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Abstract 
Feature Selection have turned into the main point of investigations 
particularly in bioinformatics where there are numerous 
applications. Deep learning technique is a useful asset to choose 
features, anyway not all calculations are on an equivalent balance 
with regards to selection of relevant features. To be sure, numerous 
techniques have been proposed to select multiple features using 
deep learning techniques. Because of the deep learning, neural 
systems have profited a gigantic top recovery in the previous 
couple of years. Anyway neural systems are blackbox models and 
not many endeavors have been made so as to examine the 
fundamental procedure. In this proposed work a new calculations 
so as to do feature selection with deep learning systems is 
introduced. To evaluate our outcomes, we create relapse and 
grouping issues which enable us to think about every calculation 
on various fronts: exhibitions, calculation time and limitations. 
The outcomes acquired are truly encouraging since we figure out 
how to accomplish our objective by outperforming irregular 
backwoods exhibitions for each situation. The results prove that 
the proposed method exhibits better performance than the 
traditional methods. 

Keywords: Feature selection, deep learning, neural networks, 
preprocessing, data extraction. 
 

 
1. Introduction 
 

Variable and feature selection have become the focus of 
much research, especially in bioinformatics where there are many 
applications. Machine learning is a powerful tool to select features, 
however not all machine learning algorithms are on an equal 
footing when it comes to feature selection[1]. Indeed, many 
methods have been proposed to carry out feature selection with 
random forests, which makes them the current go-to model in 
bioinformatics[2]. This mainly comes from the fact that random 
forests are well known to be good \out-of-the-bag" algorithms and 
they do not need huge amount of data in order to achieve good 
results[3]. On the other hand, thanks to the so-called deep learning, 
neural networks have benefited a huge interest resurgence in the 
past few years.  

 
However neural networks are blackbox models and very few 

attempts have been made in order to analyze the underlying 
process[4]. Indeed, quite a few articles can be found about feature 
extraction with neural networks (for which the underlying inputs-
outputs process does not need to be understood), while very few 
tackle feature selection[5]. Furthermore, neural networks are 

known to require lots of data and computation time in order to 
achieve good performances. Since data are often hard to obtain in 
bioinformatics, this is already a burden for neural networks. 
Nevertheless, some attempts were made to select features using 
neural network, unfortunately most of them used very shallow 
networks and others were directed to very specific datasets[6]. 

 
Consider a binary classification problem with a class 

corresponding to a positive outcome (for example an alarm 
activation) and the other to a negative outcome (the alarm doesn't 
activate). Also consider a binary classification model which is 
used to classify an input (for example a motion detector) to one of 
the two classes[7]. For each data sample, the classification made 
by the model belongs to one of the following categories:  

 
True positive (TP). This occurs if the model activates the 

alarm when it should have been. No error is made. 
 

True negative (TN). This occurs if the model doesn't activate 
the alarm rightfully so (i.e. the alarm should not have been 
activated). No error is made. 

 
False positive (FP). This occurs when the model activates the 

alarm although it should not have been. An error is made and leads 
to Type 1 error. 

 
False negative (FN). This occurs when the model doesn't 

activate the alarm although it should have been. An error is made 
and leads to Type 2 error. 

 
Neural network can be built in a plentitude of ways and are 

subject to many parameters, neural architecture being the first 
one[8]. Indeed, neural networks can take many forms, ranging 
from very shallow to very deep and very narrow to very wide. 
Many constraints can also be added in the architecture itself, 
convolutional and encoder layers are some of them. All of these 
parameters can be changed regarding the problem we are facing[9]. 
In our case we decided to limit ourselves to test our algorithms on 
networks with fully connected hidden layers. We did this choice 
since our data didn't give us a priori reasons to introduce structure 
into our network. Furthermore, this is the more generic and 
\simplest" architecture that can be found. 

 
Dropout can be seen as an \ensemble" method for neural 

networks. Indeed, the principle is to train only a subpart of the 
network at each iteration. In fact, each neuron has a given 
probability to be temporarily removed" at train time. At test time, 
all neurons are used and their weights are adapted regarding their 
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probability of being kept at training time[10]. This can be seen as 
training multiple networks and averaging their predictions at test 
time (although this is not really what happens, but it would be too 
costly to train multiple networks). 

