
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

64

Manuscript received May 5, 2024
Manuscript revised May 20, 2024

https://doi.org/10.22937/IJCSNS.2024.24.5.7

Malwares Attack Detection Using Ensemble Deep Restricted

Boltzmann Machine

K. Janani1* and R. Gunasundari 2**

Karpagam Academy of Higher Education Karpagam Academy of Higher Education

Coimbatore, India Coimbatore, India

Abstract

In recent times cyber attackers can use Artificial Intelligence
(AI) to boost the sophistication and scope of attacks. On the
defense side, AI is used to enhance defense plans, to boost the
robustness, flexibility, and efficiency of defense systems, which
means adapting to environmental changes to reduce impacts.
With increased developments in the field of information and
communication technologies, various exploits occur as a danger
sign to cyber security and these exploitations are changing
rapidly. Cyber criminals use new, sophisticated tactics to boost
their attack speed and size. Consequently, there is a need for
more flexible, adaptable and strong cyber defense systems that
can identify a wide range of threats in real-time. In recent years,
the adoption of AI approaches has increased and maintained a
vital role in the detection and prevention of cyber threats. In
this paper, an Ensemble Deep Restricted Boltzmann Machine
(EDRBM) is developed for the classification of cybersecurity
threats in case of a large-scale network environment. The
EDRBM acts as a classification model that enables the
classification of malicious flowsets from the largescale network.
The simulation is conducted to test the efficacy of the proposed
EDRBM under various malware attacks. The simulation results
show that the proposed method achieves higher classification
rate in classifying the malware in the flowsets i.e., malicious
flowsets than other methods.
Keywords: Cybersecurity, Deep Learning, Restricted
Boltzmann Machine, Malware

1. Introduction

Because of the increasing number of smart devices
is increasing and the internetworking becomes more
complex than they have ever been [1]. Various research
[2]-[10] findings indicate that malware is exploiting
newly discovered holes in network equipment in order to
carry out its damaging objectives. In terms of technology,
we can clearly observe that there is a fight between virus
developers and network security professionals. When it
comes to network data, the amount of information

included within it limits the number of countermeasures
that may be implemented [3]. Even while packet-level
data can provide a finer level of detail, the resources
required to gather it in an enterprise setting make it
unfeasible to collect.

This problem was addressed by the introduction of
the concept of a network flow, which provided
academics with the capacity to develop algorithms that
only considered certain data pertaining to network traffic
[4] [5]. It is possible to use the methods mentioned in this
area to detect a variety of different sorts of security
breaches, which are discussed in greater depth under the
background section.

Malware is a serious threat and its existence is one of the
most difficult to detect. As soon as they have been
infected, vulnerable devices can be used to send launch
denial-of-service attacks, spam emails, and steal sensitive
data [6].

Malware attackers are confronted with a huge
challenge in disseminating their programmes to the
greatest number of victims conceivable. By employing
social engineering techniques, attackers can send email
messages that entice recipients to download and install
malware software that is linked to their own websites [7].
Despite the fact that this strategy is effective, it is
frequently ineffective since it necessitates the
participation of the victims. In order to evade detection, it
is preferable to lure website visitors into visiting rogue
web pages that take advantage of browser weaknesses
instead (or their components, such as the PDF reader or
the Flash player). Unlike in other scenarios, there is no
requirement for the victim to engage with the virus in
this one, as it is installed and launched without their
knowledge [8].

There are three stages to the infection process in a
drive-by download attack. To begin with, the attacker
hopes to execute a small bit of code (shellcode) on the

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

65

target computer to gather information about the victim.
In order to accomplish this, the attacker first establishes a
website that allows users to download exploit code using
a drive-by download mechanism. When a victim
navigates to a malicious page, the browser retrieves and
executes the drive-by code that was previously
downloaded [9]. When the exploit is successful, the
browser will execute shellcode on the victim computer.
The shellcode then executes the malware binary in the
second step of the infection process after it has been
downloaded (the installation phase). That when the
malware programme actually goes to work and starts
doing nasty things, which is the third step (the control
phase). Malicious software frequently makes use of a
remote command and control server (C & C). Attackers
can use this connection to send and receive commands,
drop new executables onto the infected host, and steal
data from the infected host [10].

