⎥
⎤

ൌ  

⎣
⎢
⎢
⎢
⎢
⎡𝟏
𝟏
⋮
𝟏
⋮
𝟏

𝒙𝟏𝟏
𝒙𝟐𝟏
⋮
𝒙𝒊𝟏
⋮
𝒙𝒏𝟏

𝒙𝟏𝟐
𝒙𝟐𝟐
⋮
𝒙𝒊𝟐
⋮
𝒙𝒏𝟐

𝒙𝟏𝟑
𝒙𝟐𝟑
⋮
𝒙𝒊𝟑
⋮
𝒙𝒏𝟑

…
…
⋮
…
⋮
⋯

𝒙𝟏𝒑
𝒙𝟐𝒑
⋮
𝒙𝒊𝒑
⋮
𝒙𝒏𝒑⎦

⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎡
𝒃𝟎
𝒃𝟏
⋮
𝒃𝒊
⋮
𝒃𝒏⎦
⎥
⎥
⎥
⎥
⎤

൅  

⎣
⎢
⎢
⎢
⎢
⎡
𝒆𝟏
𝒆𝟐
⋮
𝒆𝒊
⋮
𝒆𝒏⎦
⎥
⎥
⎥
⎥
⎤

 

 
Each column of X contains the values for an 

independent variable. The elements of a row of X are 
the coefficients on the corresponding parameters in 
β. The ordinary least square (OLS) estimate B of β 
minimizes SSRes, such that under OLS assumptions it 
can simply be proved that 𝐵 ൌ  ሺ𝑋′𝑋ሻିଵ𝑋′𝑌. Using 
simple matrix calculations the B matrix elements can 
be estimated. By looking at the elements of X’X and 
X’Y. Equation (8) illustrates how each row 
corresponds to its estimated parameter, and Eq. (9-
10) shows the OLS equivalent. In simple regression 
the first row corresponds to B1 parameter, and is 

equal to  
∑ ሺ𝒙𝒊𝟏ି𝒙𝟏ሻሺ𝒚𝒊ି𝒀ഥሻ
𝒏
𝒊స𝟏

∑ ሺ𝒙𝒊𝟏ି𝒙𝟏ሻ𝟐
𝒏
𝒊స𝟏

 . 

 
Eq(8): 
𝑿ᇱ𝑿 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝒏 ∑𝒙𝒊𝟏 ∑ 𝒙𝒊𝟐 … ∑𝒙𝒊𝒋 … ∑𝒙𝒊𝒑

∑𝒙𝒊𝟏 ∑𝒙𝒊𝟏
𝟐 ∑ 𝒙𝒊𝟏𝒙𝒊𝟐 … ∑𝒙𝒊𝟏𝒙𝒊𝒋 … ∑𝒙𝒊𝟏𝒙𝒊𝒑

∑𝒙𝒊𝟐 ∑𝒙𝒊𝟏𝒙𝒊𝟐 ∑ 𝒙𝒊𝟐
𝟐 … ∑𝒙𝒊𝟐𝒙𝒊𝒋 … ∑𝒙𝒊𝟐𝒙𝒊𝒑

⋮ ⋮ ⋮ … ⋮ … ⋮
∑𝒙𝒊𝒋 ⋮ ⋮ … ∑𝒙𝒊𝒋

𝟐 … ∑𝒙𝒊𝒋𝒙𝒊𝒑
⋮ ⋮ ⋮ … ⋮ … ⋮

∑ 𝒙𝒑 … … … … … ∑𝒙𝒑𝟐 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 

𝑿ᇱ𝒀 ൌ  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
∑𝒚𝒊
∑𝒙𝒊𝟏𝒚𝒊
∑𝒙𝒊𝟐𝒚𝒊

⋮
∑ 𝒙𝒊𝒋𝒚𝒊

⋮
∑ 𝒙𝒊𝒑𝒚𝒊⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 
Eq(9): 
𝑿ᇱ𝑿 ൌ

 

