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Abstract 
 Through the growth of the fifth-generation networks and 
artificial intelligence technologies, new threats and challenges 
have appeared to wireless communication system, especially in 
cybersecurity. And IoT networks are gradually attractive stages 
for introduction of DDoS attacks due to integral frailer security 
and resource-constrained nature of IoT devices. This paper 
emphases on detecting DDoS attack in wireless networks by 
categorizing inward network packets on the transport layer as 
either “abnormal” or “normal” using the integration of machine 
learning algorithms knowledge-based system. In this paper, deep 
learning algorithms and CNN were autonomously trained for 
mitigating DDoS attacks. This paper lays importance on misuse 
based DDOS attacks which comprise TCP SYN-Flood and ICMP 
flood. The researcher uses CICIDS2017 and NSL-KDD dataset 
in training and testing the algorithms (model) while the 
experimentation phase. accuracy score is used to measure the 
classification performance of the four algorithms. the results 
display that the 99.93 performance is recorded. 
Keywords: 
Distributed denial of Service; wireless networks; Machine 
Learning Algorithms; Transmission Control Protocol; CNN; 
network security 

1. Introduction 

The increase of IoT devices and computation devices 
have completed living relaxed and suitable for us due to 
the debauched and correct computation of our information. 
But, augmented incorporation and placement of linked 
devices also disclosures vital capitals to DDoS threats [1]. 
Technological growths in current years have complete it 
likely to connect a variety of devices to computer networks, 
which brings various benefits to users. But, with the 
increase of the technologies elaborate, the number of 
cyberattacks is also increasing, using more sophisticated 
means to incorrectly access sensitive information and to 
extort money or the already mentioned interruption of 
services. One such technology is the Internet of 
Things (IoT) [2]. 

The idea of the Internet of Things includes various 
devices, sensors, objects, and intelligent nodes that are 
able to function autonomously and communicate with each 
other without human intervention. Such IoT devices are 
able to deliver a number of valuable facilities and, cheers 

to sensors and actuators, provide various data in real-time. 
In many cases, however, devices in the field of the Internet 
of Things, in particular, contain various software bugs 
brought in from the factory that make them vulnerable. 
Such vulnerabilities often allow attackers to perform 
various cyberattacks and compromise the security of the 
environment in which IoT devices are located [3]. 

Several defense mechanisms have been proposed in 
the past against DDoS attacks in IoT networks. They can 
be divided into two basic groups: traditional DDoS 
defenses 
and IoT-specific DDoS defenses. They fluctuate in terms 
of place and difficulty. While traditional DDoS defenses 
are applied to the target server and are fundamentally 
homogeneous, IoT-specific DDoS defenses are applied to 
IoT devices and are more complex, reflecting the 
heterogeneity of IoT devices. In both cases, detection 
techniques are used to detect abnormal activities in the 
network or host [4]. 
 

The rest of the paper is organized as follows: Section 
2 presents related works; Section 3 elaborates the data set 
and describes the methodology followed in the research; 
Section 4 details the experimentation procedures, the result 
gotten and the observations from the results while Section 
5 presents the conclusion of the work as well as 
highlighting the future work 
 
 
2. Related work 
 

According to [5] detection systems of network 
intrusion have traditionally been rule-based. Nevertheless, 
machine learning and statistical approaches have also 
made major contributions [5]. Machine learning have also 
proven to be effective in two main aspects of network 
security which are: feature engineering (i.e., the ability to 
extract the most important features from network data to 
assist model learning) [6] and classification. In security 
environment, classification tasks usually involve training 
both suspicious and benign data in order to create models 
that can detect known attacks [7].  

The authors in [8] pointed out that steps such as 
collection of network information, feature extraction and 
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analysis, and classification detection provide a means for 
building efficient software-based tools that can detect 
anomalies such as software-defined networking (SDN). 
Another study [9] provides a thorough classification of 
DDoS attacks in terms of detection technology. The study 
also emphasizes how the characteristics of the network 
security of an SDN defines the possible approaches to 
setting up a defense against DDoS attacks. Similarly, [10] 
have explored this area too. In other approaches to DDoS 
defense, [4] propose a scheduling based SDN controller 
architecture to effectively limit attacks and protect 
networks in DoS attacks. 
 