Modern anti-malware solutions are primarily
concerned with avoiding infection during the first and
third phases of the infection process. There has been a
substantial amount of study into detecting malicious
URLs that contain drive-by download exploits and
stopping browsers from visiting malicious pages in the
first place, with the goal of preventing the initial
exploitation step from occurring. Honeyclients, for
example, search the web in order to detect pages
containing attack code as quickly as possible and turn
their findings into blacklists of domains and URLs to
avoid. Because of the fast turnover of malicious domains
by attackers, blacklists are perpetually out of date and
therefore ineffective. A significant increase has been
observed in the number of assaults against honeyclients,
who employ fingerprinting and obfuscation techniques in
order to avoid detection.

Control phase research is also focused on
identifying malicious code that has been executed on the
end host, which is another important topic of study. It is
possible that antivirus (AV) software is the initial layer
of security employed by the great majority of computer
users throughout the world. Whenever potentially
harmful apps are stored on a computer hard drive or run
from the command line, antivirus software relies
primarily on signatures to detect and prevent them from
being executed. Due to malware developer adaptation of
their code to circumvent detection rates for these
programmes are steadily falling. Upon successful
infection, malware distributors communicate commands
to the compromised hosts, which researchers have

developed strategies to prohibit using signatures or
reputation-based systems to prevent further infection.

A lot of the time, this request is fulfilled by simply
launching the built-in functionalities of the browser in
question. As far as the network is concerned, such
connections appear to be routine requests made by users
who have downloaded harmless applications. As
illustrated below, after zooming out on a single viral
download, the situation changes dramatically. Instead, a
malware distribution infrastructure can be identified by
examining a significant number of malware downloads
from a large number of sites, all of which are tied to the
same malware distribution campaign. In some ways, this
virus distribution infrastructure can be thought of as a
type of content distribution network. Due to the
differences between the two types of content, it is easy to
identify occasions where hazardous content is being
conveyed.

According to this paper, the Ensemble Deep
Restricted Boltzmann Machine (EDRBM) is a malware
detection approach for network traffic that has been
proposed. EDRBM is capable of distinguishing between
adware, ransomware, viruses, worms, trojans, and
botnets over the course of the detection process. First,
EDRBM collects network flows based on the IP
addresses of both parties involved in the transaction. A
flowset is a term used to describe this form of
aggregation. There are 441 statistical features extracted
from network flow fields (for example, duration or
source port) and they are divided into categories, as
shown in the following figure. The RMI metric is used to
identify the most essential characteristics of a piece of
software. A feature vector for a flowset, also known as a
fingerprint, is created by selecting the best of the best
from among the best. With the use of fingerprints and the
random forest classifier, it is feasible to determine
whether flowsets contain traffic generated by the
malware.

The most significant contribution of this research to
malware detection is an effective method for grouping
flows in the network in the form of flowsets and then the
statistical fingerprints are collected in order to preserve
the critical information in the flowsets, which is the most
significant contribution of this research. As illustrated by
our research, the study uses fingerprint as a statistical
feature and it is dependent exclusively on the number of
bytes delivered during transmission. In order to preserve
user privacy, we use fingerprinting that is not concerned
with IP addresses or ports, making it more resistant to

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

66

port spoofing, which is commonly exploited by
contemporary malware to steal their identities. Because
they do not rely on time-domain attributes, the
fingerprints obtained during the evaluation are invariant
with respect to network quality and throughput as well as
with respect to the evaluation process. We are also
capable of combining hundreds of flows into a flowset
when the information is retained such that each flow
provides information on its maliciousness and other
characteristics.

2. Background

In a battle of wits that has lasted decades, security
experts and malware developers are pitted against one
another. Researchers have developed a variety of
classification systems for malware that are based on the
objectives and activities of the infection. Malware that
makes use of network traffic patterns to conceal its
presence is particularly sought after by researchers today.
Botnets, which are networked computer systems that can
only function while linked to the Internet, are of
particular interest to the vast majority of researchers, who
are particularly interested in identifying and analysing
them. A network infection and coordination dialogue
monitoring tool, BotHunter, has been created by Gu et al.
[11].

