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Abstract 
Using random numbers to represent uncertainty and 
unpredictability is essential in many industries. This is crucial in 
disciplines like computer science, cryptography, and statistics 
where the use of randomness helps to guarantee the security and 
dependability of systems and procedures. In computer science, 
random number generation is used to generate passwords, keys, 
and other security tokens as well as to add randomness to 
algorithms and simulations. According to recent research, the 
hardware random number generators used in billions of Internet of 
Things devices do not produce enough entropy. This article 
describes how raw data gathered by IoT system sensors can be 
used to generate random numbers for cryptography systems and 
also examines the results of these random numbers. The results 
obtained have been validated by successfully passing the FIPS 
140-1 and NIST 800-22 test suites. 
Keywords: 
Internet of Th ngs, Cryptography, Random Number Generators, 
Webcam Sensor, L ght Sensor. 
 
1.  Introduction 
 

The term "Internet of Things," or IoT in short, is derived 
from the phrases "object" and "internet" and is one of the 
subjects that has been the subject of numerous studies in 
recent years. There are billions of users worldwide who use 
the global system of connected computer networks known 
as the Internet. By facilitating the transmission of 
information between individuals, this global system has 
become a crucial component of our daily lives. The Internet 
of Things is the most used terminology, although it has 
terminological counterparts such as Internet of Everything 
(IoE), Web of Things (WoT), Web of Everything (WoE), 
and Machine to Machine (M2M) [1]. The idea of the 
Internet of Things (IoT) has come to mean a network of 
interconnected devices that can interact with one another by 
connecting to the internet without the help of a third 
party.IoT devices can access cloud-based resources to 
collect data and extract the collected data, make 
authorisation arrangements, and make decisions by 
analysing the collected data with the help of algorithms [2]. 
Random number generation is critical in many fields 
because it is used to simulate uncertainty and 
unpredictability. This is important in fields such as 
computer science, cryptography, and statistics, where 

randomness is used to ensure the security and reliability of 
systems and processes. In computer science, random 
number generation is used to create randomness in 
algorithms and simulations, as well as to generate 
passwords, keys, and other types of security tokens. In 
cryptography, random numbers are used to generate secure 
keys for encrypting and decrypting data, as well as to create 
random challenges in authentication protocols. In statistics, 
random number generation is used to sample data and to 
perform statistical tests. Overall, random number 
generation is a critical component of many systems and 
processes that rely on uncertainty and unpredictability to 
function correctly and securely. The raw data needed by 
random number generators in cryptographic systems can be 
obtained using the information gathered. This article will 
describe how these raw data can be utilised to create fixed-
length keys that can be incorporated into algorithms that 
will protect the security of vital communication systems. 

 
Secure communication system architecture, encryption 

methods, and random number generators (RNG) are the 
foundations of cryptography. Private keys and secret keys 
are generated using the distinctive random numbers 
produced by the RNG. RNGs are divided into two groups: 
real and pseudo. Because they are simpler to operate, 
pseudo random number generators are selected more often. 
Because the quick generation of random numbers without 
the need for any hardware is a significant cost benefit. On 
the other hand, true random number generators, which are 
crucial for secure communication systems, incorporate non-
deterministic numbers as a noise source. Expensive gear is 
needed to capture the genuine unpredictability of the 
environment. The random numbers that will be produced 
must exhibit high statistics, be unpredictable, have a 
consistent structure, and use hardware rather than pseudo 
RSUs in terms of confidentiality. Some mathematical 
conditions (randomness tests) must be satisfied if the 
produced numbers are used in sensitive contexts, such as 
cryptography systems. The general encryption structure of 
a text message between a sender and a recipient is depicted 
in Figure 1. 

 

Ut l sat on of IoT Systems as Entropy Source for Random Number 
Generat on 
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Figure 1. General structure of encryption. 
  

As seen in Figure 1, a text that the sender requests be 
encrypted is fed into the encryption process with the aid of 
the key. In this paper, we will talk about how to make the 
secure key that encryption techniques need.  

