
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

170

Manuscript received April 5, 2024
Manuscript revised April 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.4.20

A DDoS attack Mitigation in IoT Communications

Using Machine Learning

Hailye Tekleselase
Hailye83@gmail.com

School of Informatics, Wolaita Sodo University, Addis Ababa, Ethiopia

Abstract
 Through the growth of the fifth-generation networks and
artificial intelligence technologies, new threats and challenges
have appeared to wireless communication system, especially in
cybersecurity. And IoT networks are gradually attractive stages
for introduction of DDoS attacks due to integral frailer security
and resource-constrained nature of IoT devices. This paper
emphases on detecting DDoS attack in wireless networks by
categorizing inward network packets on the transport layer as
either “abnormal” or “normal” using the integration of machine
learning algorithms knowledge-based system. In this paper, deep
learning algorithms and CNN were autonomously trained for
mitigating DDoS attacks. This paper lays importance on misuse
based DDOS attacks which comprise TCP SYN-Flood and ICMP
flood. The researcher uses CICIDS2017 and NSL-KDD dataset
in training and testing the algorithms (model) while the
experimentation phase. accuracy score is used to measure the
classification performance of the four algorithms. the results
display that the 99.93 performance is recorded.
Keywords:
Distributed denial of Service; wireless networks; Machine
Learning Algorithms; Transmission Control Protocol; CNN;
network security

1. Introduction

The increase of IoT devices and computation devices
have completed living relaxed and suitable for us due to
the debauched and correct computation of our information.
But, augmented incorporation and placement of linked
devices also disclosures vital capitals to DDoS threats [1].
Technological growths in current years have complete it
likely to connect a variety of devices to computer networks,
which brings various benefits to users. But, with the
increase of the technologies elaborate, the number of
cyberattacks is also increasing, using more sophisticated
means to incorrectly access sensitive information and to
extort money or the already mentioned interruption of
services. One such technology is the Internet of
Things (IoT) [2].

The idea of the Internet of Things includes various
devices, sensors, objects, and intelligent nodes that are
able to function autonomously and communicate with each
other without human intervention. Such IoT devices are
able to deliver a number of valuable facilities and, cheers

to sensors and actuators, provide various data in real-time.
In many cases, however, devices in the field of the Internet
of Things, in particular, contain various software bugs
brought in from the factory that make them vulnerable.
Such vulnerabilities often allow attackers to perform
various cyberattacks and compromise the security of the
environment in which IoT devices are located [3].

Several defense mechanisms have been proposed in
the past against DDoS attacks in IoT networks. They can
be divided into two basic groups: traditional DDoS
defenses
and IoT-specific DDoS defenses. They fluctuate in terms
of place and difficulty. While traditional DDoS defenses
are applied to the target server and are fundamentally
homogeneous, IoT-specific DDoS defenses are applied to
IoT devices and are more complex, reflecting the
heterogeneity of IoT devices. In both cases, detection
techniques are used to detect abnormal activities in the
network or host [4].

The rest of the paper is organized as follows: Section
2 presents related works; Section 3 elaborates the data set
and describes the methodology followed in the research;
Section 4 details the experimentation procedures, the result
gotten and the observations from the results while Section
5 presents the conclusion of the work as well as
highlighting the future work

2. Related work

According to [5] detection systems of network
intrusion have traditionally been rule-based. Nevertheless,
machine learning and statistical approaches have also
made major contributions [5]. Machine learning have also
proven to be effective in two main aspects of network
security which are: feature engineering (i.e., the ability to
extract the most important features from network data to
assist model learning) [6] and classification. In security
environment, classification tasks usually involve training
both suspicious and benign data in order to create models
that can detect known attacks [7].

The authors in [8] pointed out that steps such as
collection of network information, feature extraction and

https://doi.org/10.22937/IJCSNS.2020.20.10.01

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

171

analysis, and classification detection provide a means for
building efficient software-based tools that can detect
anomalies such as software-defined networking (SDN).
Another study [9] provides a thorough classification of
DDoS attacks in terms of detection technology. The study
also emphasizes how the characteristics of the network
security of an SDN defines the possible approaches to
setting up a defense against DDoS attacks. Similarly, [10]
have explored this area too. In other approaches to DDoS
defense, [4] propose a scheduling based SDN controller
architecture to effectively limit attacks and protect
networks in DoS attacks.