⎣
⎢
⎢
⎢
⎡𝒏 ∑ሺ𝒙𝒊𝟏 െ 𝒙𝟏ሻ … ∑൫𝒙𝒊𝒑 െ 𝒙𝒑൯

∑ሺ𝒙𝒊𝟏 െ 𝒙𝟏ሻ ∑ሺ𝒙𝒊𝟏 െ 𝒙𝟏ሻ𝟐 … ∑ሺ𝒙𝒊𝟏 െ 𝒙𝟏ሻ൫𝒙𝒊𝒑 െ 𝒙𝒑൯
⋮ ⋮ … ⋮
∑൫𝒙𝒊𝒑 െ 𝒙𝒑൯ ∑ሺ𝒙𝒊𝟏 െ 𝒙𝟏ሻ൫𝒙𝒊𝒑 െ 𝒙𝒑൯ … ∑൫𝒙𝒊𝒑 െ 𝒙𝒑൯

𝟐
⎦
⎥
⎥
⎥
⎤
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Eq(10): 

 𝑿ᇱ𝒀 ൌ  

⎣
⎢
⎢
⎡
∑ሺ𝒚𝒊 െ 𝒀ഥሻ
∑ሺ𝒙𝒊𝟏 െ 𝒙𝟏ሻሺ𝒚𝒊 െ 𝒀ഥሻ
⋮
∑൫𝒙𝒊𝒑 െ 𝒙𝒑൯ሺ𝒚𝟏 െ 𝒀ഥሻ⎦

⎥
⎥
⎤
 

 
3. Matrices in univariate analysis of variance 

(ANOVA) 
Understanding regression facilitates 

transition to univariate and multivariate analysis of 
variance. The general linear model does not change 
with the change of the experiment design, where it is 
comprised of Data = Model + Error [3]. However, 
the research questions determine the type of analysis 
that is best suited for a study. Univariate analysis of 
variance builds on the regression matrix equation 
with one major difference. The independent 
variables in regression should include at least one 
continuous variable [4], whereas in analysis of 
variance the independent variable is a constructed 
matrix that determines group inclusion. 

In multiple regressions, a number of models 
that include different sets of variables are compared. 
Analysis of variance (ANOVA) is used to understand 
the variability in the models and choose the best 
fitting model. ANOVA in regression compares two 
models, the first with the complete set of independent 
variables (Y=XB+E) to a model with no independent 
variables (the intercept-only model Y=B0) [4]. Table 
1 shows the ANOVA in matrix formation. 

 
Table 1. ANOVA table in matrix form. 
 

 
Sum of 
Squares 
(SS) 

Degrees 
of 
Freedom 

Mean 
Square 
(MS) 

F 
Statistic 

SSreg
a 

𝐵ᇱ𝑋ᇱ𝑌

െ ൬
1
𝑛
൰𝑌′𝑌 

𝑝 െ 1 
𝑀𝑆௥௘௚

ൌ
𝑆𝑆௥௘௚
𝑝 െ 1

 

𝑀𝑆௥௘௚
𝑀𝑆௘

 SSE 
𝑌ᇱ𝑌
െ 𝐵′𝑋′𝑌 

𝑛 െ 𝑝 
𝑀𝑆௘

ൌ
𝑆𝑆௘
𝑛 െ 𝑝

 
SStotal 

𝑌ᇱ𝑌

െ ൬
1
𝑛
൰𝑌′𝑌 

𝑛 െ 1 

a Table notations: reg (between subjects), E (within 
subjects), total (total subjects), p (number of groups), n 
(sample size) 

  

ANOVA with two factors is modeled as Yij 
=μ +α+ β+ αβ +eij, where α is the mean for effect of 
level i of factor A such that i = 1,2,3, … , a (if there 
are a levels of factor A), β is the mean for effect of 
level j of factor B such that  j= 1, 2, 3,…, b ( if that 
are b levels of factor B), and μ is the grand mean or 
the intercept. In ANOVA we are interested in the 
contribution of all levels of both factors on any given 
observation. The design matrix is the means of which 
we are able to model ANOVA levels, and compare 
means all the while using the general linear model.  