The growth of cloud computing and IOT has 
inevitably led to the migration of denial-of-service attacks 
on cloud computing devices as well. Thus, cloud 
computing devices must implement efficient DDOS 
detection systems in order to avoid loss of control and 
breach of security [11]. Studies such as [12] aim to tackle 
this problem by determining the source of a DDOS attack 
using Trace (powerful trace) source control methods. Trace 
controlled such attack sources from two aspects, packet 
filtering and malware tracing, to prevent the cloud from 
becoming a tool for DDoS attacks. Other studies such as 
[13] approach the problem of filtering by using a set of 
security services called filter trees. In the study, XML and 
HTTP based DDOS attacks are filtered out using five 
filters for detection and resolution. Detection based on 
classification has also been proposed and a classifier 
system for detection against DDOS TCP flooding attacks 
was created [14]. 

 
These classifiers work by taking in an incoming 

packet as input and then classifying the packet as either 
suspicious or otherwise. The nature of an IP network is 
often susceptible to changes such as the flow rate on the 
network and in order to deal with such changes, 
self-learning systems have been proposed that learn to 
detect and adapt to such changes in the network [15]. 

 
 

Many of the existing models for DDoS detection have 
primarily focused on SYN-flood attacks and haven’t been 
trained to detect botnet attributes. More studies are thus 
needed where models are trained to detect botnet as botnet 
becomes the main technology for DDoS organization and 
execution [16]. Botnet DDoS attacks infect multitude of 
remote systems turning them to zombie nodes that are then 
used for distributed attacks. In detecting botnet DDoS 
attacks, authors in [17] used a deep learning algorithm to 
detect TCP, UDP and ICMP DDoS attacks. They also 
distinguished real traffic from DDoS attacks, and 
conducted in-depth training on the algorithm by using real 
cases generated by existing popular DDoS tools and DDoS 
attack modes. Also, [18] proposed a DDoS attack model 
and demonstrated that by modelling different allocation 

strategies. The proposed DDoS attack model is applied to 
game planning strategies and can simulate different botnet 
attack characteristics. 
 

According to [19] “DDoS detection approaches can 
operate in one of the following three modes: supervised, 
semi-supervised and unsupervised mode. For the detection 
approach in supervised mode, it requires a trained dataset 
(or a classifier) to detect the anomalies, where the trained 
dataset includes input variables and output classes. The 
trained dataset is used to get the hidden functions and 
predict the class of input variables (incoming traffic 
instances). This mode is similar to a predictive model. For 
example, Classification techniques comes under the 
category of supervised data mining” [20]. “For the 
Approaches that work in the semi-supervised mode, they 
have incomplete training data i.e., training data is only 
meant for normal class and some targets are missing for 
anomaly class” [21]. Unlike supervised and 
semi-supervised learning, unsupervised machine learning 
algorithms do not have any input-output pairs but the 
algorithm is trained such that it can accurately determine 
the unknown data point. The following subsections further 
discusses the unsupervised learning algorithms we used in 
this work. current effort that goes to detect IoT based 
attacks proposed MQTT transaction-based features 
Mustafa et al. (2019). But the authors used features based 
on the TCP protocol analysis, which do not provide 
sufficient information on the MQTT protocol parameters. 
In contrast, our proposed UDP features are based on 
unsupervised machine learning which can successfully 
detect and distinguish such attacks including the unknown 
attacks. 

 

2.1 Autoencoder 
According to [6], Autoencoder can be defined as a 

neural network that detect an identity function that can 
recreate the input data with high accuracy by using back 
propagation. The Autoencoder has two main parts (cf. 
Figure 1), an encoder that compresses the input into a 
dimensional latent subspace that is lower and a decoder 
that recreate the input from this latent subspace. The 
encoder and the decoder, can be defined as transitions ϕ 
and ψ such that: 

ϕ: X → F      

ψ: F → X      

ϕ, ψ = argmin ϕ, ψ〖‖ X - (ψ ∘ ϕ) X ‖〗^2                   
(1)                                        
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      Autoencoder have been suggested for feature 
engineering in the network security environment, e.g., to 
learn important features of malware classification [22] and 
also for detecting DDOS attacks on application layer [23]. 
The linear analogue of Autoencoder is the principal 
component analysis (PCA) which is based on statistical 
techniques. 