The growth of cloud computing and IOT has
inevitably led to the migration of denial-of-service attacks
on cloud computing devices as well. Thus, cloud
computing devices must implement efficient DDOS
detection systems in order to avoid loss of control and
breach of security [11]. Studies such as [12] aim to tackle
this problem by determining the source of a DDOS attack
using Trace (powerful trace) source control methods. Trace
controlled such attack sources from two aspects, packet
filtering and malware tracing, to prevent the cloud from
becoming a tool for DDoS attacks. Other studies such as
[13] approach the problem of filtering by using a set of
security services called filter trees. In the study, XML and
HTTP based DDOS attacks are filtered out using five
filters for detection and resolution. Detection based on
classification has also been proposed and a classifier
system for detection against DDOS TCP flooding attacks
was created [14].

These classifiers work by taking in an incoming

packet as input and then classifying the packet as either
suspicious or otherwise. The nature of an IP network is
often susceptible to changes such as the flow rate on the
network and in order to deal with such changes,
self-learning systems have been proposed that learn to
detect and adapt to such changes in the network [15].

Many of the existing models for DDoS detection have
primarily focused on SYN-flood attacks and haven’t been
trained to detect botnet attributes. More studies are thus
needed where models are trained to detect botnet as botnet
becomes the main technology for DDoS organization and
execution [16]. Botnet DDoS attacks infect multitude of
remote systems turning them to zombie nodes that are then
used for distributed attacks. In detecting botnet DDoS
attacks, authors in [17] used a deep learning algorithm to
detect TCP, UDP and ICMP DDoS attacks. They also
distinguished real traffic from DDoS attacks, and
conducted in-depth training on the algorithm by using real
cases generated by existing popular DDoS tools and DDoS
attack modes. Also, [18] proposed a DDoS attack model
and demonstrated that by modelling different allocation

strategies. The proposed DDoS attack model is applied to
game planning strategies and can simulate different botnet
attack characteristics.

According to [19] “DDoS detection approaches can
operate in one of the following three modes: supervised,
semi-supervised and unsupervised mode. For the detection
approach in supervised mode, it requires a trained dataset
(or a classifier) to detect the anomalies, where the trained
dataset includes input variables and output classes. The
trained dataset is used to get the hidden functions and
predict the class of input variables (incoming traffic
instances). This mode is similar to a predictive model. For
example, Classification techniques comes under the
category of supervised data mining” [20]. “For the
Approaches that work in the semi-supervised mode, they
have incomplete training data i.e., training data is only
meant for normal class and some targets are missing for
anomaly class” [21]. Unlike supervised and
semi-supervised learning, unsupervised machine learning
algorithms do not have any input-output pairs but the
algorithm is trained such that it can accurately determine
the unknown data point. The following subsections further
discusses the unsupervised learning algorithms we used in
this work. current effort that goes to detect IoT based
attacks proposed MQTT transaction-based features
Mustafa et al. (2019). But the authors used features based
on the TCP protocol analysis, which do not provide
sufficient information on the MQTT protocol parameters.
In contrast, our proposed UDP features are based on
unsupervised machine learning which can successfully
detect and distinguish such attacks including the unknown
attacks.

2.1 Autoencoder
According to [6], Autoencoder can be defined as a

neural network that detect an identity function that can
recreate the input data with high accuracy by using back
propagation. The Autoencoder has two main parts (cf.
Figure 1), an encoder that compresses the input into a
dimensional latent subspace that is lower and a decoder
that recreate the input from this latent subspace. The
encoder and the decoder, can be defined as transitions ϕ
and ψ such that:

ϕ: X → F

ψ: F → X

ϕ, ψ = argmin ϕ, ψ〖‖ X - (ψ ∘ ϕ) X ‖〗^2
(1)

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

172

 Autoencoder have been suggested for feature
engineering in the network security environment, e.g., to
learn important features of malware classification [22] and
also for detecting DDOS attacks on application layer [23].
The linear analogue of Autoencoder is the principal
component analysis (PCA) which is based on statistical
techniques.

2.2 Restricted Boltzmann Machines (RBM)
The authors in [24] stated that Boltzmann machine

(BM) is a bidirectionally connected network of stochastic
processing units. BMs are commonly used to learn
important features of an unknown probability distribution
based on samples from the distribution. However, the
training process of the BM is usually computationally
intensive and tedious. The restricted Boltzmann machine
attempts to solve the training problem of BMs by
imposing key restrictions on the architecture of the BM.
The BM is a fully connected network of bidirectional
nodes where each node is connected to every other node.
The RBM on the other hand is presented as a relatively
smaller network of bidirectional nodes with the restriction
that nodes on the same layer are not connected to each
other horizontally [24].

The restricted Boltzmann machine is a generative
model that is used to sample and generate instances from a
learned probability distribution. Given the training data,
the goal of the RBM is to learn the probability distribution
that best fits the training data. The RBM consists of m
visible units V= (V_1, V_2…., V_ m) and n hidden units
H= (H_1, H_2…., H_ n) arranged in two layers.

