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Abstract  

In recent times cyber attackers can use Artificial Intelligence 
(AI) to boost the sophistication and scope of attacks. On the 
defense side, AI is used to enhance defense plans, to boost the 
robustness, flexibility, and efficiency of defense systems, which 
means adapting to environmental changes to reduce impacts. 
With increased developments in the field of information and 
communication technologies, various exploits occur as a danger 
sign to cyber security and these exploitations are changing 
rapidly. Cyber criminals use new, sophisticated tactics to boost 
their attack speed and size. Consequently, there is a need for 
more flexible, adaptable and strong cyber defense systems that 
can identify a wide range of threats in real-time. In recent years, 
the adoption of AI approaches has increased and maintained a 
vital role in the detection and prevention of cyber threats. In 
this paper, an Ensemble Deep Restricted Boltzmann Machine 
(EDRBM) is developed for the classification of cybersecurity 
threats in case of a large-scale network environment. The 
EDRBM acts as a classification model that enables the 
classification of malicious flowsets from the largescale network. 
The simulation is conducted to test the efficacy of the proposed 
EDRBM under various malware attacks. The simulation results 
show that the proposed method achieves higher classification 
rate in classifying the malware in the flowsets i.e., malicious 
flowsets than other methods.  
Keywords: Cybersecurity, Deep Learning, Restricted 
Boltzmann Machine, Malware 

 

1. Introduction  

Because of the increasing number of smart devices 
is increasing and the internetworking becomes more 
complex than they have ever been [1]. Various research 
[2]-[10] findings indicate that malware is exploiting 
newly discovered holes in network equipment in order to 
carry out its damaging objectives. In terms of technology, 
we can clearly observe that there is a fight between virus 
developers and network security professionals. When it 
comes to network data, the amount of information  

 

included within it limits the number of countermeasures 
that may be implemented [3]. Even while packet-level 
data can provide a finer level of detail, the resources 
required to gather it in an enterprise setting make it 
unfeasible to collect. 

This problem was addressed by the introduction of 
the concept of a network flow, which provided 
academics with the capacity to develop algorithms that 
only considered certain data pertaining to network traffic 
[4] [5]. It is possible to use the methods mentioned in this 
area to detect a variety of different sorts of security 
breaches, which are discussed in greater depth under the 
background section. 

Malware is a serious threat and its existence is one of the 
most difficult to detect. As soon as they have been 
infected, vulnerable devices can be used to send launch 
denial-of-service attacks, spam emails, and steal sensitive 
data [6]. 

Malware attackers are confronted with a huge 
challenge in disseminating their programmes to the 
greatest number of victims conceivable. By employing 
social engineering techniques, attackers can send email 
messages that entice recipients to download and install 
malware software that is linked to their own websites [7]. 
Despite the fact that this strategy is effective, it is 
frequently ineffective since it necessitates the 
participation of the victims. In order to evade detection, it 
is preferable to lure website visitors into visiting rogue 
web pages that take advantage of browser weaknesses 
instead (or their components, such as the PDF reader or 
the Flash player). Unlike in other scenarios, there is no 
requirement for the victim to engage with the virus in 
this one, as it is installed and launched without their 
knowledge [8]. 

There are three stages to the infection process in a 
drive-by download attack. To begin with, the attacker 
hopes to execute a small bit of code (shellcode) on the 
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target computer to gather information about the victim. 
In order to accomplish this, the attacker first establishes a 
website that allows users to download exploit code using 
a drive-by download mechanism. When a victim 
navigates to a malicious page, the browser retrieves and 
executes the drive-by code that was previously 
downloaded [9]. When the exploit is successful, the 
browser will execute shellcode on the victim computer. 
The shellcode then executes the malware binary in the 
second step of the infection process after it has been 
downloaded (the installation phase). That when the 
malware programme actually goes to work and starts 
doing nasty things, which is the third step (the control 
phase). Malicious software frequently makes use of a 
remote command and control server (C & C). Attackers 
can use this connection to send and receive commands, 
drop new executables onto the infected host, and steal 
data from the infected host [10]. 