2.2 Restricted Boltzmann Machines (RBM) 
The authors in [24] stated that Boltzmann machine 

(BM) is a bidirectionally connected network of stochastic 
processing units. BMs are commonly used to learn 
important features of an unknown probability distribution 
based on samples from the distribution. However, the 
training process of the BM is usually computationally 
intensive and tedious. The restricted Boltzmann machine 
attempts to solve the training problem of BMs by 
imposing key restrictions on the architecture of the BM. 
The BM is a fully connected network of bidirectional 
nodes where each node is connected to every other node. 
The RBM on the other hand is presented as a relatively 
smaller network of bidirectional nodes with the restriction 
that nodes on the same layer are not connected to each 
other horizontally [24]. 
 

The restricted Boltzmann machine is a generative 
model that is used to sample and generate instances from a 
learned probability distribution. Given the training data, 
the goal of the RBM is to learn the probability distribution 
that best fits the training data. The RBM consists of m 
visible units V= (V_1, V_2…., V_ m) and n hidden units 
H= (H_1, H_2…., H_ n) arranged in two layers. 
 
 

 

The visible units lie on the first layer and represent 
the features in the training data (see Figure 2). Usually, 
one visible unit will represent one feature in an example in 
the training data. The hidden unit’s model and represent 
the relationship between the features in the training data. 
The random variables (V, H) take on values (v, h) ∈ [0,1] 
^m for continuous variables and the underlying probability 
distribution in the training data is given by the Gibbs 
distribution p (v, h) =〖1/z〗^ (-E (v, h)) with the energy 
function in equation 1; 
 

 
In equation 2, w_ij are real valued weights associated 

with v_ j and h_ i, and b_ j and c_ i are real valued bias 
terms associated with units i and j respectively. The 
contrastive divergence learning algorithm is one of the 
successful training algorithms used to approximate the 
log-likelihood energy gradient and perform gradient ascent 
to maximize the likelihood [24]. 
 

After a successful training, the RBM should be able 
to represent the underlying probability distribution of the 
training data and when presented with unseen examples, 
the RBM should be able to generate similar 
representations to the example provided. 

 
 2.3 K-Means  

The K-means algorithm takes the full dataset 
consisting of multiclass data points, then clusters the 
datapoints into separate clusters to the best of its ability; 
this classification occurs when you feed in the input and 
the model assigns the input into one of the computed 
clusters. Given a set of observations (x_1, x_2, x_3, ..., x_ 
n), where each observation is a d-dimensional real vector, 
k-means clustering aims to partition the n observations 
into k (≤ n) sets S = {s_1, s_2, ..., s_ k} so as to minimize 
the within-cluster sum of squares (WCSS) (i.e., variance). 

 
 2.4Expectation-Maximization (EM)  

The authors in [25] stated that EM algorithm is used 
for solving mixture models that assume the existence of 
some unobserved data. Mathematically, the EM algorithm 
can be described as follows; given the statistical model 
that generates a set of observed data X, latent data Z, 
unknown parameters θ and the likelihood function L 
(θ; X) =p (X, Z ┤| θ), the maximum likelihood of the 
unknown data θ  is determined by maximizing the 
marginal log-likelihood of the observed data X using 
equation 3: 
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In the expectation step, the likelihood of the unknown 

parameters is computed as the log-likelihood of the known 
parameter estimates, while in equation 4 the maximization 
step is used to select the new value that maximizes the 
log-likelihood given the estimates from equation 5.  
In our research, we differ from current work (e.g. [26]) in 
two ways. First, we work with unsupervised machine 
learning methods using both normal and suspicious 
network data to train. Second, we made use of dimension 
reduction methods such as K-means clustering with PCA, 
Expectation maximization, Restricted Boltzmann Machine 
and Autoencoder (where K-means and EM are both trained 
using normal and suspicious data; RBM and AE was 
trained on only suspicious data), all these methods were 
not only for feature engineering [22] but for classification 
as well. 
 
 
3. METHODOLOGY 
 

A DDoS attack temporarily or indefinitely constraints 
the availability of a network resource to its intended users. 
The challenge then for the network administrator is to 
deploy DDoS detection systems that are capable of 
analyzing incoming packets to the transport layer. These 
detection systems may then determine if these incoming 
packets are suspicious or benign. In the following 
subsections, we present the design methodology for a 
DDoS detection system that makes use of unsupervised 
machine learning algorithms. The problem is therefore to 
design and train four efficient unsupervised machine 
learning systems that are capable of detecting a DDOS 
attack on the transport layer. 
 