The visible units lie on the first layer and represent
the features in the training data (see Figure 2). Usually,
one visible unit will represent one feature in an example in
the training data. The hidden unit’s model and represent
the relationship between the features in the training data.
The random variables (V, H) take on values (v, h) ∈ [0,1]
^m for continuous variables and the underlying probability
distribution in the training data is given by the Gibbs
distribution p (v, h) =〖1/z〗^ (-E (v, h)) with the energy
function in equation 1;

In equation 2, w_ij are real valued weights associated

with v_ j and h_ i, and b_ j and c_ i are real valued bias
terms associated with units i and j respectively. The
contrastive divergence learning algorithm is one of the
successful training algorithms used to approximate the
log-likelihood energy gradient and perform gradient ascent
to maximize the likelihood [24].

After a successful training, the RBM should be able
to represent the underlying probability distribution of the
training data and when presented with unseen examples,
the RBM should be able to generate similar
representations to the example provided.

 2.3 K-Means

The K-means algorithm takes the full dataset
consisting of multiclass data points, then clusters the
datapoints into separate clusters to the best of its ability;
this classification occurs when you feed in the input and
the model assigns the input into one of the computed
clusters. Given a set of observations (x_1, x_2, x_3, ..., x_
n), where each observation is a d-dimensional real vector,
k-means clustering aims to partition the n observations
into k (≤ n) sets S = {s_1, s_2, ..., s_ k} so as to minimize
the within-cluster sum of squares (WCSS) (i.e., variance).

 2.4Expectation-Maximization (EM)

The authors in [25] stated that EM algorithm is used
for solving mixture models that assume the existence of
some unobserved data. Mathematically, the EM algorithm
can be described as follows; given the statistical model
that generates a set of observed data X, latent data Z,
unknown parameters θ and the likelihood function L
(θ; X) =p (X, Z ┤| θ), the maximum likelihood of the
unknown data θ is determined by maximizing the
marginal log-likelihood of the observed data X using
equation 3:

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

173

In the expectation step, the likelihood of the unknown

parameters is computed as the log-likelihood of the known
parameter estimates, while in equation 4 the maximization
step is used to select the new value that maximizes the
log-likelihood given the estimates from equation 5.
In our research, we differ from current work (e.g. [26]) in
two ways. First, we work with unsupervised machine
learning methods using both normal and suspicious
network data to train. Second, we made use of dimension
reduction methods such as K-means clustering with PCA,
Expectation maximization, Restricted Boltzmann Machine
and Autoencoder (where K-means and EM are both trained
using normal and suspicious data; RBM and AE was
trained on only suspicious data), all these methods were
not only for feature engineering [22] but for classification
as well.

3. METHODOLOGY

A DDoS attack temporarily or indefinitely constraints
the availability of a network resource to its intended users.
The challenge then for the network administrator is to
deploy DDoS detection systems that are capable of
analyzing incoming packets to the transport layer. These
detection systems may then determine if these incoming
packets are suspicious or benign. In the following
subsections, we present the design methodology for a
DDoS detection system that makes use of unsupervised
machine learning algorithms. The problem is therefore to
design and train four efficient unsupervised machine
learning systems that are capable of detecting a DDOS
attack on the transport layer.

3.1 The Datasets

In order to train the unsupervised machine learning
algorithms used in this study, we sourced for modern
DDOS attack datasets including the following datasets.
 The first dataset is the DDOS evaluation dataset
(CICDDoS2019) [27]. The full dataset consists of both
reflection and exploitation based DDOS attacks in the
form of both suspicious and benign network packets. The
dataset is further grouped into TCP and UDP based
attacks.
 The second dataset is the Mirai dataset created by [28].
Mirai is specific type of botnet malware that overrides
networked Linux devices and successfully turns them into
bots used for distributed attacks such as DDOS. The Mirai
dataset consists of 80,000 SYN-flood instances and 65,000
UDP-lag attacks on a security camera IOT device.

 Finally, the third dataset is the BASHLITE botnet
attack dataset on a webcam IOT device and is also
provided by [28]. Similar to Mirai, BASHLITE is a botnet
malware for distributed attacks on networked devices. The
BASHLITE dataset consists of 110,000 SYN-flood
instances and 100,000 UDP-lag attacks. Both Mirai and
BASHLITE are open-source malware that can be used for
academic research purposes.

. 3.2 Data pre-processing

The dataset largely consists of numerical values, so
the pre-processing steps are minimal. The most important
pre-processing action taken was to normalize the values in
the dataset using the standard minmax normalization
expressed below in equation 6.