 
2. Literature Survey 

Li, Y et al [1] proposed multiple formulae in order to carry 
out feature selection. They were separated into three categories: 
zero order, first order and second order methods. They were 
directly based on the parameters of the network while first and 
second order methods were respectively based on the derivative 
and second derivatives of those parameters. 

 
Marbach, D et al [2] proposed to use one of the formulae 

mentioned into tackle deeper neural networks. Indeed, in a back-
propagation method is used to compute feature importance. Let i 
be the neuron whose importance score we are calculating, and Ni 
the set of neurons in the next layer (closer to output) that i feeds 
into. 

 
Montavon et al [3] gave some insight on how to associate 

neural activation and feature importances. The idea here consists 
of analyzing the activation of the neurons for each input sample 
and averaging over all samples, thus using each data sample values 
and not basing the formula only on the network's intern parameters. 
This technique is proposed and works as follows. Let xi be the ith 
dimension of the input example x connected to jth hidden neuron 
by wji and bj the bias of hidden neuron j. 

 
Unfortunately, the regularization method we used doesn't 

allow to select redundant features. Indeed, imagine we have two 
features representing the same information[11]. Since the 
regularization is linear, it is equivalent cost-wise to have one big 
and one small weights rather than two medium one (note that this 
is beneficial when one wants to select as few variables as possible, 
i.e. to solve the minimal optimal problem. To counter this (i.e. to 
solve the all-relevant problem), quadratic regularization (elastic 
net) could be introduced and would help the network selecting 
both of the variables in order to minimize the cost[12]. 

 
3. Proposed Method 

The goal of this subsection is to give a formula to compute an 
importance defined as how much a given neuron contributes to the 
output \variability", to this end we will go through the 5 following 
parts : 

 
1. Importance metric definition. This paragraph will define 

an importance measure of each neuron for a given data sample. 
This measure is based on neural activation[13]. However, they 
only analyze the contribution of the inputs on the first hidden layer, 
whereas here we propose a formula that takes the whole network 
structure into account. 

 
2. Initialization. In this paragraph, a method for initializing 

the algorithm will be discussed. We will also give some clues on 
how this technique could be refined in different settings[14] 

 

3. Back propagation. We will explain how the two first parts 
are put together to obtain the algorithm. 

 
4. Results. We will show an example of importance that are 

obtained using this method and show that the results seem 
reasonable. 

 
5. Extensions. In this sub subsection we will show that given 

the results obtained, this method might also be used in order to 
prune neural networks without hurting accuracy. 

 
Only intern parameters are used with that method, whereas 

ours also uses data samples to compute neural activation. Our 
algorithm is presented hereunder:  
 
 
Algorithm III. General algorithm for back-propagation feature 
selection methods. 
 

1. Train a network (or use a pre-trained network). 

2. For each training sample, do the following steps: 

 (a) Initialization phase: Assign importance to the neurons of 
the network's last layer, by propagating the training 
sample through the network. 

(b) Back-propagation (step one): Use the importance of 
neurons from layer i to compute those of layer i 1, 
where layer i is the one for which importance have 
already been assigned and is the furthest away from the 
output. 

(c) Back-propagation (step two): Repeat step (b) until 
importance have been assigned to the input layer's 
neurons. 

(d) Store importance: The features importance for this input 
sample correspond to the neurons importance of the 
input layer and need to be stored. 

 
3. Repeat step (2) for each training sample and sum all the feature 

importance. 

4. The sum finally obtained corresponds to the overall feature 

importance’s. 

In a single output regression problem setting, we also need to 
consider negative output values the same way as positive ones. 
This leads to the following initialization (with wi the weights 
connecting the last hidden layer to the output) : 

 

In multi-output regression settings, we make the hypothesis 
that each output neuron has the same importance. This way, if we 
let n1; :::; nk be the neurons of the last hidden layer and m1; :::;ml 
be the output neurons (l = 1 if it is a single output problem). We 
have (with wix the weights connecting the last hidden layer to 
output x): 
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In classification problems, softmax layers are often added 
before the output layer such that the output neurons correspond to 
probabilities of belonging to a given class. Softmax layers map a 
N-dimensional vector v of arbitrary real values to another N-
dimensional vector soft(v) with values in the range [0; :::; 1] that 
add up to 1. This is done by using the following formula: 

 

This method might not be optimal since we consider each 
neuron of the softmax layer as equally important, and we do not 
consider negative and positive values differently. For example, for 
a binary classification problem, we make no difference if the 
inputs of the softmax layer are [0:7; 0:2] or [0:7;0:2]. 
 