3.1 The Datasets 

In order to train the unsupervised machine learning 
algorithms used in this study, we sourced for modern 
DDOS attack datasets including the following datasets.  
 The first dataset is the DDOS evaluation dataset 
(CICDDoS2019) [27]. The full dataset consists of both 
reflection and exploitation based DDOS attacks in the 
form of both suspicious and benign network packets. The 
dataset is further grouped into TCP and UDP based 
attacks. 
 The second dataset is the Mirai dataset created by [28]. 
Mirai is specific type of botnet malware that overrides 
networked Linux devices and successfully turns them into 
bots used for distributed attacks such as DDOS. The Mirai 
dataset consists of 80,000 SYN-flood instances and 65,000 
UDP-lag attacks on a security camera IOT device.  

 Finally, the third dataset is the BASHLITE botnet 
attack dataset on a webcam IOT device and is also 
provided by [28]. Similar to Mirai, BASHLITE is a botnet 
malware for distributed attacks on networked devices. The 
BASHLITE dataset consists of 110,000 SYN-flood 
instances and 100,000 UDP-lag attacks. Both Mirai and 
BASHLITE are open-source malware that can be used for 
academic research purposes. 
 
. 3.2  Data pre-processing 

The dataset largely consists of numerical values, so 
the pre-processing steps are minimal. The most important 
pre-processing action taken was to normalize the values in 
the dataset using the standard minmax normalization 
expressed below in equation 6. 

 
3.3 Selected Unsupervised Learning Algorithms The 
selected unsupervised machine learning algorithms 
employed in this work are explained below. 
Autoencoder 

The autoencoder is made up of two feed forward 
neural networks that mirror each other in terms of the 
number of layers and the number of nodes. Recall that the 
goal of the autoencoder model is to learn the latent space 
of an encoded vector that can be used to efficiently 
reconstruct the input vector. Thus, the goal of the encoder 
is to encode the input vector to a lower dimensional vector 
space [3]. 
 

 
Figure 3 The Autoencoder architecture 
 

Each neuron in the hidden layers of the encoder 
and decoder make use of the Rectified Linear Unit (ReLu) 
activation function. The hyperparameters selected for the 
autoencoder model are outlined as follows; 
Batch size: A batch size of 2048 is selected. Number of 
epochs: An epoch number ranging between 10-20 is 
initialized with 70 showing to be the most optimal as we 
shall see from the results.  
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Loss: The mean squared error loss function is used. 
Optimizer: The Adaptive (ADAM) algorithm is selected. 
ADAM is the state-of-the-art optimizer for deep neural 
networks (Schneider et al, 2019). 
 Betas: These are ADAM optimizer coefficients used 
for computing running averages of gradient and its square 
(0.5, 0.999). Learning rate (0.0002). 
 
 3.3.2 Restricted Boltzmann Machine 

The RBM used for this project is a two-layer RBM 
with an architecture as described in section 2.2 and figure 
2. The dataset consists of continuous variables scaled 
between 0 and 1 so therefore we model the RBM as a 
continuous variable model with the hidden units and 
visible units taking on values between (v,h)∈[0,1]^m 
where m is number of visible units Similar to the 
autoencoder algorithm, we use the reconstruction error to 
define the classification task for the RBM. The parameters 
selected for the RBM include:  
 Number of units: We always set the number of hidden 
and visible units to be the same according to the number of 
features present in the training data. That is, for instance 
for the CICDDoS2019, the number of hidden and visible 
units for the RBM is 77.  
 Training algorithm: The k-step contrastive divergence 
algorithm with Gibb’s sampling is used for training the 
algorithm with k=10. 
 Training Epoch:  An epoch of 10 is selected, 
experimental results show that increasing the epoch 
beyond 10 does not improve training results. 

 
 

3.3.3. K-Means  
1.1 The K-Means clustering algorithm has relatively 
fewer parameters to select. The default “pure” version of 
the K-means algorithm is used as opposed to variants such 
as Elkan’s K-Means [29] where triangle inequality is used. 
The parameters for the algorithm are outlined as follows; 

1.2 3.3.4 Expectation-Maximization  

1.3 The expectation-maximization algorithm is setup with 
similar parameters as the k-means algorithm and in fact the 
software implementation of the two algorithms in the 
sci-kit learn machine learning framework borrow from 
each other. However, the core implementations are 
different and the parameters for the expectation 
maximization algorithm include:  

1.4  Number of components: This is the number of 
clusters to be estimated and is set to two because of the 
binary classification task of suspicious or benign. 