3.3 Selected Unsupervised Learning Algorithms The
selected unsupervised machine learning algorithms
employed in this work are explained below.
Autoencoder

The autoencoder is made up of two feed forward
neural networks that mirror each other in terms of the
number of layers and the number of nodes. Recall that the
goal of the autoencoder model is to learn the latent space
of an encoded vector that can be used to efficiently
reconstruct the input vector. Thus, the goal of the encoder
is to encode the input vector to a lower dimensional vector
space [3].

Figure 3 The Autoencoder architecture

Each neuron in the hidden layers of the encoder
and decoder make use of the Rectified Linear Unit (ReLu)
activation function. The hyperparameters selected for the
autoencoder model are outlined as follows;
Batch size: A batch size of 2048 is selected. Number of
epochs: An epoch number ranging between 10-20 is
initialized with 70 showing to be the most optimal as we
shall see from the results.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

174

Loss: The mean squared error loss function is used.
Optimizer: The Adaptive (ADAM) algorithm is selected.
ADAM is the state-of-the-art optimizer for deep neural
networks (Schneider et al, 2019).
 Betas: These are ADAM optimizer coefficients used
for computing running averages of gradient and its square
(0.5, 0.999). Learning rate (0.0002).

 3.3.2 Restricted Boltzmann Machine

The RBM used for this project is a two-layer RBM
with an architecture as described in section 2.2 and figure
2. The dataset consists of continuous variables scaled
between 0 and 1 so therefore we model the RBM as a
continuous variable model with the hidden units and
visible units taking on values between (v,h)∈[0,1]^m
where m is number of visible units Similar to the
autoencoder algorithm, we use the reconstruction error to
define the classification task for the RBM. The parameters
selected for the RBM include:
 Number of units: We always set the number of hidden
and visible units to be the same according to the number of
features present in the training data. That is, for instance
for the CICDDoS2019, the number of hidden and visible
units for the RBM is 77.
 Training algorithm: The k-step contrastive divergence
algorithm with Gibb’s sampling is used for training the
algorithm with k=10.
 Training Epoch: An epoch of 10 is selected,
experimental results show that increasing the epoch
beyond 10 does not improve training results.

3.3.3. K-Means
1.1 The K-Means clustering algorithm has relatively
fewer parameters to select. The default “pure” version of
the K-means algorithm is used as opposed to variants such
as Elkan’s K-Means [29] where triangle inequality is used.
The parameters for the algorithm are outlined as follows;

1.2 3.3.4 Expectation-Maximization

1.3 The expectation-maximization algorithm is setup with
similar parameters as the k-means algorithm and in fact the
software implementation of the two algorithms in the
sci-kit learn machine learning framework borrow from
each other. However, the core implementations are
different and the parameters for the expectation
maximization algorithm include:

1.4 Number of components: This is the number of
clusters to be estimated and is set to two because of the
binary classification task of suspicious or benign.

1.5 Number of iterations: The number of iterations
is like the epoch of the autoencoder where they both define

the number of training iterations to run the algorithm. A
default value of 300 is used.

1.6 Covariance type: The covariance parameter
defines the structure of the covariance matrix with respect
to each component or cluster. The “full” covariance is
chosen where each cluster has its own covariance matrix
and has been shown to achieve the best results.

3.4 Evaluating Model Performance
3.4.1 Accuracy
 In machine learning parlance, the task of the
determining whether or not an incoming packet is
suspicious or benign is known as classification. For the
K-Means and EM algorithm, the clustering of a feature
point together with highly similar feature points is in itself,
a form of classification. We can evaluate these models by
quantifying how accurate their classification of a packet is
with respect to its clusters. A simple net accuracy score of
the predicted class compared to the actual class gives us an
empirical quantification of the model’s performance.

. We can define a reconstruction error that describes
the difference between the reconstructed output and
original input vector. The reconstruction error is defined as
the mean squared error (MSE) in equation 7 as follows:

1.7

Where is the original input vector and is the
reconstructed output vector? The mean squared error is
computed over all the output of the model. Ideally, it is
preferable to have a mean squared error close to zero.
However, depending on the size of the values in the
predicted output, a mean squared error within the range of
2-5 decimal places is acceptable. Representing the
reconstruction error as the mean squared error allows one
to know when the model is presented with an input that is
very far off from what was contained in the training set.
 Thus, if for instance the autoencoder is trained on a
dataset comprising only of benign packets, whenever a
benign packet is presented to the autoencoder, we expect
that the reconstructed output should be quite similar and
therefore the reconstruction error should be low. However,
if this same model is presented with a suspicious packet
that is fairly different from the features of benign packet,
then we should expect the reconstruction error to be quite
high. The same logic can be applied to the restricted
Boltzmann machine

1.8 With this formulation established, it is easier to frame
the classification problem using the autoencoder and RBM.
Where in our example, a low reconstruction error means
the packet is benign, while a high reconstruction error
means the packet is suspicious. Using these predictions,

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

175

we can then compute the accuracy much like we did with
the K-Means model. The accuracy score simply calculates
a ratio of the number of correctly classified packets over
the incorrectly classified packets.