Modern anti-malware solutions are primarily 
concerned with avoiding infection during the first and 
third phases of the infection process. There has been a 
substantial amount of study into detecting malicious 
URLs that contain drive-by download exploits and 
stopping browsers from visiting malicious pages in the 
first place, with the goal of preventing the initial 
exploitation step from occurring. Honeyclients, for 
example, search the web in order to detect pages 
containing attack code as quickly as possible and turn 
their findings into blacklists of domains and URLs to 
avoid. Because of the fast turnover of malicious domains 
by attackers, blacklists are perpetually out of date and 
therefore ineffective. A significant increase has been 
observed in the number of assaults against honeyclients, 
who employ fingerprinting and obfuscation techniques in 
order to avoid detection. 

Control phase research is also focused on 
identifying malicious code that has been executed on the 
end host, which is another important topic of study. It is 
possible that antivirus (AV) software is the initial layer 
of security employed by the great majority of computer 
users throughout the world. Whenever potentially 
harmful apps are stored on a computer hard drive or run 
from the command line, antivirus software relies 
primarily on signatures to detect and prevent them from 
being executed. Due to malware developer adaptation of 
their code to circumvent detection rates for these 
programmes are steadily falling. Upon successful 
infection, malware distributors communicate commands 
to the compromised hosts, which researchers have 

developed strategies to prohibit using signatures or 
reputation-based systems to prevent further infection. 

A lot of the time, this request is fulfilled by simply 
launching the built-in functionalities of the browser in 
question. As far as the network is concerned, such 
connections appear to be routine requests made by users 
who have downloaded harmless applications. As 
illustrated below, after zooming out on a single viral 
download, the situation changes dramatically. Instead, a 
malware distribution infrastructure can be identified by 
examining a significant number of malware downloads 
from a large number of sites, all of which are tied to the 
same malware distribution campaign. In some ways, this 
virus distribution infrastructure can be thought of as a 
type of content distribution network. Due to the 
differences between the two types of content, it is easy to 
identify occasions where hazardous content is being 
conveyed. 

According to this paper, the Ensemble Deep 
Restricted Boltzmann Machine (EDRBM) is a malware 
detection approach for network traffic that has been 
proposed. EDRBM is capable of distinguishing between 
adware, ransomware, viruses, worms, trojans, and 
botnets over the course of the detection process. First, 
EDRBM collects network flows based on the IP 
addresses of both parties involved in the transaction. A 
flowset is a term used to describe this form of 
aggregation. There are 441 statistical features extracted 
from network flow fields (for example, duration or 
source port) and they are divided into categories, as 
shown in the following figure. The RMI metric is used to 
identify the most essential characteristics of a piece of 
software. A feature vector for a flowset, also known as a 
fingerprint, is created by selecting the best of the best 
from among the best. With the use of fingerprints and the 
random forest classifier, it is feasible to determine 
whether flowsets contain traffic generated by the 
malware. 

The most significant contribution of this research to 
malware detection is an effective method for grouping 
flows in the network in the form of flowsets and then the 
statistical fingerprints are collected in order to preserve 
the critical information in the flowsets, which is the most 
significant contribution of this research. As illustrated by 
our research, the study uses fingerprint as a statistical 
feature and it is dependent exclusively on the number of 
bytes delivered during transmission. In order to preserve 
user privacy, we use fingerprinting that is not concerned 
with IP addresses or ports, making it more resistant to 
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port spoofing, which is commonly exploited by 
contemporary malware to steal their identities. Because 
they do not rely on time-domain attributes, the 
fingerprints obtained during the evaluation are invariant 
with respect to network quality and throughput as well as 
with respect to the evaluation process. We are also 
capable of combining hundreds of flows into a flowset 
when the information is retained such that each flow 
provides information on its maliciousness and other 
characteristics.  