1.5  Number of iterations: The number of iterations 
is like the epoch of the autoencoder where they both define 

the number of training iterations to run the algorithm. A 
default value of 300 is used.  

1.6  Covariance type: The covariance parameter 
defines the structure of the covariance matrix with respect 
to each component or cluster. The “full” covariance is 
chosen where each cluster has its own covariance matrix 
and has been shown to achieve the best results.  

3.4 Evaluating Model Performance 
3.4.1  Accuracy 
        In machine learning parlance, the task of the 
determining whether or not an incoming packet is 
suspicious or benign is known as classification. For the 
K-Means and EM algorithm, the clustering of a feature 
point together with highly similar feature points is in itself, 
a form of classification. We can evaluate these models by 
quantifying how accurate their classification of a packet is 
with respect to its clusters. A simple net accuracy score of 
the predicted class compared to the actual class gives us an 
empirical quantification of the model’s performance. 

.      We can define a reconstruction error that describes 
the difference between the reconstructed output and 
original input vector. The reconstruction error is defined as 
the mean squared error (MSE) in equation 7 as follows: 

1.7  

Where  is the original input vector and  is the 
reconstructed output vector? The mean squared error is 
computed over all the output of the model. Ideally, it is 
preferable to have a mean squared error close to zero. 
However, depending on the size of the values in the 
predicted output, a mean squared error within the range of 
2-5 decimal places is acceptable. Representing the 
reconstruction error as the mean squared error allows one 
to know when the model is presented with an input that is 
very far off from what was contained in the training set. 
 Thus, if for instance the autoencoder is trained on a 
dataset comprising only of benign packets, whenever a 
benign packet is presented to the autoencoder, we expect 
that the reconstructed output should be quite similar and 
therefore the reconstruction error should be low. However, 
if this same model is presented with a suspicious packet 
that is fairly different from the features of benign packet, 
then we should expect the reconstruction error to be quite 
high. The same logic can be applied to the restricted 
Boltzmann machine 

1.8 With this formulation established, it is easier to frame   
the classification problem using the autoencoder and RBM. 
Where in our example, a low reconstruction error means 
the packet is benign, while a high reconstruction error 
means the packet is suspicious. Using these predictions, 
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we can then compute the accuracy much like we did with 
the K-Means model. The accuracy score simply calculates 
a ratio of the number of correctly classified packets over 
the incorrectly classified packets. 

3.4.2    Normalized Mutual Information (NMI) 
The NMI provides a means of evaluating the 

clustering performance of the algorithm by comparing the 
correlation between the predicted class and the target class. 
If the predicted and target data are represented as two 
separate distributions, then we can also apply the NMI to 
determine performance of non-clustering algorithms. 
 
 
3 Experimental Results  
 

In this session, we present the experimental results for 
each model across all datasets. The results are presented in 
subsections, with each subsection dedicated to a model. 
For the Autoencoder and Restricted Boltzmann Machine, 
their subsections consist of plots showing the training and 
test loss, a table summarizing the performance across the 
datasets and a detailed discussion of the results. For the 
rest of the models, they do not optimize a loss function and 
so only the summary tables and a detailed discussion of 
the results were presented. Performance evaluations are 
also carried out using the accuracy and Normalized Mutual 
score. The innovation of this work lies in the exact 
detection of the anomality behaviour of the nodes. DDoS 
attacker tried to affect network in its different forms. The 
basic nature of DDoS attacker is to flood the network with 
a large number of packets and then exhaust the network. 
4.1 Comparison Result and Analysis 
The efficiency of planned attack detection system is also 
assessed against five existing works of [Bellingerite al., 
(2020)], [Almsgiving et al., (2017)], [Yan Naing Soe,2020] 
(Naeem Firdous Syed,2020) and [Ashrafi et al., (2013)] 
who have addressed intrusion detection against DDoS 
attack using KDD dataset. compares the detection 
accuracy of the proposed work against the existing works. 
Recently, [Vellinga et al., (2020)] had proposed Taylor 
Elephant Herd Optimisation based Deep Belief Network to 
detect DDoS attacks and attained a classification accuracy 
of only 83%. Further, [Almsgiving et al., (2017)] had 
realised Random forest classifier to attain a detection 
accuracy of 93.77% while [Ashrafi et al., (2013)] work 
comprising of extended Classifier System with Artificial 
Neural Network (ANN-XCS) demonstrated a detection 
accuracy of 98.1% against the proposed work that have 
implemented the optimization techniques with 
unsupervised machine learning to achieve a detection 
accuracy of 99.93%.  
This paper focusses on detecting DDoS attack in IoT 
networks by classifying incoming network packets on the 
transport layer as either “Suspicious” or “Benign” using 
unsupervised machine learning algorithms. In this work, 