3.4.2 Normalized Mutual Information (NMI)
The NMI provides a means of evaluating the

clustering performance of the algorithm by comparing the
correlation between the predicted class and the target class.
If the predicted and target data are represented as two
separate distributions, then we can also apply the NMI to
determine performance of non-clustering algorithms.

3 Experimental Results

In this session, we present the experimental results for
each model across all datasets. The results are presented in
subsections, with each subsection dedicated to a model.
For the Autoencoder and Restricted Boltzmann Machine,
their subsections consist of plots showing the training and
test loss, a table summarizing the performance across the
datasets and a detailed discussion of the results. For the
rest of the models, they do not optimize a loss function and
so only the summary tables and a detailed discussion of
the results were presented. Performance evaluations are
also carried out using the accuracy and Normalized Mutual
score. The innovation of this work lies in the exact
detection of the anomality behaviour of the nodes. DDoS
attacker tried to affect network in its different forms. The
basic nature of DDoS attacker is to flood the network with
a large number of packets and then exhaust the network.
4.1 Comparison Result and Analysis
The efficiency of planned attack detection system is also
assessed against five existing works of [Bellingerite al.,
(2020)], [Almsgiving et al., (2017)], [Yan Naing Soe,2020]
(Naeem Firdous Syed,2020) and [Ashrafi et al., (2013)]
who have addressed intrusion detection against DDoS
attack using KDD dataset. compares the detection
accuracy of the proposed work against the existing works.
Recently, [Vellinga et al., (2020)] had proposed Taylor
Elephant Herd Optimisation based Deep Belief Network to
detect DDoS attacks and attained a classification accuracy
of only 83%. Further, [Almsgiving et al., (2017)] had
realised Random forest classifier to attain a detection
accuracy of 93.77% while [Ashrafi et al., (2013)] work
comprising of extended Classifier System with Artificial
Neural Network (ANN-XCS) demonstrated a detection
accuracy of 98.1% against the proposed work that have
implemented the optimization techniques with
unsupervised machine learning to achieve a detection
accuracy of 99.93%.
This paper focusses on detecting DDoS attack in IoT
networks by classifying incoming network packets on the
transport layer as either “Suspicious” or “Benign” using
unsupervised machine learning algorithms. In this work,

two deep learning algorithms and two clustering
algorithms were independently trained for mitigating
DDoS attacks. We lay emphasis on exploitation based
DDOS attacks which include TCP SYN-Flood attacks and
UDP-Lag attacks. We use Mirai, BASHLITE and
CICDDoS2019 dataset in training the algorithms during
the experimentation phase.

4.3 Autoencoder training and test results

Figure 4 shows the desired behavior of the
backpropagation training algorithm where the training and
validation loss decrease steadily and in unison as the
training epoch increases. It is important to point out that
the autoencoder is trained to reconstruct SYN-Flood data,
meaning it should be unable to reconstruct benign data. We
chose the SYN-Flood data for training because there were
more instances than the benign data. The same choice is
made for the UDP-Autoencoder model, where we train it
on the UDP-Lag data instead of on benign UDP data.

Figure 4 Autoencoder training and validation loss
on the CICDDoS2019 SYN-Flood (a) and UDP-Lag
(b).

Figure 5: Autoencoder training and validation loss
on the Mirai SYN-flood (a) and UDP-Lag data (b)
The training and validation loss for the BASHLITE loss
shown in Figure 6 is less steep than that of the Mirai loss.
Table 1 shows the accuracy of the autoencoder model

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

176

across all datasets, here we can see that the model has the
highest accuracy on the BASHLITE dataset hence the
reason why the loss is less steep and flattens out quickly by
epoch 10 and 14 respectively.

Table 1 Test Accuracy and Normalized Mutual
Information score for the autoencoder models on the
SYN-Flood and UDP-Lag across all datasets.