4. Results 

We are now going to look at the results for a regression 
problem. The dataset we will use has 5000 input features [x1; :::; 
x5000]. The regression problem has been generated using the 
following formula, where the weights have been chosen uniformly 
at random between 0 and 100: 

 

 

This means that only 25 out of the 5000 input features are 
actually useful to predict the output. Figure 1 shows the 
importance of each neuron (layer by layer). In this case the neural 
network used has 4 hidden layers of 500 neurons each. Layer 0 is 
the input layer and thus corresponds to the feature importance. As 
we can see, there are peak importance on the first neurons of layer 
0, this is expected (due to the problem nature, which only uses the 
25 first features) and proves that the technique used seems 
reasonable. 

Figure 1: Comparison between of feature selection performance 

 

Figure 2: Accuracy, AUPR and weights evolution of a network   

for different algorithms. 

 

5. Conclusion 

Multiple algorithms have been presented with their 
advantages and drawbacks, the choice of which to use is 
thus situation dependant. If the goal is to select features on 
a un-noised dataset or to use a pre trained network, then the 
B.P. algorithm should be used. Otherwise using the B.P + 
I.L. technique is the way to go most of the time. It must not 
be forgotten that as shown in Subsection 4.2.2 neural 
architecture plays a big role. Indeed, results can vary greatly 
with the number of hidden layers/neurons per layer. 
However we showed that since the higher the accuracy the 
better the feature selection, this problem can be addressed 
by using cross-validation to find a near optimal architecture. 
Finally, we showed that the computation time of the B.P and 
B.P + I.L. algorithms is of the order of an epoch, which is 
really not a huge deal compared to the training time. 
Therefore, only the swapping techniques suffer from their 
computation time. It is also very important to remember the 
extensions given for each algorithm. First, remember that 
the regularization can be modified as explained in Section 
3.1 according to the problem. For example, it is sometimes 
considered useful to detect redundant features but can also 
be detrimental. Also as stated, multiple algorithm 
initialization methods could be imagined and we have given 
clues on what could be changed to the current algorithm in 
order to further enhance the results. As an example we have 
given another way to initialize the B.P. algorithm in the case 
of binary classification with Equation 3.7, which would 
likely result in enhanced performances.  



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 
 

 

215

 

References 
 

[1]. Li, Y., yu Chen, C., and Wasserman, W. W. (2015). 

Deep feature selection: Theory and application to 

identify enhancers and promoters. JOURNAL OF 

COMPUTATIONAL BIOLOGY, pages 1{15. 

[2]. Marbach, D., Scha_ter, T., Mattiussi, C., and Floreano, 

D. (2009). Generating realistic in silico gene networks 

for performance assessment of reverse engineering 

methods. Journal of Computational Biology, 

16(2):229{239. 

[3]. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., 

and M uller, K.-R. (2017). Explaining nonlinear 

classi_cation decisions with deep taylor decomposition. 

Pattern Recognition, 65:211{222. 

[4]. Nair, V. and Hinton, G. E. (2010). Recti_ed linear units 

improve restricted boltzmann machines. In Proceedings 

of the 27th international conference on machine learning 

(ICML-10), pages 807{814. 

[5]. Nilsson, R., Pe~na, J. M., Bj orkegren, J., and Tegn_er, 

J. (2007). Consistent feature selection for pattern 

recognition in polynomial time. Journal of Machine 

Learning Research, 8(Mar):589{612. 

[6]. Qi, Y. (2012). Random forest for bioinformatics. In 

Ensemble machine learning, pages 307{323. Springer. 

[7]. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 

(1988). Learning representations by back-propagating 

errors. Cognitive modeling, 5(3):1. 

[8]. Saeys, Y., Inza, I., and Larraaga, P. (2007). A review of 

feature selection techniques in bioinformatics. 

Bioinformatics, 23(19):2507. 