We can recall the matrix notation of multiple 
regression, Y = Xβ + E. In ANOVA, Y is the 
observations column vector, X represents the design 
matrix, β is the mean column vector that includes the 
means for each level of each factor, and E is the 
column vector representing the difference between 
the observed and predicted scores. This makes the 
calculations for any size ANOVA simple. Table 2 
shows an example of a 2 by 3 factorial ANOVA with 
2 subjects (Yi) in each cell. 

Table 2. Example of a 2 by 3 factorial ANOVA. 

 A1 A2 A3 

B1 Y1, Y2 Y3, Y4 Y5,Y6 

B2 Y7, Y8 Y9, Y10 Y11, Y12 

 

The design matrix is essential in 
understanding matrix formation in univariate 
ANOVA. The design matrix can be represented in 
many different forms depending on the method of 
coding that is used (i.e. dummy, contrast or effect 
coding). The results of the analysis do not change 
with different coding systems, however the 
interpretation of the results must be reflective of the 
type of coding [5]. For this specific example, the 
integral role of  dummy coding on the linear variation 
of ANOVA is demonstrated, where factor A has two 
levels and factor B has one level. The vectors in the 
matrix shown in Eq. (11) are denoted as following, 
Yi is the observed dependent variable vector, X0 is 
the vector for the grand mean or the constant of the 
linear model, X1 is the dummy code vector for B, X2 

is the dummy code vector for level 1 for A (A1), X3 
is the dummy code vector for level 2 for A (A2), X4 
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is the dummy code vector for the interaction between 
B and level 1 for A (BA1), and X5 is the dummy code 
vector for the interaction between B and level 2 for 
A (BA2).  

Eq(11): 

Y=X+E 

ሾ𝒀𝒊ሿ ൌ ሾ𝑿𝟎 𝑿𝟏 𝑿𝟐    𝑿𝟑 𝑿𝟒 𝑿𝟓ሿ  ሾ𝜷ሿ  ൅ ሾ𝑬ሿ 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝒀𝟏
𝒀𝟐
𝒀𝟑
𝒀𝟒
𝒀𝟓
𝒀𝟔
𝒀𝟕
𝒀𝟖
𝒀𝟗
𝒀𝟏𝟎
𝒀𝟏𝟏
𝒀𝟏𝟐⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝟏 𝟏 𝟏 𝟎 𝟏 𝟎
𝟏 𝟏 𝟏 𝟎 𝟏 𝟎
𝟏 𝟏 𝟎 𝟏 𝟎 𝟏
𝟏 𝟏 𝟎 𝟏 𝟎 𝟏
𝟏 𝟏 െ𝟏 െ𝟏 െ𝟏 െ𝟏
𝟏 𝟏 െ𝟏 െ𝟏 െ𝟏 െ𝟏
𝟏 െ𝟏 𝟏 𝟎 െ𝟏 𝟎
𝟏 െ𝟏 𝟏 𝟎 െ𝟏 𝟎
𝟏 െ𝟏 𝟎 𝟏 𝟎 െ𝟏
𝟏 െ𝟏 𝟎 𝟏 𝟎 െ𝟏
𝟏 െ𝟏 െ𝟏 െ𝟏 െ𝟏 𝟏
𝟏 െ𝟏 െ𝟏 െ𝟏 െ𝟏 𝟏⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝝁
𝑩
𝑨𝟏
𝑨𝟐
𝑩𝑨𝟏
𝑩𝑨𝟐⎦

⎥
⎥
⎥
⎥
⎤

൅

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑬𝟏
𝑬𝟐
𝑬𝟑
𝑬𝟒
𝑬𝟓
𝑬𝟔
𝑬𝟕
𝑬𝟖
𝑬𝟗
𝑬𝟏𝟎
𝑬𝟏𝟏
𝑬𝟏𝟐⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