Data Accuracy (%) NMI

CICDDoS2019

SYN-Flood

0.8945 0.5363

CICDDoS2019

UDP-Lag

0.8617 0.4216

Mirai SYN-Flood 0.9744 0.6211

Mirai UDP-Lag 0.9621 0.5733

BASHLITE

SYN-Flood

0.9933 0.9927

BASHLITE UDP-Lag 0.9921 0.9822

In table 1, we present the accuracy and NMI scores for the
autoencoder model. These scores were determined based on
the formulation described in section 3.4. The result show
that the autoencoder model performs best on the
BASHLITE SYN-Flood data with a higher accuracy of
99%. In general, the autoencoder performs better on the
Mirai and BASHLITE datasets than that of the
CICDDoS2019 dataset.

4.4 Restricted Boltzmann Machine

The restricted Boltzmann machine performed
poorly on the CICDDoS2019 dataset but the training
process evolved smoothly with the loss dropping as the
epoch increased.

Table 2 Test Accuracy and Normalized Mutual
Information score for the Restricted Boltzmann machine
model on the SYN-Flood and UDP-Lag across all datasets.

Data Accuracy (%) NMI

CICDDoS2019

SYN-Flood

0.5651 0.1919

CICDDoS2019

UDP-Lag

0.5089 0.1103

Mirai SYN-Flood 0.6067 0.1639

Mirai UDP-Lag 0.7797 0.3895

BASHLITE

SYN-Flood

0.6709 0.2506

BASHLITE

UDP-Lag

0.6210 0.1007

The RBMs performance on the BASHLITE dataset is
similar to its performance on the Mirai data, still, the overall
performance is much lower than that of the Autoencoder.
The results indicate that the RBM is less suited for the kind
of precise reconstruction of the continuous input value that
is easily achieved by the autoencoder.

4.5 K-Means training and test results

The K-Means algorithm is not a gradient based learner
so we cannot bother ourselves with iterative plots such as
those presented for the autoencoder and RBM models. Also,
the K-Means algorithm is trained on a distribution that
contains a mixture of both suspicious and benign features.
The model’s accuracy and NMI are shown in Table 3.
Table 3 Test Accuracy and Normalized Mutual Information
score for the K-Means model on the SYN-Flood and
UDP-Lag training and validation data.

Data Accuracy (%) NMI
CICDDoS2019
SYN-Flood

0.7538 0.1949

CICDDoS2019
UDP-Lag

0.7139 0.1427

Mirai SYN-Flood 0.7636 0.0912
Mirai UDP-Lag 0.7478 0.1387
BASHLITE
SYN-Flood

0.6451 0.1059

BASHLITE UDP-Lag 0.6823 0.1306

From the results, we observe that the K-Means model
performs relatively poorer as compared to the autoencoder
model but it performs better on average when compared to
RBM. However, and once again, one can see some slight
disparity in performance on the SYN-Flood data compared
to UDP-Lag data owing to the variance amongst the
features in these datasets.

The NMI scores for the K-Means model are relatively
low too with well below average correlations. Although
one should interpret the accuracy and NMI scores
independently, the low NMI scores for the K-Means
discourages one from being too optimistic about the
model’s performance.

4.6 Expectation-Maximization training and test results

The Expectation-Maximization algorithm performs
better than the k-means algorithm on average with its
highest accuracy being 80% on the Mirai UDP-lag data
(Table 4).

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

177

Table 4 Test Accuracy and Normalized Mutual
Information score for the EM model on the SYN-Flood
and UDP-Lag training and validation data
Data Accuracy (%) NMI

CICDDoS2019

SYN-Flood

0.7096 0.1144

CICDDoS2019

UDP-Lag

0.6759 0.1446

Mirai SYN-Flood 0.7030 0.2771

Mirai UDP-Lag 0.8051 0.2901

BASHLITE

SYN-Flood

0.7636 0.3074

BASHLITE UDP-Lag 0.7575 0.2678

Although, the EM algorithm performs better than the

k-means algorithm the performance is still poor compared
to the autoencoder. The clustering algorithms struggle with
large high-dimensional and continuous data. The
maximization step in the EM algorithm gives it an edge
over the k-means algorithm in this aspect. Where the
k-means algorithm struggles to compute a centroid from
high dimensional continuous data, with low variance as is
the case with Mirai and BASHLITE, the EM algorithm
models the problem probabilistically instead, optimizing
for the log-likelihood of the latent variables.
Tables 5 and 6 below summarize the accuracy and NMI
scores across all datasets for all models, highlighting the
autoencoder’s superiority for machine learning task.

Table 5 Summary of the Accuracies across all datasets and
all models.

Table 6 Summary of the Normalized Mutual Information
score across all datasets and all models.