Previous studies used either internal or external 
methods to obtain the seed values for random number 
generators. Post-processing algorithms use input variables 
like the system clock, mouse movements, CPU data, image 
or sound data, random functions in programming languages, 
etc. as seeds. After some time, the numbers generated in this 
manner begin to repeat and exhibit predictable behaviour. 
In this project, the values obtained from the Tesla sphere [3], 
which was used by Nicola Tesla in 1891 to transmit 
electricity wirelessly as a noise source, will be converted 
into digital data. After being subjected to a post-processing 
algorithm with a minicomputer (raspberry pi), fixed-length, 
unique, unpredictable, and chaos-based number sequences 
will be obtained. The chaotic environment needed for 
random number generation is created by gathering 
information from electrical radiations that are randomly 
distributed across the sphere, from its centre outward. The 
input source's chaotic character will guarantee the 
development of irregular, independent sequences. It is 
predicted that it will close the knowledge gap in this area 
and help with the issue of acquiring the seed value of the 
random number generators used today. 

 
2.  Method 
 

To make the secret information between two or more 
communicating points unintelligible, cryptology, which is a 
cypher science, encrypts it using a variety of techniques. 
The secret information is subsequently decrypted on the 
receiving side. It is a collection of approaches and 
applications built on high level mathematical ideas [4]. As 
indicated in Figure 2, the two branches of cryptology are 
cryptography and cryptanalysis. 

  

  
Figure 2. Cryptology.  

  

The phrases "secret" and "writing," which refer to secret 
writing, are the roots of the word "cryptography." A sender 
runs the risk of having his communication intercepted and 
changed when using open networks to convey it to a 
recipient. Plain text is the message that is in danger here. 
Encryption is the process of masking a message's content. 
The plaintext is transformed through this procedure into an 
encrypted format that is incomprehensible to others. This 
data could be either encrypted data for storage or a message 
that is encrypted for transmission. Decryption is the 
procedure through which the receiving party transforms the 
cypher text back into plain text [5]. The process of looking 
for the ciphertext's solution is known as cryptanalysis. 
Finding potential flaws in cryptographic systems and 
information breaches is the fundamental goal of 
cryptanalysis, which is based on exceedingly complex 
mathematical calculations.  
 
2.1 Encryption Algorithms  
 

Encryption is the process of masking a message's 
content. The plaintext is transformed through this procedure 
into an encrypted format that is incomprehensible to others. 
This data could be either encrypted data for storage or a 
message that is encrypted for transmission. Decryption is 
the procedure through which the receiving party transforms 
the cypher text back into plain text.  

In symmetric encryption methods, the encryption 
algorithm subjects the encrypted message to several 
procedures before it can be transferred. Figure 3 illustrates 
how the sender encrypts the message using the encryption 
key throughout these procedures. Symmetric key 
encryption techniques use the same keys for encryption and 
decryption [6]. AES (Advanced Encryption Standard), DES 
(Data Encryption Standard), and 3DES are popular 
symmetric encryption techniques today (Triple DES). 

  

 
Figure 3. Symmetric encryption and decryption. 

  
Public key encryption is another name for asymmetric 

encryption methods. For encryption and decryption, there is 
a public key and a private key. Asymmetric encryption 
techniques boost the computer's processing capability by 
using very big prime numbers [5]. Asymmetric 
cryptography uses public key infrastructure because long 
keys and lengthy computations are required [7]. The 
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fundamental framework of asymmetric cryptography is 
depicted in Figure 4. 
 

  
Figure 4. Asymmetric encryption and decryption.  

 
 The most popular symmetric encryption technique in 

use right now is called the Advanced Encryption Standard. 
AES is a highly effective symmetric key block cipher in 
terms of both security and performance. The key sizes that 
can be used for encryption and decryption are 128, 192, and 
256 bits [8]. Some of the main characteristics of an 
encryption algorithm are the following: Confidentiality, 
integrity, irrefutability, accessibility and identity control [9]. 
 
2.2 Random Number Generators 
 

Wherever unpredictability is required, such as in 
computer games, games of chance, and encryption, random 
number generators can be utilized. Figure 5 illustrates the 
division of random number generation into "real" and 
"pseudo" categories. Pseudo RNGs use algorithms to 
generate their output, therefore after a while the output data 
starts to repeat itself on a regular basis. The output data is 
anticipated to be non-periodic since the source of 
randomness in a true RNG is based on a chaotic source of 
uncertainty [10].  