From Table 1 we know how SS between 
subjects (corresponds to SSreg) and SS within 
subjects (corresponds to SSE)  are calculated in 
matrix form. However, the matrix formation in 
regression needs a little more adjustment to be 
applied in ANOVA. Most importantly, the 
regression matrix formation does not distinguish 
proportions of the effect that are attributable to A, B, 
or their interaction. To calculate the contribution of 
the variance for each effect through matrices, we 
recalculate the regression for 3 reduced models [4]. 
The reduced models are calculated by dropping 
certain columns in the design matrix to produce a 
new design matrix that is a subset of the original one. 
Because of that the corresponding predictors will not 
be calculated. For example, if we dropped the 
interaction columns, shown in Eq. (11), BA1 and BA2, 
we would be deleting the predictors containing 
information about the interaction but keeping the 
predictors and sources of variance SSAB between 
factors A and B. Similarly by dropping the B 
columns, parameters and sources of variance SSB & 

BA between factors A and interaction BA will be 
estimated; and by dropping A parameters related to 
B and BA will be estimated. Now that we calculated 
all possible subsets using the formulas in Table 1 we 
can find the sums of squares for each main effect by 
subtraction as follows: 

 SSBA = SStotal - SSA & B 
 SSA = SStotal - SSB & BA 
 SSB = SStotal – SSA & BA 

To compare models, the F statistic then can 
be computed by dividing the effect of interest by the 
mean square error (MSE) for the full model, taking 
into account the degrees of freedom (df) for each 
source of variance. For example, to examine the 
effect of factor A, the F statistic can be calculated as 
shown in Eq. (12). 

Eq(12): 

F(df full model, df reduced model) =  
𝑺𝑺𝑨

𝒅𝒇𝒇𝒖𝒍𝒍 𝒎𝒐𝒅𝒆𝒍ି 𝒅𝒇𝒓𝒆𝒅𝒖𝒄𝒆𝒅 𝒎𝒐𝒅𝒆𝒍
𝑴𝑺𝑬⁄  

Matrices in multivariate analysis of variance 
(MANOVA) 

Dependent variables in multivariate analysis 
should be inter-correlated to form a system of 
variables that are of interest. MANOVA research 
questions address whether an overall effect of an 
independent variable exists. This system should have 
a conceptual link in order for the effects to have 
substantive meaning. MANOVA is the generalized 
form of ANOVA, where the model contains a matrix 
of dependent variables (Y), a design matrix (X), a 
parameter matrix (β) and an error matrix (E), such 
that it follows the same general linear model, Y = Xβ 
+ E. Each observed score is a matrix of quantitative 
scores on the dependent variables. 

The calculation differences between 
MANOVA and ANOVA relates to the nature of 
sums of squares, where it is a scalar in ANOVA but 
a matrix in MANOVA. A sums of squares and cross 
product matrix is the same as sums of squares in 
ANOVA and are calculated by taking the squared 
differences from each observed score and its 
appropriate mean [6]. Calculating MANOVA is 
simple and straightforward and requires basic 
knowledge of matrix algebra, however it gains 
complexity as the sample size for each dependent 
variable increases and as the number of dependent 
variable increases. As in ANOVA, three basic sums 
of squares and cross product matrices are needed to 
test a hypothesis. Similar to a one-way ANOVA, a 
one-way MANOVA requires calculating SStotal, 
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SSbetween, and SSwithin, where      SStotal = SSbetween + 
SSwithin.   

SSwithin can be calculated by taking the sum 
of the sums of squares and cross product for each 
dependent variable, such that SSwithin = W1+ W2 + 
…+ Wj, where j = 1, … ,n is a subscript that 
represents the number of levels or groups. SSwithin is 
a square matrix of a rank equal to the number of 
dependent variables. For example, if there are i = 1, 
… , n dependent variables the Wj matrix is shown in 
Eq. (13). The subscript k represents the observed 
score, where k = 1, … , n, and 𝑦௞௜௝ is the observed 
score in the ith dependent variable and jth group, 𝑌ത ij 
is the mean of the ith variable in the jth group. 