5. CONCLUSIONS

The unsupervised machine learning models have been
developed and trained on both SYN-Flood and ICMP
flood DDOS datasets. The training and test results both
show that the deep learning autoencoder model performs
better in the classification of incoming packets as
suspicious or benign. Over the past decade, deep learning
algorithms have established themselves as the
state-of-the-art machine learning algorithms. Our results
show that in the unsupervised machine learning space, the
deep learning algorithm also outperforms traditional
clustering algorithms such as the K-Means and
Expectation-Maximization algorithm as well as other
generative deep learning models such as the Restricted
Boltzmann machine. However, when comparing
unsupervised machine learning algorithms, one must be
careful to formalize the performance evaluation problem
properly. The project shows that it is possible to frame the
autoencoder model as a classification algorithm using the
value of the reconstruction error and that it is possible to
apply this formulation efficiently to difficult problem
domains such as network packet analysis. Once proper
formulations are established, the accuracy score can then
be used to evaluate both models fairly. Although the
autoencoder model is clearly the superior model, the
DDOS-Detection class we developed provides methods
that allow one to perform network packet classification
using either the autoencoder model or the
Expectation-Maximization model. The simulation results
show that the DDOS-Detection tool built around these
models can achieve a net accuracy of as high as 99%.
Future studies should aim to replicate results in a larger
system to detect compromised end-points and also ensure

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.4, April 2024

178

that algorithms are current by possible retraining
approaches to handle abnormalities in network
performance.

Acknowledgment

The authors would like to express their deep thanks to Dr.
John Mike for his valuable advice.

Acknowledgment

The authors would like to express their cordial thanks to
Dr. Mitsuo Ohta for his valuable advice.

References
[1] Shirazi, “Evaluation of anomaly detection techniques for scada

communication resilience,” IEEE Resilience Week, 2016.
[2] N. Mirai, “mirai-botnet,” 2016. [Online]. Available:

https://www.cyber.nj.gov/threat-profiles/botnetvariants/mirai-
botnet. [Accessed 31 December 2019].

[3] H. Zhou, B. Liu and D. Wang, “Design and research of urban
intelligent transportation system based on the Internet of
Things,” Internet of Things, pp. 572-580, 2012.

[4] S. Lim, S. Yang and Y. Kim, “Controller scheduling for continued
SDN operation under DDoS attacks,” Electronic Letter, pp.
1259-1261, 2015.

[5] A. Buck and E. Govan, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE
Communications Surveys & Tutorials, vol. 18.2, 2016.

[6] P. Baldi, “Autoencoders, Unsupervised Learning, and Deep
Architectures,” Proceedings of ICML works hop nuns
supervised transfer learning, 2012.

[7] R. Doshi, N. Althorp and N. Feemster, “Machine Learning DDoS
Detection for Consumer Internet of Things Devices,” IEEE
Deep Learning and Security Workshop, 2018.

[8] Q. Yan, F. Yu and Q. Gong, “Software defined networking and
Distributed denial of service attacks in cloud computing
environments,” IEEE Communications Survey & Tutorial, no.
18, pp. 602-622, 2016.

[9] N. Z. Bawany, J. A. Shamsi and K. Salah, “DDoS Attack Detection
and Mitigation Using SDN,” Arabian Journal for Science &
Engineering, no. 2, pp. 1-19, 2017.

[10] B. Kang and H. Choo, “An SDN-enhanced load-balancing
technique in the cloud system[J].,” Journal of
Supercomputing, pp. 1-24, 2016.

[11] O. Saniya and D. M. Choo, “Distributed denial of service (DDOS)
resilience in cloud,” Journal of Network & Computer
Applications, pp. 147-165, 2016.

[12] H. Luo, Z. Chen and J. Li, “Preventing Distributed
Denial-of-Service Flooding Attacks with Dynamic Path
Identifiers[J],” IEEE Transactions on Information Forensics
& Security, pp. 1801-1815, 2017.

[13] U. Dick and T. Schiffer, “Learning to control a structured-prediction
decoder for detection of HTTP-layer DDOS attackers,” in
Machine Learning, 2016, pp. 1-26.

[14] Z. Gao and N. Ansari, “Differentiating Malicious DDoS Attack
Traffic from Normal TCP Flows by Proactive Tests[J],”
Communications Letters IEEE, pp. 793-795, 2006.

[15] K. Briceno, A. Rurality and A. Gurov, “Detecting the Origin of
DDoS Attacks in OpenStack Cloud Platform Using Data
Mining Techniques[M]// Internet of Things,” Smart Spaces,
and Next Generation Networks and Systems, 2016.

[16] N. Hoque, D. Bhattacharyya and J. Kavita, “Botnet in DDoS
Attacks: Trends and Challenges[J],” IEEE Communications
Surveys & Tutorials, pp. 1-1, 2015.

[17] A. Saeed, R. E. Overbill and T. Ridzik, “Detection of known and
unknown DDOS attacks using Artificial Neural Networks,”
Neurocomputing, pp. 385-393, 2016.