two deep learning algorithms and two clustering 
algorithms were independently trained for mitigating 
DDoS attacks. We lay emphasis on exploitation based 
DDOS attacks which include TCP SYN-Flood attacks and 
UDP-Lag attacks. We use Mirai, BASHLITE and 
CICDDoS2019 dataset in training the algorithms during 
the experimentation phase. 
 
4.3 Autoencoder training and test results 

Figure 4 shows the desired behavior of the 
backpropagation training algorithm where the training and 
validation loss decrease steadily and in unison as the 
training epoch increases. It is important to point out that 
the autoencoder is trained to reconstruct SYN-Flood data, 
meaning it should be unable to reconstruct benign data. We 
chose the SYN-Flood data for training because there were 
more instances than the benign data. The same choice is 
made for the UDP-Autoencoder model, where we train it 
on the UDP-Lag data instead of on benign UDP data. 

 

 
Figure 4 Autoencoder training and validation loss 
on the CICDDoS2019 SYN-Flood (a) and UDP-Lag 
(b). 

 
Figure 5: Autoencoder training and validation loss 
on the Mirai SYN-flood (a) and UDP-Lag data (b) 
The training and validation loss for the BASHLITE loss 
shown in Figure 6 is less steep than that of the Mirai loss. 
Table 1 shows the accuracy of the autoencoder model 
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across all datasets, here we can see that the model has the 
highest accuracy on the BASHLITE dataset hence the 
reason why the loss is less steep and flattens out quickly by 
epoch 10 and 14 respectively.  
 
Table 1 Test Accuracy and Normalized Mutual 
Information score for the autoencoder models on the 
SYN-Flood and UDP-Lag across all datasets. 
 
Data Accuracy (%) NMI 

CICDDoS2019 

SYN-Flood 

0.8945 0.5363 

CICDDoS2019 

UDP-Lag 

0.8617 0.4216 

Mirai SYN-Flood 0.9744 0.6211 

Mirai UDP-Lag 0.9621 0.5733 

BASHLITE 

SYN-Flood 

0.9933 0.9927 

BASHLITE UDP-Lag 0.9921 0.9822 

 
In table 1, we present the accuracy and NMI scores for the 
autoencoder model. These scores were determined based on 
the formulation described in section 3.4. The result show 
that the autoencoder model performs best on the 
BASHLITE SYN-Flood data with a higher accuracy of 
99%. In general, the autoencoder performs better on the 
Mirai and BASHLITE datasets than that of the 
CICDDoS2019 dataset. 
 
4.4 Restricted Boltzmann Machine 

The restricted Boltzmann machine performed 
poorly on the CICDDoS2019 dataset but the training 
process evolved smoothly with the loss dropping as the 
epoch increased.  
 
Table 2 Test Accuracy and Normalized Mutual 
Information score for the Restricted Boltzmann machine 
model on the SYN-Flood and UDP-Lag across all datasets. 
 
Data Accuracy (%) NMI 

CICDDoS2019 

SYN-Flood 

0.5651 0.1919 

CICDDoS2019 

UDP-Lag 

0.5089 0.1103 

Mirai SYN-Flood 0.6067 0.1639 

Mirai UDP-Lag 0.7797 0.3895 

BASHLITE 

SYN-Flood 

0.6709 0.2506 

BASHLITE 

UDP-Lag 

0.6210 0.1007 

 
The RBMs performance on the BASHLITE dataset is 
similar to its performance on the Mirai data, still, the overall 
performance is much lower than that of the Autoencoder. 
The results indicate that the RBM is less suited for the kind 
of precise reconstruction of the continuous input value that 
is easily achieved by the autoencoder. 
 
4.5 K-Means training and test results 

The K-Means algorithm is not a gradient based learner 
so we cannot bother ourselves with iterative plots such as 
those presented for the autoencoder and RBM models. Also, 
the K-Means algorithm is trained on a distribution that 
contains a mixture of both suspicious and benign features. 
The model’s accuracy and NMI are shown in Table 3. 
Table 3 Test Accuracy and Normalized Mutual Information 
score for the K-Means model on the SYN-Flood and 
UDP-Lag training and validation data. 
 