 

  
Figure 5. Random number generators. 

  
Systems that produce random numbers deterministically 

are known as pseudo RNGs. They have benefits over actual 
random number generators, including ease of creation and 
an inexpensive cost. By examining its value at any time 
when the algorithm is compromised, the subsequent outputs 
can be anticipated [11]. In secure communication systems 
that demand confidentiality, this prediction may result in 
significant security issues [12]. True RNGs are systems that 
employ the chaotic randomness of nature to produce 

numbers by post-processing with an algorithm. For instance, 
statistical data gathered by remote monitoring of a plant in 
an agricultural field or random raw data that cannot be 
predicted with data obtained from the measurement sensor 
attached to an animal's foot can be obtained. The numbers 
exhibiting poor statistical features are post-processed to 
demonstrate greater statistics after the sampling procedure 
[13]. 
 

Testing for randomness ensures that the post-processed 
datasets from the entropy source are accurate and realistic.  
Bit sequences obtained using various sensing sources 
(camera and light sensor) and methodologies (mode method, 
last bit extraction, and hash algorithms) will be examined in 
this research paper's monobit and poker test findings. The 
ratio of ones to zeros in a sequence is compared in the 
monobit test. If there are more than 9725 ones in a sequence 
of 20000 bits, the test is successful. If there are fewer than 
9725, the test is unsuccessful [14]. 
 

Post processing algorithms will be employed to refine 
the raw data and boost unpredictability [15]. One of the 
most popular post-processing techniques, the XOR 
algorithm, can be characterized as two-bit inputs producing 
a one bit output. The hash algorithms utilized in this paper 
are Sha256 and Md5. 
 
3.  Experimental Study 
 

The values obtained by using sensors such as 
temperature, pressure, light, gas, humidity and pH [16], [3], 
[17] can be used as seed values for random number 
generators. Ansari et al. created a real random number 
generator using ldr and sound sensors connected to an 
Arduino microcomputer [18]. Tuncer and Genç proposed a 
random number generator based on the GPS sensor in 
mobile phones and human movement [19]. Yaşar et al. used 
the random function of the C programming language and 
the sha256 summarisation algorithm to generate random 
integers [20]. In his research, Chen obtained random 
numbers with video and audio noise with a camera [21]. 
Etem and Kaya created the random number generator for 
their research without the need for any hardware, using the 
LCG (Linear Congruential Generator) algorithm with 
Trivium as the postprocessor [22]. Özkaynak et al., 
proposed an algorithm that generates random numbers with 
the pixel values of the photographs obtained from the 
mobile device camera [23]. By raising the electrical voltage, 
Nikola Tesla, who was born in 1856 in the Serbian village 
of Similjan, made it possible to transmit electrical power 
wirelessly with a low output current density [24].  Raw data 
from the Tesla sphere in the physical environment will be 
collected as a noise source using IoT devices or sensors. The 
obtained values will then be converted into digital data 
using a Raspberry Pi device, and if necessary, they will be 
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subjected to post processing algorithms to produce fixed 
length number sequences. 
 
3.1. RGB Colour Sensor 
 

In this section, the raw data from the Tesla sphere 
utilized as an entropy source that was collected by the 
TCS34725 colour sensor connected to the Raspberry Pi will 
be analysed. This sensor additionally measures colour 
temperature and colour irradiance in addition to colour 
values. By combining the primary colours of red, green, and 
blue, colour sensors try to get colour values between 0 and 
255. These sensors compare the light from the sensor 
striking the substance with the light values received by 
reflecting off the material to arrive at the result. Male-
female intermediate cables are used to link the GND, SCL, 
SDA, and 3V3 pins on the colour sensor to the 
corresponding pins on the Raspberry Pi device on the 
breadboard. Figure 6 depicts the overall appearance of the 
experimental set created with the RGB sensor.  

  

Figure 6. General view of the RGB sensor system. 
  

The following list of components makes up the system, 
whose schematic representation is shown in Figure 7: 
Raspberry Pi 4, TCS34725 RGB Colour Sensor, Tesla 
Sphere, Monitor, Keyboard and mouse. 

Figure 7. Shape of RGB sensor experiment setup. 
  