2. Background 

In a battle of wits that has lasted decades, security 
experts and malware developers are pitted against one 
another. Researchers have developed a variety of 
classification systems for malware that are based on the 
objectives and activities of the infection. Malware that 
makes use of network traffic patterns to conceal its 
presence is particularly sought after by researchers today. 
Botnets, which are networked computer systems that can 
only function while linked to the Internet, are of 
particular interest to the vast majority of researchers, who 
are particularly interested in identifying and analysing 
them. A network infection and coordination dialogue 
monitoring tool, BotHunter, has been created by Gu et al. 
[11]. 

Bilge et al. [12] developed botnet detection that 
pulls information from NetFlow including the number of 
flows, client access patterns, and temporal activity. 
Oujezsky et al. [13] developed time-based behavioural 
analysis and takes into account the duration of flows, 
their IP addresses, and their ports. BotMiner is a botnet 
detection technique developed by Gu et al. [11] that does 
not rely on the C&C topology or communication 
protocols of the botnet in question. Kheir et al. [14] also 
introduced a behavior modelling called BotSuer for 
detecting botnets, which takes advantage of network 
features and the analysis is conducted in behavioural 
manner. Fran et al. [15] propose that NetFlow data be 
used to construct a model of host dependency that may 
be used to detect botnets. 

According to Amini et al. [16], clustering of 
NetFlow data can be used to detect botnets in network 
traffic. Botnet detection has gotten more attention in the 
research literature than wide malware detection by a 
single technology, which is understandable given the 
nature of the field. Bartos et al. [17] propose one of the 
most important and similar approaches to our own. The 
researchers have developed an invariant classification 

method for malware behaviour as part of their effort to 
identify known and previously unknown security risks. 
The method first bundle flows into bags and then uses 
statistical feature representations computed from network 
traffic to classify the malware. Perdisci et al. [18] finds 
the malware by analysing the HTTP traffic sent by the 
infected computer. HTTP traffic is examined by Rafique 
et al. [19], who developed a clustering malware method 
that uses clustering. However, if the packet content 
cannot be retrieved and the malware communicates by 
using bogus port numbers rather than standard port 
numbers, both of these methods will fail. 

Using network traffic, the MalClassifier, created by 
AlAhmadi et al. [20] can automatically categorise 
different types of malwares. Mohaisen et al. [21] propose 
a technique that is similar to this one, which they term 
Chatter. When compared to MalClassifier, the extraction 
of HTTP requests by Chatter needs a more fine-grained 
examination of packets than the extraction of HTTP 
requests by MalClassifier. In real-world situations, both 
of these methods are less trustworthy than other 
techniques for malware analysis since they are dependent 
on the order in which packets are received by the 
network. When the model receives the network traffic, 
first things it does is organise the traffic into groups of 
flows. This task has been tackled in a number of different 
ways in the past. 

A good illustration of this is the grouping of flows 
that occur within a specific time period of time. 
Grouping rules can be defined as the IP address [12] of 
both servers composing a flow [17], which is different 
from the IP address of a flow, which is different in other 
ways. We take a similar approach, categorising traffic 
based on source and destination IP addresses rather than 
the application or server function or the port that is being 
used. In contrast to dividing the time domain into 
discrete periods and then collecting all of the flows 
within each of those intervals, a flowset is defined by the 
value of its timeout. A variety of techniques for 
extracting information from aggregated network flows 
have been proposed, but ours is the first to rely simply on 
the data features of network flows to detect and 
distinguish between a wide range of malware types. 

3. Proposed Method 

In this research, an approach for identifying 
malware in network traffic is described, which involves 
clustering of flows into flowset or logically coherent 
units and analysing them. Every network flow that passes 
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between two hosts is collected by them during a specified 
amount of time (identified by their IP addresses). The 
timeout parameter used in the study finds the length of a 
flowset timeout interval, is used to create this type of 
interval of time. This value is used to determine whether 
or not an attempt is made to include a flow into the 
flowset has been successful. A flowset is generated as 
long as the IP addresses of the source and destination are 
the same. 