Bilge et al. [12] developed botnet detection that
pulls information from NetFlow including the number of
flows, client access patterns, and temporal activity.
Oujezsky et al. [13] developed time-based behavioural
analysis and takes into account the duration of flows,
their IP addresses, and their ports. BotMiner is a botnet
detection technique developed by Gu et al. [11] that does
not rely on the C&C topology or communication
protocols of the botnet in question. Kheir et al. [14] also
introduced a behavior modelling called BotSuer for
detecting botnets, which takes advantage of network
features and the analysis is conducted in behavioural
manner. Fran et al. [15] propose that NetFlow data be
used to construct a model of host dependency that may
be used to detect botnets.

According to Amini et al. [16], clustering of
NetFlow data can be used to detect botnets in network
traffic. Botnet detection has gotten more attention in the
research literature than wide malware detection by a
single technology, which is understandable given the
nature of the field. Bartos et al. [17] propose one of the
most important and similar approaches to our own. The
researchers have developed an invariant classification

method for malware behaviour as part of their effort to
identify known and previously unknown security risks.
The method first bundle flows into bags and then uses
statistical feature representations computed from network
traffic to classify the malware. Perdisci et al. [18] finds
the malware by analysing the HTTP traffic sent by the
infected computer. HTTP traffic is examined by Rafique
et al. [19], who developed a clustering malware method
that uses clustering. However, if the packet content
cannot be retrieved and the malware communicates by
using bogus port numbers rather than standard port
numbers, both of these methods will fail.

Using network traffic, the MalClassifier, created by
AlAhmadi et al. [20] can automatically categorise
different types of malwares. Mohaisen et al. [21] propose
a technique that is similar to this one, which they term
Chatter. When compared to MalClassifier, the extraction
of HTTP requests by Chatter needs a more fine-grained
examination of packets than the extraction of HTTP
requests by MalClassifier. In real-world situations, both
of these methods are less trustworthy than other
techniques for malware analysis since they are dependent
on the order in which packets are received by the
network. When the model receives the network traffic,
first things it does is organise the traffic into groups of
flows. This task has been tackled in a number of different
ways in the past.

A good illustration of this is the grouping of flows
that occur within a specific time period of time.
Grouping rules can be defined as the IP address [12] of
both servers composing a flow [17], which is different
from the IP address of a flow, which is different in other
ways. We take a similar approach, categorising traffic
based on source and destination IP addresses rather than
the application or server function or the port that is being
used. In contrast to dividing the time domain into
discrete periods and then collecting all of the flows
within each of those intervals, a flowset is defined by the
value of its timeout. A variety of techniques for
extracting information from aggregated network flows
have been proposed, but ours is the first to rely simply on
the data features of network flows to detect and
distinguish between a wide range of malware types.

3. Proposed Method

In this research, an approach for identifying
malware in network traffic is described, which involves
clustering of flows into flowset or logically coherent
units and analysing them. Every network flow that passes

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

67

between two hosts is collected by them during a specified
amount of time (identified by their IP addresses). The
timeout parameter used in the study finds the length of a
flowset timeout interval, is used to create this type of
interval of time. This value is used to determine whether
or not an attempt is made to include a flow into the
flowset has been successful. A flowset is generated as
long as the IP addresses of the source and destination are
the same.

If the features obtained from flowsets, which is
comprised of flowset for differentiating one flowset from
another, the flowset cannot be distinguished from other
flowsets. EDRBM solves this challenge by extracting
441 features from each flowset, which are then combined.
Time, port, and data are three sorts of feature groups that
can be logically organised based on the flow fields from
which these characteristics are derived. The time group
includes the interarrival time (the time elapsed between
the timestamps of consecutive flows) and the duration of
the flow. Apart from flow fields for the protocol (such as
port 6, which represents TCP), the port group contains
flow fields for the source and destination ports as well as
flow fields for the protocol (such as port 80, which
represents HTTP). This information is provided by the
data group if there are many flows in a flowset that each
have a defined number of packets. When using the
backing flow field-based feature, it is possible to extract
a number of statistical characteristics (such as the
standard deviation) for each of the feature groups (e.g.,
source port).