A small sphere in the Tesla sphere's centre randomly 
emits electrical radiations of various colours in the direction 
of the glass sphere outside. To extract three red, green, and 
blue values between 0 and 255 from the colour sensor, a 
Python coding procedure was used. Raw data were gathered 
from the Tesla sphere in the real world using a colour sensor 
as a noise source, and the values obtained were then 
transformed using a Raspberry Pi device into the numerical 
colour values in Table 3.  

  
Table 3. RGB sensor raw data. 

NU.  
COLOUR 

HEXADECİMAL CODE  
R-G-B VALUES  

1  FFFFFF  (255,255,255)  
2  2D2D2D  (45,45,45)  
3  FFFFFF  (255,255,255)  
4  FFFFFF  (255,255,255)  
5  5C5C5C  (92,92,92)  
6  5C1010  (92,16,16)  
7  5C1010  (92,16,16)  
8  5C1010  (92,16,16)  
  
Raw data including RGB values of (45,45,45), colour 

temperature of 1391.0K, and colour light intensity of 17.566 
lux were evaluated. The raw data collected at any given time 
was noted to be high-quality numbers, but as time went on, 
the data produced correlated outcomes and the same values 
overlapped. The (92,16,16) values acquired from the colour 
sensor were thought to be unsuitable for use as random 
number generator seeds because they overlap, are not 
changeable, and have a relationship to one another. As a 
result, the RGB sensor test results are not listed under the 
heading "Analysis Results."  

 
3.2.  WEBCAM Sensor 
 

In this section, the raw data from the Tesla sphere 
utilized as an entropy source that was collected by the 
webcam sensor attached to the Raspberry Pi computer will 
be analysed. The movements of the electrical radiations in 
the Tesla sphere were detected using the webcam attached 
to the Raspberry Pi through a USB port, and raw data with 
x and y coordinate values were collected. Figure 8 depicts 
the overall perspective of the experimental setup created 
using a webcam.  
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Figure 8. General view of the webcam sensor system. 
  

The following list of components makes up the system, 
whose schematic representation is shown in Figure 9: 
Raspberry Pi 4, Webcam, Tesla Globe, Monitor, Keyboard 
and mouse. 
  

Figure 9. Shape of webcam sensor experiment setup. 
  
The sphere's radiations are identified using OpenCV, a 

Python computer language package, and the raw data 
collected from the moving area's x and y coordinates is then 
examined. Intel introduced OpenCV, an open-source visual 
library, in 1999. On the Raspberry Pi computer, the 
necessary installation processes for the OpenCV library, 
which is utilized in both academic work and commercial 
applications, were carried out. Following the library's 
installation, a program in the Python programming 
language was created that locates moving areas, grids them 
in, and outputs the weight point's x and y coordinates, as 
shown in Table 4.  
  

Table 4. Webcam raw data.  
Nu.  X Coordinate  Y Coordinate  Elapsed Time (sec)  

1  324  305  0.10  
2  282  302  0.091  
3  197  121  0.078  
4  193  82  0.088  

5  212  108  0.082  
6  260  329  0.078  
7  364  133  0.067  
8  354  151  0.096  

  
The information gathered in the table above serves as 

the random number generator's seed values. These variables 
were used to generate outputs of fixed length using 4 
distinct techniques. The first approach entails translating the 
remainder (Mod 16) into the hexadecimal number system 
after dividing the x and y coordinate values by 16, 
respectively. In Table 4, the remainders that were produced 
after applying the Mod 16 method to the numbers in the 
second row (282 and 302) correspond to the hexadecimal 
values "10" and "e," respectively. According to the residual 
values obtained using this method, the x and y coordinates 
produced when the webcam sensor detects movement 
provide an eight-bit output (1010, 1110). Until the specified 
fixed key length is reached, the motion detection cycle is 
repeated. The second method involves converting the 
coordinate values to a binary number system and taking the 
last bit.  