If the features obtained from flowsets, which is 
comprised of flowset for differentiating one flowset from 
another, the flowset cannot be distinguished from other 
flowsets. EDRBM solves this challenge by extracting 
441 features from each flowset, which are then combined. 
Time, port, and data are three sorts of feature groups that 
can be logically organised based on the flow fields from 
which these characteristics are derived. The time group 
includes the interarrival time (the time elapsed between 
the timestamps of consecutive flows) and the duration of 
the flow. Apart from flow fields for the protocol (such as 
port 6, which represents TCP), the port group contains 
flow fields for the source and destination ports as well as 
flow fields for the protocol (such as port 80, which 
represents HTTP). This information is provided by the 
data group if there are many flows in a flowset that each 
have a defined number of packets. When using the 
backing flow field-based feature, it is possible to extract 
a number of statistical characteristics (such as the 
standard deviation) for each of the feature groups (e.g., 
source port). 

It is not possible to calculate feature groups in the 
same way as in the previous example. The underlying 
flow fields are represented as numeric values, which are 
then used to calculate characteristics for different time 
and data groups. Each collection will eventually be 
subjected to statistical analysis in order to derive a 
variety of statistical characteristics. It was not possible to 
construct a port group using this strategy. In this case, 
flow fields are treated as encoded values or numeric 
values would be counter-productive. Due to the lack of 
ordinary linkages between ports 80 (HTTP) and 443 
(HTTPS), the order or distance between them failed to 
provide the difference of service between them. The 
group of features from the port is calculated by encoding 
the frequency of each flow respective field values in one-
hot form and then dividing the result by the number of 
flows. 

Based on the flowset field, statistical features are 
generated for each collection in the collection. All of the 

statistical variables, as well as the number of different 
frequency values, are included in the protocol-based 
collection. 

Collections from source or destination ports are a 
statistical feature that can be added to this collection of 
statistical features as an additional statistical feature. In 
this collection of statistical features, we have included 
the most frequent ports, as well as the aggregated 
frequency of smaller ports that are not among the most 
frequently used ports in this dataset. For each of the three 
feature groups, a flows subset that are belonging to a 
flowset with IP address where the the flowset was 
produced is retrieved and stored in a separate file. The 
only two directions that can exist at the same time are the 
outgoing and arriving directions. 

Algorithm 1: Proposed Model 

Model a large-scale network 

Cluster the domains 

Group the flow into flowsets 

Find the co-location of the domain, top-level unique 
domain names, matching URI path, matching files 

Estimate the fitness function 

Use EDRBM to classify the flowsets in the network  

Find if the classified flowsets are of malicious one 

Discard the malicious flowsets from the entire network 

End the process 

We connect two clusters when we find a single file 
that has been hosted by at least one element (domain) in 
each cluster. All clusters that contain two or more 
elements are considered to be CDNs. For the second step, 
we distinguish between malicious and benign clusters 
(CDNs). This distinction is made using a classifier that 
we trained on a small data set of manually labeled 
malicious and benign clusters. The classifier leverages 
six features, as described below: 

3.1 Ensemble Deep Restricted Boltzmann Machine 

It is possible to optimise the parameters of a 
generative model such as the RBM by utilising stochastic 
gradient ascent on training data and log-likelihood to 
optimise the parameters of the model. The chance of 
assigning a training instance (visible vector) to each 
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hidden vector is calculated by adding up all of the 
potential hidden vectors. 

    1 exp ,
h

P v Z E v h   

The log probability derivative of a training vector with 
regard to weight can be represented as follows: 

 log
i j i jdata model

ij

P v
v h v h

w


 


 

When the <>data and <>model are expected to follow their 
respective expected distributions, this is denoted by 
P(h|v). This results in a pretty straightforward learning 
strategy for stochastic gradients with the steepest ascent 
in a log probability: 

 
1

1|
n

j j i ij
i

P h v b v w


    
 

  

In which the user is required to submit an initial learning 
rate of . 

Because the hidden units in an RBM are not directly 
related to one another, it is possible to collect an 

unbiased sample of the data i j data
v h . Assume a 

training vector in random v, where the state hj of a hidden 
unit j is set to 1. 

 1|
n

i i j ij
j m

P v h a h w


 
   

 
 (j = 1; 2;...;m) 

where  

r(x) - logistic sigmoid function.  