It is not possible to calculate feature groups in the
same way as in the previous example. The underlying
flow fields are represented as numeric values, which are
then used to calculate characteristics for different time
and data groups. Each collection will eventually be
subjected to statistical analysis in order to derive a
variety of statistical characteristics. It was not possible to
construct a port group using this strategy. In this case,
flow fields are treated as encoded values or numeric
values would be counter-productive. Due to the lack of
ordinary linkages between ports 80 (HTTP) and 443
(HTTPS), the order or distance between them failed to
provide the difference of service between them. The
group of features from the port is calculated by encoding
the frequency of each flow respective field values in one-
hot form and then dividing the result by the number of
flows.

Based on the flowset field, statistical features are
generated for each collection in the collection. All of the

statistical variables, as well as the number of different
frequency values, are included in the protocol-based
collection.

Collections from source or destination ports are a
statistical feature that can be added to this collection of
statistical features as an additional statistical feature. In
this collection of statistical features, we have included
the most frequent ports, as well as the aggregated
frequency of smaller ports that are not among the most
frequently used ports in this dataset. For each of the three
feature groups, a flows subset that are belonging to a
flowset with IP address where the the flowset was
produced is retrieved and stored in a separate file. The
only two directions that can exist at the same time are the
outgoing and arriving directions.

Algorithm 1: Proposed Model

Model a large-scale network

Cluster the domains

Group the flow into flowsets

Find the co-location of the domain, top-level unique
domain names, matching URI path, matching files

Estimate the fitness function

Use EDRBM to classify the flowsets in the network

Find if the classified flowsets are of malicious one

Discard the malicious flowsets from the entire network

End the process

We connect two clusters when we find a single file
that has been hosted by at least one element (domain) in
each cluster. All clusters that contain two or more
elements are considered to be CDNs. For the second step,
we distinguish between malicious and benign clusters
(CDNs). This distinction is made using a classifier that
we trained on a small data set of manually labeled
malicious and benign clusters. The classifier leverages
six features, as described below:

3.1 Ensemble Deep Restricted Boltzmann Machine

It is possible to optimise the parameters of a
generative model such as the RBM by utilising stochastic
gradient ascent on training data and log-likelihood to
optimise the parameters of the model. The chance of
assigning a training instance (visible vector) to each

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

68

hidden vector is calculated by adding up all of the
potential hidden vectors.

    1 exp ,
h

P v Z E v h 

The log probability derivative of a training vector with
regard to weight can be represented as follows:

 log
i j i jdata model

ij

P v
v h v h

w


 



When the <>data and <>model are expected to follow their
respective expected distributions, this is denoted by
P(h|v). This results in a pretty straightforward learning
strategy for stochastic gradients with the steepest ascent
in a log probability:

 
1

1|
n

j j i ij
i

P h v b v w


    
 



In which the user is required to submit an initial learning
rate of .

Because the hidden units in an RBM are not directly
related to one another, it is possible to collect an

unbiased sample of the data i j data
v h . Assume a

training vector in random v, where the state hj of a hidden
unit j is set to 1.

 1|
n

i i j ij
j m

P v h a h w


 
   

 
 (j = 1; 2;...;m)

where

r(x) - logistic sigmoid function.

The same is true if we have a hidden vector h that allows
us to collect an unbiased data sample from the visible
state. Since there exist no direct connections between the

neural units that are visible. i j model
v h , on the other

hand, fails to acquire an unbiased sample.

To begin, the method assigns the visible unit states to a
vector (training set), which can be found here. The
equation is used to compute the binary states in parallel,
and it is written as in Eq. (4). It is possible to construct a
reconstruction of the hidden units by setting vi to 1,
where the rate of probability is found using Eq. (5). This

has resulted in the weight adjustments being provided by
the

 ij i j i jdata recon
w v h v h  

where i j recon
v h - Gibbs sampling distribution.

With only one step, alternate Gibbs sampling with
an initialization of the data produces a distribution of the
variables. The biases ai and bj should be addressed by
using a similar learning process involving individual
states rather than pairwise sums, rather than the whole

learning process. To approximate
model

 , the study

develops an alternate sampling method that included
alternating Gibbs sampling cycles. It has been
demonstrated that it performs well enough in many
significant scenarios despite approximating the log
probability gradient in most cases.