  
The third-row values (197 and 121) in Table 4 have last 

bit values of "1" for both coordinate data (after conversion 
to binary by the last bit method). According to the final bit 
values discovered using this method, the x and y 
coordinates formed when the webcam sensor detects 
movement generate a two-bit long output. Until the 
specified fixed key length is reached, the motion detection 
cycle is repeated. The coordinate values are entered into the 
Md5 and Sha256 hash algorithms to complete the third and 
fourth methods. After using XOR post processing, the 
output is obtained by independently summing the x and y 
coordinate values. These techniques produced 1024-bit 
outputs, which were then submitted to a monobit 
randomness test to ensure their randomness. The section 
under "Analysis Results" will assess the test results.  

 
3.3. Light Sensor  

 
This part will analyse the unprocessed data collected by 

the LDR sensor attached to the Raspberry Pi from the Tesla 
sphere used as an entropy source. Utilized by the Raspberry 
Pi device, the LDR is a sensor that gauges light intensity in 
proportion to the amount of light that strikes it. The amount 
of light hitting the LDR will determine how much energy 
the capacitor receives. The time until logic 1 will provide 
the light intensity since the Raspberry Pi will identify the 
capacitor charging as logic 1 when it happens. Male-female 
intermediate wires on the breadboard are used to link the 
light sensor and capacitor to the Raspberry Pi device's GND, 
GPIO3, and 3V3 pins. The light values displayed in Table 
5 were collected from the Tesla sphere, which serves as the 
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noise source. Figure 10 shows how the experiment set made 
with the LDR sensor looks as a whole.   

  

Figure 10. General view of the LDR sensor system. 
  
The following list of components makes up the system, 

whose schematic representation is shown in Figure 11: 
Raspberry Pi 4, LDR Sensor, Tesla Globe, Monitor, 
Keyboard and mouse.  

 

  
Figure 11. Shape of LDR sensor experiment setup.  

 
Table 5. LDR sensor raw data. 

Nu.  Measured Light Intensity  Elapsed Time (sec)  
1  1090  0.1021  
2  1067  0.1019  
3  1098  0.1017  
4  1094  0.1019  
5  638  0.1023  
6  654  0.1023  
7  1102  0.1020  
8  1061  0.1021  
  
The data obtained in Table 5 serves as the random 

number generator's seed values. Using these data, four 
distinct strategies, as described in Section 4.2, were used to 
produce outputs of fixed length. The first technique is the 

remainder (Mod 16), which is achieved by dividing the light 
values by 16. The second approach involves converting the 
light values to binary and obtaining the final bit. The third 
and fourth methods are obtained by using the Md5 and 
Sha256 hash algorithms, respectively. These techniques led 
to the creation of 1024 bit outputs, similar to those used in 
the webcam sensor section, which were then subjected to a 
monobit randomness test in order to verify the 
unpredictability. The section under "Analysis Results" will 
assess the test results. 

 
3.4. Comparison of Analysis Results  
 
3.4.1. Monobit Test Analysis Results  
 

The monobit test results from three different sources 
(Pseudo, Webcam, and LDR Sensor) are compared in this 
study. The frequency test, sometimes referred to as the 
monobit test, is discovered by counting the occurrences of 
the integers 0 and 1 in the sequence. 512-bit values should 
be one- and 512-bit values should be zero in the 1024-bit 
long outputs acquired from the sensors in the preceding 
section. The 1024-bit sequence's monobit test result, which 
was produced using the Random function in the Python 
programming language to produce pseudorandom numbers, 
is shown in Table 6 and shown graphically in Figure 12. The 
distance between one and zero for the 1024-bit sequence is 
34.  

  
Table 6. Monobit test of pseudo random number 

generation.  
Nu. Expected  Observed  

Number of 1’s  512  495  
Number of 0’s  512  529  
  

 
Figure 12. Monobit test chart of pseudo random number 

generation.  
 

 The monobit test results of the output sequences 
produced by four different techniques using a length of 
1024 bits are given in Table 7. The graphical representation 
is shown in Figure 13, and raw data with x and y coordinate 
values were obtained by detecting the movements of the 
electrical radiations in the Tesla sphere using the Webcam 
sensor. The difference between one and zero for the 1024-
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500

550

Number of 0's
Number of 1's

Expected Observed
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bit sequence using the Mod 16 approach is 10, the Md5 
method is 20, the Sha256 method is 18, and the sequence 
created by omitting the last bits has a difference of 24. The 
sequence acquired using the Mod 16 approach was found to 
be the most similar to the expected values, while the 
sequence obtained using the last bit method was found to be 
the furthest from them. In this test, it was found that, in 
comparison to the pseudorandom number produced by the 
computer, the numbers generated by all techniques 
employing the Webcam sensor produced good results.  
  