 
Eq(13): 

𝑾𝒊 ൌ  ൦

𝒔𝒔𝟏𝟏 𝒔𝒔𝟏𝟐 … 𝒔𝒔𝟏𝒊
𝒔𝒔𝟐𝟏 𝒔𝒔𝟐𝟐 … 𝒔𝒔𝟐𝒊
⋮ ⋮ … ⋮

𝒔𝒔𝒊𝟏 … … 𝒔𝒔𝒊𝒊

൪ 

where, 

𝒔𝒔𝒊𝒊 ሺ𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍ሻ ൌ  ෍൫𝒚𝒌𝒊𝒋 െ 𝒀𝒊𝒊൯
𝟐

𝒊
 

𝒔𝒔𝒊ሺ𝒊ି𝟏ሻ ሺ𝒐𝒇𝒇 െ 𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍ሻ

ൌ  ෍൫𝒚𝒌ሺ𝒊ି𝟏ሻ𝒋 െ 𝒀ഥሺ𝒊ି𝟏ሻ𝒋൯൫𝒚𝒌𝒊𝒋 െ 𝒀ഥ𝒊𝒋൯
𝒊

 

 
Similar to SSwithin, the SSbetween matrix is 

square of rank equal to the number of dependent 
variables. The elements on the diagonal of the matrix 
are equal to bii = Σj nj (𝒀ഥij –𝒀ഥi)2, and the off diagonal 
elements are equal to b(i-1)i = bi(i-1) = Σj nj (𝒀ഥ(i-1)j – 𝒀ഥi) 
(𝒀ഥij – 𝒀ഥi), where nj is the number of subjects in group 
j, 𝑌ത ij is the mean of variable i  in group j, and 𝑌ത i is the 
mean of variable i. 

Let us extend this example to a two-way 
MANOVA. In this case, SSbetween must be partitioned 
to take into account the variance that is attributed to 
each independent variable [6]. Sums of squares and 
cross product of between-subjects is the summation 
of the effects of each independent variable and their 
interaction. To make the calculation of sums of 
squares and cross product easier, Tabachnik and 
Fidell (2007) identified a group of matrices that are 
of a rank equal to the number of dependent variables. 
For example, let us consider a two-way MANOVA 
that has two independent variables A (two levels) 
and B (two levels), and two dependent variables Y1 
and Y2, elements of these matrices are means as 
shown in Table 4.  

 

 
 

Table 4. Important MANOVA matrices. 

A1 A2 B1 B2 
Grand 
Mean 
(GM) 

𝑌ത11. 

(mean 
for DV1 
in A1) 
𝑌ത21. 

(mean 
for DV2 
in A1) 
 

𝑌ത12. 

(mean 
for DV1 
in A2) 
𝑌ത22. 

(mean 
for DV2 
in A2) 
 

𝑌ത1.1 

(mean 
for DV1 
in B1) 
𝑌ത2.1 

(mean 
for DV2 
in B1) 
 

𝑌ത1.2 

(mean 
for DV1 
in B2) 
𝑌ത2.2 

(mean 
for DV2 
in B2) 
 

𝑌ത1 

(mean for 
DV1 on 
all levels) 
𝑌ത2 

(mean for 
DV1 on 
all levels) 
 

  
For this case SStotal = SSA + SSB + SSAB + SSwithin 

where, 
 SSA =𝑛௞  ∑ ሺ𝐴௞ െ 𝐺𝑀ሻሺ𝐴௞ െ 𝐺𝑀ሻ′௞ ,   k is 

the levels of A, k = 1, 2 with degrees of 
freedom (dfa = k - 1). 

 SSB =𝑛௠  ∑ ሺ𝐵௠ െ 𝐺𝑀ሻሺ𝐵௠ െ 𝐺𝑀ሻ′௠ ,  m is 
the levels of B, m = 1, 2 with degrees of 
freedom (dfb = m - 1). 