3.2 Ensemble Classifier

This section provides a number of ways in
providing ensemble RBM classifiers, which are
motivated by the powerful representation capacity of
ensemble RBMs, when it is combined with feature
extraction methods. The study concentrate on the various
ways bagging may be used in conjunction with RBMs
because it simple and easy to install while still delivering
good performance.

For starters, we suggest a training collection of
independent instances, each of which is represented by
an input feature (X) vector and a class label with a label
space value as its input feature (X). Because of this,
consider having an N-dimensional vector that includes
training outputs as an N-dimensional matrix as the input
to the algorithm. As an example, training instances can
be thought of as a horizontal concatenation of two
variables, such as X and Y. As part of an ensemble
classifier, we use majority voting to combine the outputs
of a large number of basic classifiers into a single result.
Base classifiers can be created by combining bagging
and RBMs in a variety of ways to achieve high accuracy
and diversity.

3.4 RMI Estimation

In order to avoid the curse of dimensionality, we
employ a process of selection to identify the most
informative characteristics. The relative mutual
information (RMI) is used to determine the relevance of

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

69

these relationships. Using feature selection, it is possible
for the reduction of the computational cost and the
memory for storing the flowset vectors by deleting the
bulk of characteristics that are not useful for
classification. Information exchanged between parties

MI(X,Y) = ME(Y) CE(Y|X),

where

CE - conditional entropy and

ME - marginal entropy.

X – 2D flowsets array, and

Y - flowset labels array and this results in

RMI (X,Y) = MI(X,Y).

Because of the amount of memory they take up in
comparison to all the other alternatives, our RMI scores
are used to determine which features are most significant
to the user.

4. Results and Discussions

On the basis of malware-generated network traffic
from the CTU-13 and MalRec datasets, we put our
hypothesis to the test. We conducted two independent
experiments. Then, using the malware datasets that we
have already acquired, the study trains with the best
performing to detect the traffic in a network.

Table 1: Dataset Specifications

Dataset Parameter Value
Malrec Malware

Recorded
 66,301

Hashing MD5
Network
Activity

PCAP form

CTU-13 Total
Recordings

13 captures or
scenarios

For our research, the scikit-learn Python package, as
well as the C# and Python programming languages, were
employed. In order to conduct our research, we used a
512 GB of RAM server with 32 CPU cores.

The initial test made use of the MalRec [8] and
CTU-13 [20] datasets as well as other publically
available datasets, in addition to the MalRec and CTU-13

datasets. MalRec report created a traffic has been
included in the dataset, as well as other MalRec reports.
Examples of such tools are the AVClass [14] malware
labelling tool, which allows us to categorise samples
depending on the malware families to which they belong.
For the purpose of determining the top 25 families based
on the highest number of samples, we add up all of the
samples from each family and then rank them. The other
category has a total of 24,197 malware samples, which
includes the samples from the other malware families. It
was decided to create a separate category for it in order
to eliminate the need to categorise it farther down. As
part of our effort to identify the five most frequent
malware kinds, we manually examine each member of
the top malware families in order to determine which sort
of malware it represents. The botnet traffic from the
CTU-13 dataset is utilised to generate this list, which is
why the botnet type is included in the list.

The proposed classifier is trained with 50 estimators and
balanced weights to account for the differences in sample
sizes across different classes. RMI rates the usefulness of
each feature in each feature group and assigns a score to
each feature in each feature group. We run a series of
experiments in which the number of features is varied in
order to identify the bare minimum of characteristics
required to maximise classification performance. Based
on the findings of our study, the study decided to
concentrate on the top five data characteristics from this
area for the time being (see Table 1).

Port and protocol spoofing, as well as differences in
network quality, are all almost unaffected by the feature
set that we have chosen for our technique. Following the
identification of these characteristics, we analyse the
classification performance of each malware species
separately. Botnets received an F1-score of up to 94% as
a result of this research, which was significantly higher
than the random estimate for all other types of malwares,
with the exception of ransomware.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

70

Figure 1: Accuracy

Figure 2: Precision

Figure 3: Recall

Figure 4: F-Measure

In our investigation, we discovered that certain
adware and ransomware samples from other categories
had been mislabelled. As a result, some virus kinds might
share network properties while executing malevolent
behaviours, which is why they are classified as such.