Table 7. Monobit test with webcam.  

Nu. Expected  
Observed  

Mod 16  Md5  Sha256  End Bits  
Number of 1’s  512  507   522   521   524  
Number of 0’s  512  517   502   503  500  

  

  
Figure 13. Monobit test chart with webcam.  

  
Table 8 lists the findings of the 1024-bit long arrays' 

monobit tests, which were conducted using 4 different 
techniques to gauge the radiation strength in the Tesla 
sphere using an LDR sensor. Figure 14 shows a graphical 
representation of the data. When using the Mod 16 method, 
the difference between one and zero for the 1024-bit array 
is seen to be 22, when using the Md5 method it is 12 and 
the Sha256 method to be 32, and when using the array 
created by eliminating the final few bits it is 16. The 
sequence acquired using the Md5 method was found to be 
the most similar to the expected values, while the sequence 
obtained using the Sha256 approach was found to be the 
furthest from them. In this experiment, it was found that the 
numbers generated using any of the LDR sensor's methods 
performed better than the pseudorandom numbers produced 
by the computer.  
  

Table 8. Monobit test with LDR sensor.  

Nu. Expected  
Observed  

Mod 16  Md5  Sha256  End Bits  

Number of 1’s  512  501  506  528  520  
Number of 0’s  512  523  518  496  504  

  

  
Figure 14. Monobit test chart with LDR sensor.  

 
3.4.2. Poker Test Analysis Results  

 
The poker test results from three different sources 

(Pseudo, Webcam, and LDR Sensor) are compared in this 
study. In this test, 5000 numbers are produced by dividing 
a random sequence of 20000 bits into blocks of four bits. 
Numbers are expressed in the hexadecimal base using these 
four bits. The computed poker value must fall between 1.03 
and 57.4 in order to pass the test.   

Table 9 and Figure 15 show the poker test outcome for 
the 20000-bit sequence produced by the Random function 
in the Python computer language, which generates pseudo-
random numbers. The poker value for a 20000-bit sequence 
was found to be 13.9904.  
 

Table 9. Poker test of pseudo random number 
generation.  

Nu.  Expected  Observed  
Poker Values (X)  1.03 < X < 57.4  13.9904  

  

 
Figure 15. Poker test chart of pseudo random number 

generation.  
  

After using a webcam sensor to monitor the movement 
of electrical radiations in the Tesla sphere and obtaining raw 
data with x and y coordinate values, the results of the poker 
test for 20000 bit output sequences generated by four 
different methods are shown in Table 10 and the graphical 
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representation is shown in Figure 16. The poker value of the 
20000 bit sequence is 21.4720 for the Mod 16 technique, 
0.8256 for the Md5 method, -5.1647 for the Sha256 
approach and 10.1504 for the sequence produced by 
skipping the last bits. It is observed that Mod16 and the last 
bits method passed the test successfully. 
  

Table 10. Poker test with Webcam.  

Nu. Expected  
Observed  

Mod 
16  

Md5  Sha256  
End 
Bits  

Poker Value 
(X)  

1.03 < X < 57.4   21.472 0.8256   -5.1647   10.1504  

  

 
Figure 16. Poker test chart with Webcam.  

  
The poker test results for 20000 bit long sequences 

obtained using 4 different techniques by measuring the 
radiation intensity in the Tesla sphere with the LDR sensor 
are given in Table 11 and the graphical representation is 
given in Figure 17. The poker value of the 20000 bit 
sequence is 16.3392 for the Mod 16 technique, -54.4511 for 
the Md5 method, -5.8944 for the Sha256 approach and 
20.3136 for the sequence produced by taking the last bits. It 
is observed that the last bits and Mod 16 method passed the 
test successfully. 

 
Table 11. Monobit test with LDR sensor.  

Nu. Expected  
Observed  

Mod 16  Md5  Sha256  
End 
Bits  

Poker 
Value(x)  

1.03 < X < 57.4  16.3392  -54.4511  -5.8944  20.3136  

  

 
Figure 17. Monobit test chart with LDR sensor.  