 SSAB = ሾ𝑛௞௠ ∑ ∑ ሺ𝐴௞𝐵௠ െ 𝐺𝑀ሻሺ𝐴௞𝐵௠ െ௠௞
𝐺𝑀ሻ′ሿ െ 𝑆𝑆஺ െ 𝑆𝑆஻   ,with degrees of 
freedom (dfab = dfa ൈ dfb). 

 SSwithin = ∑ ∑ ∑ ሺ𝑦௜௞௠ െ 𝐴௞𝐵௠ሻሺ𝑦௜௞௠ െ௠௞௜
𝐴௞𝐵௠ሻ′, i = 1, … , n is the observed score 
and with degrees of freedom (dferror = a ൈ b 
ൈ (n-1)). 

 SStotal = ∑ ∑ ∑ ሺ𝑦௜௞௠ െ 𝐺𝑀ሻሺ𝑦௜௞௠ െ௠௞௜
𝐺𝑀ሻ′ , with degrees of freedom  (dftotal = 
aൈbൈn - 1). 
 
The null hypothesis tests whether the means 

across levels of effects and interactions are equal. For 
a two-way MANOVA there are three null hypothesis 
one that tests the effect of A: H0  a1=a2, the second 
tests the effects of B: H0  b1=b2, and the last tests 
the effects of the interaction: H0  ab1=ab2. The 
alternative hypothesis states that the means are not 
equal, in the case where there is more than one level 
in a independent variable the alternative hypothesis 
states that at least one mean is different. Wilks’ 
lambda and other statistics (such as Hotelling’s T and 
Roy’s largest root) are used to test the main effects 
and interactions. For the purpose of this paper, Wilks’ 
lambda will be examined. Wilks’ lambda is the “ratio 
of the determinant of the error cross-product matrix 
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to the determinant of the sum of the error and effect 
cross-product matrices” (p. 260, Tabachnik & Fidell, 
2007), as shown in Eq. (14). To evaluate the 
significance of Wilks’ lambda a statistic that 
approximately follows an F-distribution and closely 
fits lambda is calculated as in Eq. (15). The 
approximate F statistic is tested for significance 
using the regular F-tables at a chosen significance 
level.  

 
Eq(14): 
Λ = Det(SSwithin)/Det(SSeffect + SSwithin) 
 
Eq(15): 

Approximate F(df1,df2) = ቀ
𝟏ି𝒚

𝒚
ቁ ቀ

𝒅𝒇𝟐
𝒅𝒇𝟏

ቁ 

where y = Λ1/s, and s = min (number of parameters 
estimated p, dfeffect) 
df1 = p  dfeffect 

df2 = s [dferror – (p - dfeffect +1)/2] – (df1 – 2)/2 
 
 To illustrate a two-way MANOVA, a dataset 
extracted from [7] is used as shown in Table 5. This 
modified (extracted from a larger dataset) dataset is 
based on a study that examines the uses of program 
evaluation. A measure was designed to extract 
perceptions of stakeholders in a project surrounding 
the usefulness of program evaluations. The original 
measure contains 73 items that elicit responses on 
use of evaluation findings, use of evaluation process, 
level of stakeholder involvement and factors that 
effect uses of the evaluation. The items are measured 
on a 5-point Likert scale, that are treated here as 
continuous [8]. For the purpose of this paper two 
variables which measure evaluation findings are 
considered as dependent variables: 

1. I feel the project was enhanced after the first 
year of evaluation feedback (Inst1). 

2. I feel the project was enhanced after the first 
evaluation analysis feedback (Inst2). 

There are also two grouping variables gender (2 
levels) and power (3 levels) as shown in Table 5.  
 