The same is true if we have a hidden vector h that allows 
us to collect an unbiased data sample from the visible 
state. Since there exist no direct connections between the 

neural units that are visible. i j model
v h , on the other 

hand, fails to acquire an unbiased sample.  

To begin, the method assigns the visible unit states to a 
vector (training set), which can be found here. The 
equation is used to compute the binary states in parallel, 
and it is written as in Eq. (4). It is possible to construct a 
reconstruction of the hidden units by setting vi to 1, 
where the rate of probability is found using Eq. (5). This 

has resulted in the weight adjustments being provided by 
the 

 ij i j i jdata recon
w v h v h    

where i j recon
v h  - Gibbs sampling distribution. 

With only one step, alternate Gibbs sampling with 
an initialization of the data produces a distribution of the 
variables. The biases ai and bj should be addressed by 
using a similar learning process involving individual 
states rather than pairwise sums, rather than the whole 

learning process. To approximate 
model

 , the study 

develops an alternate sampling method that included 
alternating Gibbs sampling cycles. It has been 
demonstrated that it performs well enough in many 
significant scenarios despite approximating the log 
probability gradient in most cases.  

3.2 Ensemble Classifier 

This section provides a number of ways in 
providing ensemble RBM classifiers, which are 
motivated by the powerful representation capacity of 
ensemble RBMs, when it is combined with feature 
extraction methods. The study concentrate on the various 
ways bagging may be used in conjunction with RBMs 
because it simple and easy to install while still delivering 
good performance. 

For starters, we suggest a training collection of 
independent instances, each of which is represented by 
an input feature (X) vector and a class label with a label 
space value as its input feature (X). Because of this, 
consider having an N-dimensional vector that includes 
training outputs as an N-dimensional matrix as the input 
to the algorithm. As an example, training instances can 
be thought of as a horizontal concatenation of two 
variables, such as X and Y. As part of an ensemble 
classifier, we use majority voting to combine the outputs 
of a large number of basic classifiers into a single result. 
Base classifiers can be created by combining bagging 
and RBMs in a variety of ways to achieve high accuracy 
and diversity. 

3.4 RMI Estimation  

In order to avoid the curse of dimensionality, we 
employ a process of selection to identify the most 
informative characteristics. The relative mutual 
information (RMI) is used to determine the relevance of 
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these relationships. Using feature selection, it is possible 
for the reduction of the computational cost and the 
memory for storing the flowset vectors by deleting the 
bulk of characteristics that are not useful for 
classification. Information exchanged between parties  

MI(X,Y) = ME(Y) CE(Y|X), 

where  

CE - conditional entropy and  

ME - marginal entropy. 

 

X – 2D flowsets array, and  

Y - flowset labels array and this results in 

RMI (X,Y) = MI(X,Y). 

Because of the amount of memory they take up in 
comparison to all the other alternatives, our RMI scores 
are used to determine which features are most significant 
to the user.  

4. Results and Discussions 

On the basis of malware-generated network traffic 
from the CTU-13 and MalRec datasets, we put our 
hypothesis to the test. We conducted two independent 
experiments. Then, using the malware datasets that we 
have already acquired, the study trains with the best 
performing to detect the traffic in a network. 

Table 1: Dataset Specifications 

Dataset Parameter Value 
Malrec Malware 

Recorded 
 66,301 

Hashing MD5 
Network 
Activity 

PCAP form 

CTU-13 Total 
Recordings 

13 captures or 
scenarios 

 

For our research, the scikit-learn Python package, as 
well as the C# and Python programming languages, were 
employed. In order to conduct our research, we used a 
512 GB of RAM server with 32 CPU cores. 

The initial test made use of the MalRec [8] and 
CTU-13 [20] datasets as well as other publically 
available datasets, in addition to the MalRec and CTU-13 

datasets. MalRec report created a traffic has been 
included in the dataset, as well as other MalRec reports. 
Examples of such tools are the AVClass [14] malware 
labelling tool, which allows us to categorise samples 
depending on the malware families to which they belong. 
For the purpose of determining the top 25 families based 
on the highest number of samples, we add up all of the 
samples from each family and then rank them. The other 
category has a total of 24,197 malware samples, which 
includes the samples from the other malware families. It 
was decided to create a separate category for it in order 
to eliminate the need to categorise it farther down. As 
part of our effort to identify the five most frequent 
malware kinds, we manually examine each member of 
the top malware families in order to determine which sort 
of malware it represents. The botnet traffic from the 
CTU-13 dataset is utilised to generate this list, which is 
why the botnet type is included in the list.  