 
When the data obtained from RGB, camera and LDR 

sensors are analysed, it is observed that the same values are 
obtained in RGB values and close values are obtained as 
output, although they are not the same values in the LDR 
sensor. In the camera sensor, two different x and y values 
were obtained in each cycle, which were not related to each 
other, and therefore better quality raw data were obtained 
compared to the other two sensors. When the methods were 
analysed, it was observed that Md5 and Sha256 did not pass 
some tests and the Mod 16 method gave better outputs, so 
the Mod 16 method was used. 
 
3.5. Statistical Test Results 
 
The FIPS 140-1 test suite tests for randomness on a 20000 
long generated sequence. This test suite consists of monobit, 
poker, run and long run tests. The successful results of this 
test with the camera sensor and Mod 16 method are shown 
in Table 12. 
 

Table 12. FIPS test results 
Test Expected Result 

Monobit 9654< X <10346 10037 
Poker 1.03< X <57.4 7.98 

Run 

Block 
Length 

Block 
Number 
Range 

0’s 
Number 

1’s 
Number 

1 2267-2733 2494 2520 
2 1079-1421 1247 1191 
3 502-748 662 649 
4 223-402 297 328 
5 90-223 153 150 
6 90-223 148 163 

Long Run <= 34 Passed 

 
The NIST 800-22 test suite tests randomness on one 

million long generated sequences. This test suite consists of 
16 separate tests, and to be considered successful, the P 
value produced at each stage of the test must meet the P ≥ 
0.01 requirement. The successful results of this test with the 
camera sensor and Mod 16 method are shown in Table 13. 
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Table 13. NIST test results 

No. Test Name P Value Result 
1 Frequency 0.7634 Successful 
2 Block Frequency 0.1559 Successful 
3 Run 0.8625 Successful 

4 
Test for the Longest Run of 
Ones in a Block 

0.7775 Successful 

5 Binary Matrix Rank 0.4399 Successful 
6 Discrete Fourier Transform  0.6872 Successful 

7 
Non-Overlapping Template 
Mathing 

0.7312 Successful 

8 
Overlapping Template 
Mathing 

0.0478 Successful 

9 
Maurer's Universal 
Statistical 

0.3666 Successful 

10 Linear Complexity 0.8760 Successful 
11 Serial - 1  0.8307 Successful 
12 Serial - 2 0.8601 Successful 
13 Approximate Entropy 0.8676 Successful 
14 Cumulative Sums 0.9532 Successful 
15 Random Excursions (x=+1) 0.3708 Successful 

16 
Random Excursions Variant 
(x=-1) 

0.6782 Successful 

 
4.  Conclusion 

In cryptographic applications, randomness is the most 
crucial element of security and confidentiality. Therefore, 
the security of the entire system is significantly impacted by 
the quality of random number generators utilized in various 
communication contexts. Because these two can be 
combined, random numbers can be generated as actual, fake, 
or hybrid. To assess the quality of these generated numbers, 
several statistical tests are performed. The entropy of the 
noise source is intimately related to the security of RNGs. 
By getting the seed value from the physical world using IoT 
sensors, this study aims to improve entropy levels. The 
sensors created in the Raspberry Pi environment were used 
to collect raw data from the Tesla sphere, the source of the 
noise. Eight different readings were collected using these 
two sensors, and they were then examined using the Mod 
16, Last Bits, Sha256, and Md5 techniques. The raw data 
obtained with the Mod 16 approach and the camera sensor 
produced superior results than the other methods, according 
to the assessments with the Monobit and Poker tests. 
Sequences obtained by the Mod 16 method successfully 
passed the FIPS 140-1 and NIST 800-22 test suites, 
confirming their randomness. 

As a result, it has been discovered through this project 
that seed values for random number generation can be 
derived from the sensors of IoT systems, which are 
currently evolving quickly and which we will encounter 
more frequently in the future in our daily lives. In contrast 
to the studies in the literature, using the Tesla sphere as the 
noise source creates a chaotic environment where random, 
non-repeating data are collected in the next step. It has been 

shown that the keys that come from the electrical radiations 
in the centre of the sphere are more accurate than the keys 
that come from pseudo-random number generators.  
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