Table 5. Small-sample data for illustration of 
MANOVA. 
 Power 

Principle 
Investigator 
(PI) 

Post-doc 
Fellow 
(PDF) 

Trainee 

Inst1    Inst2 Inst1    
Inst2 

Inst1    
Inst2 

Female 1          2 
3          2 
4          4 

2          3 
2          3 
1          2 

3          3 
4          4 
2          3 

Male 2          3 
2          2 
1          3 

3          3 
2          3 
4          3 

3          3 
3          3 
4          4 

  
The first step is to find the mean matrices, as 

shown in Table 6. The second step is to fill out the 
MANOVA table. This needs basic knowledge of 
matrix algebra, or the use of a matrix calculator, as 
shown in Table 7. The third and last step is to 
calculate Wilks’ lambda and approximate F-statistic 
to test significance for each effect, as shown in Table 
8. With the use of Wilks’ criterion, the instrumental 
use of findings in the evaluation of the Working on 
Walls project were significantly affected by gender 
F(2,11) = 0.322, p <0.05, but not by power or the 
interaction between power and gender. 

Table 6. First step in MANOVA: Calculating matrices 
Gfemale Gmale PPI PPDF PT GM 
2.44 
2.67 

2.67 
3 

1.44 
1.67 

1.56 
1.89 

2.11 
2.22 

1.77 
1.93 

 
Table 7. Sums of square (SS) and cross product (CP) 
matrices and their corresponding degrees of freedom 
(df). 
Sources of 
variance 

SS and CP df 

SSgender          [,1]       [,2] 
[1,]13.39    14.27 
[2,]14.27    15.23 

1 

SSpower          [,1]     [,2] 
[1,] 1.53      1.15 
[2,] 1.15      0.92 

2 

SSgender  power          [,1]        [,2] 
[1,] 6.01     2.09 
[2,] 2.09     2.81 

2 

SSwithin        [,1]      [,2] 
[1,] 10.68   6.37 
[2,]  6.37    7.37 

12 

SStotal       [,1]       [,2] 
[1,] 31.62   23.88 
[2,] 23.88  26.33 

17 
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Table 8. Test of significance of effects. 
Source of variance Wilks lambda df1,df2 Approximate-F Significance 
SSG 0.322 2,11 11.58 0.002 
SSP 0.854 4,22 0.4523 0.769 
SSGP 0.388 4,22 3.33 0.282 

 
4. Conclusion 
 

This paper is dedicated to understanding the 
intricacies of matrix formation and computation 
within the domains of univariate and multivariate 
analysis of variance. While the fundamental 
mathematical procedures underlying modeling 
remain consistent, variations emerge concerning 
statistical assumptions, diagnostic assessments, and 
the nature of data. By extending the mathematical 
techniques employed in the simplest form of 
regression, known as Ordinary Least Squares (OLS), 
to the broader spectrum of general linear modeling, 
we establish a seamless link between general and 
generalized linear models. Understanding the 
matrices employed to represent the general linear 
model necessitates a fundamental grasp of matrix 
algebra, rendering parameter estimation formulas 
more accessible. As model complexity increases, 
manual calculation of matrix algebraic expressions 
becomes progressively challenging. Fortunately, 
advances of computer software has eliminated this 
challenge. In pursuit of our objective, this paper 
successfully clarifies the interconnections between 
diverse analytical approaches tailored to essentially 
unique research inquiries. 

 
This paper has unveiled the intrinsic 

connection between regression and GLMs, 
highlighting the significance of matrices as the 
computational backbone of these models. The bridge 
constructed between regression models and  
univariate and multivariate applications underscores 
the versatility and adaptability of the generalized 
linear model framework.  

 
The univariate analysis of variance and 

regression methods discussed in this paper laid the 
groundwork for comprehending the matrix algebra 
involved in GLMs. Subsequently, the extension to 
multivariate analysis of variance allowed for a 
broader and more encompassing perspective on 
statistical calculations.  It is essential that a solid 

grasp of matrix operations and their integration into 
GLMs is invaluable. The insights shared herein not 
only contribute to a deeper understanding of the 
theoretical foundations but also provide practical 
utility for researchers in their quest to extract 
meaningful information from data. 
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