[9]. Shrikumar, A., Greenside, P., and Kundaje, A. (2017). 

Learning important features through propagating 

activation di_erences. arXiv preprint arXiv:1704.02685. 

[10]. Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, 

I., and Salakhutdinov, R. (2014). Dropout: a simple way 

to prevent neural networks from over_tting. Journal of 

Machine Learning Research, 15(1):1929{1958. 

[11]. Stolovitzk, G., Monroe, D., and Califano, A. (2007). 

Dialogue on reverse- engineering assessment and 

methods: The dream of high-throughput pathway 

inference. Annals of the New York Academy of 

Sciences, 1115:11{22. 

[12]. Stolovitzky, G., Prill, R., and Califano, A. (2009). 

Lessons from the dream2 challenges. Annals of the New 

York Academy of Sciences, 1158:159{95. 

[13]. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., 

and Zeileis, A. (2008). Conditional variable importance 

for random forests. BMC bioinformatics, 9(1):307. 

[14]. Wang, M., Chen, X., and Zhang, H. (2010). Maximal 

conditional chi-square importance in random forests. 

Bioinformatics, 26(6):831{837. 

[15]. Zou, H. and Hastie, T. (2005). Regularization and 

variable selection via the elastic net. Journal of the Royal 

Statistical Society: Series B (Statistical Methodology), 

67(2):301{320. 

[16]. Altmann, A., Tolo_si, L., Sander, O., and Lengauer, T. 

(2010). Permutation importance: a corrected feature 

importance measure. Bioinformatics, 26(10):1340{1347. 

[17]. Chen, X., Liu, C.-T., Zhang, M., and Zhang, H. (2007). 

A forest-based approach to identifying gene and 

gene{gene interactions. Proceedings of the National 

Academy of Sciences, 104(49):19199{19203. 

[18]. Debaditya, R., Sri, R. M. K., and Krishna, M. C. (2015). 

Feature selection using deep neural networks. 

[19]. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., 

and M uller, K.-R. (2017). Explaining nonlinear 

classi_cation decisions with deep taylor decomposition. 

Pattern Recognition, 65:211{222. 

[20]. Nair, V. and Hinton, G. E. (2010). Recti_ed linear units 

improve restricted boltzmann machines. In Proceedings 

of the 27th international conference on machine learning 

(ICML-10), pages 807{814. 

[21]. Nilsson, R., Pe~na, J. M., Bj orkegren, J., and Tegn_er, 

J. (2007). Consistent feature selection for pattern 

recognition in polynomial time. Journal of Machine 

Learning Research, 8(Mar):589{612. 

[22]. Qi, Y. (2012). Random forest for bioinformatics. In 

Ensemble machine learning, pages 307{323. Springer. 

[23]. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 

(1988). Learning representations by back-propagating 

errors. Cognitive modeling, 5(3):1. 



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 
 

 

216

 

[24]. Saeys, Y., Inza, I., and Larraaga, P. (2007). A review of 

feature selection techniques in bioinformatics. 

Bioinformatics, 23(19):2507. 

[25]. Shrikumar, A., Greenside, P., and Kundaje, A. (2017). 

Learning important features through propagating 

activation di_erences. arXiv preprint arXiv:1704.02685. 

[26]. Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, 

I., and Salakhutdinov, R. (2014). Dropout: a simple way 

to prevent neural networks from over_tting. Journal of 

Machine Learning Research, 15(1):1929{1958. 

[27]. Stolovitzk, G., Monroe, D., and Califano, A. (2007). 

Dialogue on reverse- engineering assessment and 

methods: The dream of high-throughput pathway 

inference. Annals of the New York Academy of 

Sciences, 1115:11{22. 

[28]. Stolovitzky, G., Prill, R., and Califano, A. (2009). 

Lessons from the dream2 challenges. Annals of the New 

York Academy of Sciences, 1158:159{95. 

[29]. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., 

and Zeileis, A. (2008). Conditional variable importance 

for random forests. BMC bioinformatics, 9(1):307. 

[30]. Wang, M., Chen, X., and Zhang, H. (2010). Maximal 

conditional chi-square importance in random forests. 

Bioinformatics, 26(6):831{837. 

 
 
 
 
 
 
 
 
 
 

 