The proposed classifier is trained with 50 estimators and 
balanced weights to account for the differences in sample 
sizes across different classes. RMI rates the usefulness of 
each feature in each feature group and assigns a score to 
each feature in each feature group. We run a series of 
experiments in which the number of features is varied in 
order to identify the bare minimum of characteristics 
required to maximise classification performance. Based 
on the findings of our study, the study decided to 
concentrate on the top five data characteristics from this 
area for the time being (see Table 1).  

Port and protocol spoofing, as well as differences in 
network quality, are all almost unaffected by the feature 
set that we have chosen for our technique. Following the 
identification of these characteristics, we analyse the 
classification performance of each malware species 
separately. Botnets received an F1-score of up to 94% as 
a result of this research, which was significantly higher 
than the random estimate for all other types of malwares, 
with the exception of ransomware. 
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Figure 1: Accuracy 

 

Figure 2: Precision 

 

Figure 3: Recall 

 

Figure 4: F-Measure 

In our investigation, we discovered that certain 
adware and ransomware samples from other categories 
had been mislabelled. As a result, some virus kinds might 
share network properties while executing malevolent 
behaviours, which is why they are classified as such. 
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When it comes to a specific type of malware, there is 
nothing particularly noteworthy about these samples. 

For the purpose of removing samples that cannot be 
discriminated against across different malware categories, 
we study the concept of a classification confidence level. 
The accuracy of classification improves, but only at the 
expense of fewer samples being labelled as distinctive as 
in Figure 1. As shown in Figure 2, we may improve the 
proposed classifier performance by adjusting the level of 
confidence threshold for classifications. 

The study suggests that certain malware requires an 
additional number of samples in order to be identified 
and identified correctly (Figure 3). Each type of malware 
has a different confidence threshold, which can be 
adjusted to achieve the appropriate F1 score. In order to 
avoid false positives, malware with an F1 score greater 
than 0.6 must be detected using thresholds such as 0.4 for 
adware and 0.7 for ransomware. Figure 4 depicts the 
classification performance in terms of F1-measure that 
contains a constant confidence interval between 0.5 and 
0.90 for three different confidence levels. It is possible to 
achieve a specific level of classification confidence for a 
given flowset classification percentage listed in the 
Samples column. 

Following training on malware datasets, a classifier 
is trained on a real-world dataset and then applied to it as 
per the insights from the malware dataset analysis. When 
presented with a malware traffic sample, we have a high 
degree of confidence in our ability to detect it.  

In our research, we discovered that an F1 score of 
0.9 effectively reduces the total false positive rates. 
According to the data, there are approximately 100 
adware flowsets/hour and ransomware flowsets of lesser 
than 20 per hour on average is obtained. It is found that 
after each month, worms and viruses containing similar 
confidence threshold (0.7) can be found, but not more 
than once. It is estimated that fewer than 10 instances of 
the malicious flowset exist in the wild when the 
confidence level is set at 0.95.  

 

5. Conclusions 

This study presents a novel EDRBM for classifying 
large-scale network cybersecurity concerns, which is 
intended to be used in the future. For the purpose of 
determining the model effectiveness, it is subjected to a 
wide range of security threats. According to the findings, 

the proposed strategy outperforms the other methods that 
were examined. On a large-scale network, malicious 
traffic sets with rates in the 106 per hour range were 
discovered. Given the incredibly low incidence of 
malware outbreaks, this is a reasonable response. In 
contrast with several false positive alerts acknowledged 
by the security operations centres, EDRBM finds 
minimal malicious flowsets in an accurate manner, 
whereas the latter receives an enormous number of false 
positive signals. 
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