Training Testing
0

10

20

30

40

50

60

70

80

90

Training/Testing

A
cc

ur
ac

y
(%

)

Adware

Trojan

Ransomware

Virus
Worm

Botnet

Others

Training Testing
0

10

20

30

40

50

60

70

80

90

100

Training/Testing

P
re

ci
si

on
 (

%
)

Adware

Trojan

Ransomware

Virus
Worm

Botnet

Others

Training Testing
0

10

20

30

40

50

60

70

80

90

Training/Testing

R
ec

al
l (

%
)

Adware

Trojan

Ransomware

Virus
Worm

Botnet

Others

Training Testing
0

10

20

30

40

50

60

70

80

90

Training/Testing

F
-m

ea
su

re
 (

%
)

Adware

Trojan

Ransomware

Virus
Worm

Botnet

Others

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

71

When it comes to a specific type of malware, there is
nothing particularly noteworthy about these samples.

For the purpose of removing samples that cannot be
discriminated against across different malware categories,
we study the concept of a classification confidence level.
The accuracy of classification improves, but only at the
expense of fewer samples being labelled as distinctive as
in Figure 1. As shown in Figure 2, we may improve the
proposed classifier performance by adjusting the level of
confidence threshold for classifications.

The study suggests that certain malware requires an
additional number of samples in order to be identified
and identified correctly (Figure 3). Each type of malware
has a different confidence threshold, which can be
adjusted to achieve the appropriate F1 score. In order to
avoid false positives, malware with an F1 score greater
than 0.6 must be detected using thresholds such as 0.4 for
adware and 0.7 for ransomware. Figure 4 depicts the
classification performance in terms of F1-measure that
contains a constant confidence interval between 0.5 and
0.90 for three different confidence levels. It is possible to
achieve a specific level of classification confidence for a
given flowset classification percentage listed in the
Samples column.

Following training on malware datasets, a classifier
is trained on a real-world dataset and then applied to it as
per the insights from the malware dataset analysis. When
presented with a malware traffic sample, we have a high
degree of confidence in our ability to detect it.

In our research, we discovered that an F1 score of
0.9 effectively reduces the total false positive rates.
According to the data, there are approximately 100
adware flowsets/hour and ransomware flowsets of lesser
than 20 per hour on average is obtained. It is found that
after each month, worms and viruses containing similar
confidence threshold (0.7) can be found, but not more
than once. It is estimated that fewer than 10 instances of
the malicious flowset exist in the wild when the
confidence level is set at 0.95.

5. Conclusions

This study presents a novel EDRBM for classifying
large-scale network cybersecurity concerns, which is
intended to be used in the future. For the purpose of
determining the model effectiveness, it is subjected to a
wide range of security threats. According to the findings,

the proposed strategy outperforms the other methods that
were examined. On a large-scale network, malicious
traffic sets with rates in the 106 per hour range were
discovered. Given the incredibly low incidence of
malware outbreaks, this is a reasonable response. In
contrast with several false positive alerts acknowledged
by the security operations centres, EDRBM finds
minimal malicious flowsets in an accurate manner,
whereas the latter receives an enormous number of false
positive signals.

References

[1] Sarker, I. H. (2021). Deep cybersecurity: a comprehensive

overview from neural network and deep learning

perspective. SN Computer Science, 2(3), 1-16.

[2] Chen, D., Wawrzynski, P., & Lv, Z. (2021). Cyber security

in smart cities: a review of deep learning-based applications

and case studies. Sustainable Cities and Society, 66, 102655.

[3] Liu, Z., Wang, R., Japkowicz, N., Tang, D., Zhang, W., &

Zhao, J. (2021). Research on unsupervised feature learning

for Android malware detection based on restricted

Boltzmann machines. Future Generation Computer

Systems, 120, 91-108.

[4] Demertzis, K., Iliadis, L., Pimenidis, E., & Kikiras, P.

(2022). Variational restricted Boltzmann machines to

automated anomaly detection. Neural Computing and

Applications, 1-14.