[18] S. Rama nauseate, N. Geranin and A. Cents, “Modelling influence
of Botnet features on effectiveness of DDoS attacks[J],”
Security & Communication Networks, pp. 2090-2101, 2015.

[19] C. Barghini, M. J. Kavita, S. Singh and D. K. Bhattacharyya,
“Anomaly based DDoS attack detection,” International
Journal of Computer Applications, pp. 35-40, 2015.

[20] A. Aggarwal and A. Gupta, “Survey on data mining and IP
traceback technique in DDos attack,” International Journal of
Engineering and computer science, vol. 4(6), pp.
12595-12598, 2015.

[21] G. Naima and M. Hemal Atha, “Effective approach towards
intrusion detection system using data mining technique,”
Egyptian Informatics Journal, vol. 15(1), pp. 37-50, 2014.

[22] Y. A. Mahmood, “Autoencoder-based feature learning for
cybersecurity applications,” International Joint Conference on
Neural Networks (IJCNN), 2017.

[23] S. Yadav and S. Subramanian, “Detection of Application Layer
DDoS attack by feature learning using Stacked Auto
Encoder,” International Conference on Computational
(ICCTICT), 2016.

[24] A. Fischer and C. Ige, “An introduction to restricted Boltzmann
machines. In Libero American congress on pattern
recognition,” Springer, Berlin, Heidelberg, pp. 14-36, 2012.

[25] V. G. Rydin and G. Volcano, “An expectation maximization method
to estimate a rank-based,” 2017.

[26] D. Ferrierite, “Extreme Dimensionality Reduction for Network
Attack Visualization with Autoencoders,” (IJCNN), 2019.

[27] I. Sharfuddin, A. H. Lashkar, S. Haka and A. Ghobadi, “Developing
Realistic Distributed Denial of Service (DDoS) Attack Dataset
and Taxonomy,” International caravan conference on security
(ICCST). IEEE, pp. 1-8, 2019.

[28] Y. Maidan, M. Bandana, Y. Mathur, Y. Mirsky and Shabtai,
“Network based detection of iot botnet attacks using deep
autoencoders,” IEEE Pervasive Computing, pp. 12-22, 17(3).

[29] C. Elkan, “Using the triangle inequality to accelerate k-means,”
ICML-03, pp. 147-153, 2003.

[30] R. Bhatia, S. Benno, J. Esteban, T. V. Lakshman and J. Grogan,
“Unsupervised machine learning for network-centric anomaly
detection in IoT.,” in the 3rd ACM CoNEXT Workshop on
Big DAta, Machine Learning and Artificial Intelligence for
Data Communication Networks.

	2.1 Autoencoder
	1.1 The K-Means clustering algorithm has relatively fewer parameters to select. The default “pure” version of the K-means algorithm is used as opposed to variants such as Elkan’s K-Means [29] where triangle inequality is used. The parameters for the a...
	1.2 3.3.4 Expectation-Maximization
	1.3 The expectation-maximization algorithm is setup with similar parameters as the k-means algorithm and in fact the software implementation of the two algorithms in the sci-kit learn machine learning framework borrow from each other. However, the cor...
	1.4 Number of components: This is the number of clusters to be estimated and is set to two because of the binary classification task of suspicious or benign.
	1.5 Number of iterations: The number of iterations is like the epoch of the autoencoder where they both define the number of training iterations to run the algorithm. A default value of 300 is used.
	1.6 Covariance type: The covariance parameter defines the structure of the covariance matrix with respect to each component or cluster. The “full” covariance is chosen where each cluster has its own covariance matrix and has been shown to achieve the...
	3.4.1 Accuracy
	In machine learning parlance, the task of the determining whether or not an incoming packet is suspicious or benign is known as classification. For the K-Means and EM algorithm, the clustering of a feature point together with highly similar fe...
	. We can define a reconstruction error that describes the difference between the reconstructed output and original input vector. The reconstruction error is defined as the mean squared error (MSE) in equation 7 as follows:
	1.7
	Where is the original input vector and is the reconstructed output vector? The mean squared error is computed over all the output of the model. Ideally, it is preferable to have a mean squared error close to zero. However, depending on the size of t...
	Thus, if for instance the autoencoder is trained on a dataset comprising only of benign packets, whenever a benign packet is presented to the autoencoder, we expect that the reconstructed output should be quite similar and therefore the reconstructio...
	1.8 With this formulation established, it is easier to frame the classification problem using the autoencoder and RBM. Where in our example, a low reconstruction error means the packet is benign, while a high reconstruction error means the packet is...
	Acknowledgment