Data Accuracy (%) NMI 
CICDDoS2019 
SYN-Flood 

0.7538 0.1949 

CICDDoS2019 
UDP-Lag 

0.7139 0.1427 

Mirai SYN-Flood 0.7636 0.0912 
Mirai UDP-Lag 0.7478 0.1387 
BASHLITE 
SYN-Flood 

0.6451 0.1059 

BASHLITE UDP-Lag 0.6823 0.1306 
 

From the results, we observe that the K-Means model 
performs relatively poorer as compared to the autoencoder 
model but it performs better on average when compared to 
RBM. However, and once again, one can see some slight 
disparity in performance on the SYN-Flood data compared 
to UDP-Lag data owing to the variance amongst the 
features in these datasets.  

The NMI scores for the K-Means model are relatively 
low too with well below average correlations. Although 
one should interpret the accuracy and NMI scores 
independently, the low NMI scores for the K-Means 
discourages one from being too optimistic about the 
model’s performance.  

 
4.6 Expectation-Maximization training and test results 

The Expectation-Maximization algorithm performs 
better than the k-means algorithm on average with its 
highest accuracy being 80% on the Mirai UDP-lag data 
(Table 4). 
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Table 4 Test Accuracy and Normalized Mutual 
Information score for the EM model on the SYN-Flood 
and UDP-Lag training and validation data 
Data Accuracy (%) NMI 

CICDDoS2019 

SYN-Flood 

0.7096 0.1144 

CICDDoS2019 

UDP-Lag 

0.6759 0.1446 

Mirai SYN-Flood 0.7030 0.2771 

Mirai UDP-Lag 0.8051 0.2901 

BASHLITE 

SYN-Flood 

0.7636 0.3074 

BASHLITE UDP-Lag 0.7575 0.2678 

 
Although, the EM algorithm performs better than the 

k-means algorithm the performance is still poor compared 
to the autoencoder. The clustering algorithms struggle with 
large high-dimensional and continuous data. The 
maximization step in the EM algorithm gives it an edge 
over the k-means algorithm in this aspect. Where the 
k-means algorithm struggles to compute a centroid from 
high dimensional continuous data, with low variance as is 
the case with Mirai and BASHLITE, the EM algorithm 
models the problem probabilistically instead, optimizing 
for the log-likelihood of the latent variables.  
Tables 5 and 6 below summarize the accuracy and NMI 
scores across all datasets for all models, highlighting the 
autoencoder’s superiority for machine learning task.  
 
Table 5 Summary of the Accuracies across all datasets and 
all models. 

 

Table 6 Summary of the Normalized Mutual Information 
score across all datasets and all models. 
 

 
 
5. CONCLUSIONS 
 

The unsupervised machine learning models have been 
developed and trained on both SYN-Flood and ICMP 
flood DDOS datasets. The training and test results both 
show that the deep learning autoencoder model performs 
better in the classification of incoming packets as 
suspicious or benign. Over the past decade, deep learning 
algorithms have established themselves as the 
state-of-the-art machine learning algorithms. Our results 
show that in the unsupervised machine learning space, the 
deep learning algorithm also outperforms traditional 
clustering algorithms such as the K-Means and 
Expectation-Maximization algorithm as well as other 
generative deep learning models such as the Restricted 
Boltzmann machine. However, when comparing 
unsupervised machine learning algorithms, one must be 
careful to formalize the performance evaluation problem 
properly. The project shows that it is possible to frame the 
autoencoder model as a classification algorithm using the 
value of the reconstruction error and that it is possible to 
apply this formulation efficiently to difficult problem 
domains such as network packet analysis. Once proper 
formulations are established, the accuracy score can then 
be used to evaluate both models fairly. Although the 
autoencoder model is clearly the superior model, the 
DDOS-Detection class we developed provides methods 
that allow one to perform network packet classification 
using either the autoencoder model or the 
Expectation-Maximization model. The simulation results 
show that the DDOS-Detection tool built around these 
models can achieve a net accuracy of as high as 99%. 
Future studies should aim to replicate results in a larger 
system to detect compromised end-points and also ensure 
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that algorithms are current by possible retraining 
approaches to handle abnormalities in network 
performance.  
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