[5] Huma, Z. E., Latif, S., Ahmad, J., Idrees, Z., Ibrar, A., Zou,

Z., ... & Baothman, F. (2021). A hybrid deep random neural

network for cyberattack detection in the industrial internet

of things. IEEE Access, 9, 55595-55605.

[6] Thakkar, A., & Lohiya, R. (2021). A review on machine

learning and deep learning perspectives of IDS for IoT:

recent updates, security issues, and challenges. Archives of

Computational Methods in Engineering, 28(4), 3211-3243.

[7] Bello, I., Chiroma, H., Abdullahi, U. A., Gital, A. Y. U.,

Jauro, F., Khan, A., ... & Abdulhamid, S. I. M. (2021).

Detecting ransomware attacks using intelligent algorithms:

Recent development and next direction from deep learning

and big data perspectives. Journal of Ambient Intelligence

and Humanized Computing, 12(9), 8699-8717.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

72

[8] Gupta, C., Johri, I., Srinivasan, K., Hu, Y. C., Qaisar, S. M.,

& Huang, K. Y. (2022). A Systematic Review on Machine

Learning and Deep Learning Models for Electronic

Information Security in Mobile Networks. Sensors, 22(5),

2017.

[9] Basit, A., Zafar, M., Liu, X., Javed, A. R., Jalil, Z., &

Kifayat, K. (2021). A comprehensive survey of AI-enabled

phishing attacks detection techniques. Telecommunication

Systems, 76(1), 139-154.

[10] Tsimenidis, S., Lagkas, T., & Rantos, K. (2022). Deep

learning in iot intrusion detection. Journal of Network and

Systems Management, 30(1), 1-40.

[11] Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W., &

Lee, W. (2007, August). Bothunter: Detecting malware

infection through ids-driven dialog correlation. In USENIX

Security Symposium (Vol. 7, pp. 1-16).

[12] Bilge, L., Balzarotti, D., Robertson, W., Kirda, E., &

Kruegel, C. (2012, December). Disclosure: detecting botnet

command and control servers through large-scale netflow

analysis. In Proceedings of the 28th Annual Computer

Security Applications Conference (pp. 129-138).

[13] Oujezsky, V., Horvath, T., & Skorpil, V. (2016, June).

Modeling botnet C&C traffic lifespans from netflow using

survival analysis. In 2016 39th International Conference on

Telecommunications and Signal Processing (TSP) (pp. 50-

55). IEEE.

[14] Kheir, N., & Wolley, C. (2013, November). Botsuer: Suing

stealthy p2p bots in network traffic through netflow analysis.

In International Conference on Cryptology and Network

Security (pp. 162-178). Springer, Cham.

[15] François, J., Wang, S., & Engel, T. (2011, May). BotTrack:

tracking botnets using NetFlow and PageRank.

In International Conference on Research in Networking (pp.

1-14). Springer, Berlin, Heidelberg.

[16] Amini, P., Azmi, R., & Araghizadeh, M. (2014). Botnet

detection using NetFlow and clustering. Advances in

Computer Science: an International Journal, 3(2), 139-149.

[17] Bartos, K., Sofka, M., & Franc, V. (2016). Optimized

invariant representation of network traffic for detecting

unseen malware variants. In 25th USENIX Security

Symposium (USENIX Security 16) (pp. 807-822).

[18] Perdisci, R., Lee, W., & Feamster, N. (2010, April).

Behavioral clustering of http-based malware and signature

generation using malicious network traces. In NSDI (Vol. 10,

p. 14).

[19] Rafique, M. Z., & Caballero, J. (2013, October). Firma:

Malware clustering and network signature generation with

mixed network behaviors. In International Workshop on

Recent Advances in Intrusion Detection (pp. 144-163).

Springer, Berlin, Heidelberg.

[20] AlAhmadi, B. A., & Martinovic, I. (2018, May).

MalClassifier: Malware family classification using network

flow sequence behaviour. In 2018 APWG Symposium on

Electronic Crime Research (eCrime) (pp. 1-13). IEEE.

[21] Mohaisen, A., West, A. G., Mankin, A., & Alrawi, O. (2014,

October). Chatter: Classifying malware families using

system event ordering. In 2014 IEEE Conference on

Communications and Network Security (pp. 283-291). IEEE.

