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Abstract 
The Internet of Things (IoT) has revolutionized communication 
and device operation, but it has also brought significant security 
challenges. IoT networks are structured into four levels: devices, 
networks, applications, and services, each with specific security 
considerations. Personal Area Networks (PANs), Local Area 
Networks (LANs), and Wide Area Networks (WANs) are the three 
types of IoT networks, each with unique security requirements. 
Communication protocols such as Wi-Fi and Bluetooth, 
commonly used in IoT networks, are susceptible to vulnerabilities 
and require additional security measures. Apart from physical 
security, authentication, encryption, software vulnerabilities, DoS 
attacks, data privacy, and supply chain security pose significant 
challenges. Ensuring the security of IoT devices and the data they 
exchange is crucial. This paper utilizes the Random Forest 
Algorithm from machine learning to detect anomalous data in IoT 
devices. The dataset consists of environmental data (temperature 
and humidity) collected from IoT sensors in Oman. The Random 
Forest Algorithm is implemented and trained using Python, and 
the accuracy and results of the model are discussed, demonstrating 
the effectiveness of Random Forest for detecting IoT device data 
anomalies. 
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1.  Introduction 
 

Since the Internet of Things (IoT) has been introduced 
in the past few years, it has revolutionized the way devices 
and objects communicate and the way they operate as well 
by providing them with the ability to connect to one 
another[1], [2]. However, with this technological 
advancement comes significant security challenges that 
need to be effectively addressed[3]. IoT networks are 
composed of different layers, including devices, networks, 
applications, and services, each requiring specific security 
considerations[4]. Various types of IoT networks, such as 
PANs, LANs, and WANs, have distinct characteristics and 
specific security requirements[5], [6]. Communication 
protocols like Wi-Fi and Bluetooth, commonly used in IoT 
networks, can introduce vulnerabilities that necessitate 
additional security measures[7]. Security challenges in IoT 
encompass physical security, authentication, access control, 
encryption, software vulnerabilities, DoS attacks, data 

privacy, and supply chain security[8]. By implementing a 
multi-layered approach, including authentication 
mechanisms, encryption protocols, and security policies, 
we can enhance IoT network security and mitigate potential 
risks, ensuring trust in this transformative technology[9]. A 
generic Internet of Things (IoT) network with applications 
possibilities is shown in Fig 1. 

 
 

 
 

Fig 1. A generic Internet of Things (IoT) network 

The four-layer model is a widely recognized framework 
for designing and implementing Internet of Things (IoT) 
systems[10]. The lowest layer of the system is the 
perception layer, where sensors and actuators collect data 
from the environment. The network layer establishes 
connectivity among devices using various networking 
technologies [11]. The middleware layer acts as a bridge 
between the perception and application layers, integrating 
devices and managing communication protocols. The 
application layer provides an interface for end-users to 
interact with the IoT system and offers applications for data 
acquisition, processing, and presentation. The four-layer 
architecture offers modularity and flexibility, allowing 
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customization for specific requirements and enabling the 
development of new IoT applications[12]. However, 
challenges such as data security, privacy, and 
interoperability need to be addressed to fully leverage the 
potential of the four-layer IoT architecture. By overcoming 
these challenges, we can unlock the transformative power 
of IoT across diverse domains and applications. The four 
layer architecture are shown in the Fig. 2. 

 

 

Fig 2. The IoT four layer Architecture 

There are many types of networks emerging due to the 
rapid development of Internet of Things (IoT) networks 
which enable seamless communication and data exchange 
between devices. Each network type offers unique 
characteristics, advantages, and limitations, catering to 
specific applications. Wireless Personal Area Networks 
(WPANs), such as Bluetooth and Zigbee, enable short-
range wireless communication, making them ideal for 
applications like home automation and wearable devices. 
Wireless Local Area Networks (WLANs) utilize Wi-Fi 
technology to cover larger areas like buildings and 
campuses, serving purposes in smart cities and industrial 
automation[13], [14]. Wireless Wide Area Networks 
(WWANs) span extensive geographical areas, connecting 
devices in transportation, logistics, and environmental 
monitoring. Low-Power Wide Area Networks (LPWANs) 
provide long-range connectivity with minimal power 
consumption, serving applications in agriculture, buildings, 
and cities. Satellite networks offer global coverage but are 
limited by their high cost and latency, making them suitable 
for niche applications such as maritime and aviation. Power 
Line Communication (PLC) networks leverage power lines 
for data transmission, commonly found in smart homes and 
grid applications. It is important to be aware that choosing 
an IoT network depends on factors such as the range of 
coverage, the bandwidth requirements, the latency, and the 

power consumption limitations. Technological 
advancements and an increasing demand for IoT 
applications will undoubtedly lead to IoT networks 
evolving to meet the needs of various industries and use 
cases. 

In order for IoT networks to operate smoothly, the 
choice of a communication protocol will play a crucial role 
in enabling efficient data transfer between devices. A 
variety of communication protocols have been developed in 
order to satisfy the diverse demands of IoT applications in 
terms of bandwidth, latencies, and power consumption in 
order to cater to the diverse requirements of IoT 
applications. Some commonly used protocols in IoT 
networks include MQTT, a lightweight messaging protocol 
for low-bandwidth networks; CoAP, a lightweight protocol 
for memory-constrained devices; HTTP, enabling web-
based communication with IoT devices; Zigbee, a low-
power protocol for home automation and industrial control; 
LoRaWAN, providing long-range connectivity for IoT 
devices; BLE, designed for low-power devices like 
wearables and smart homes; and NFC, facilitating short-
range data exchange for payment and access control 
systems[15], [16]. The selection of a communication 
protocol depends on factors like coverage range, data rate, 
and power constraints of the devices. Additionally, ensuring 
interoperability among devices and networks that employ 
different protocols is crucial for successful IoT system 
implementation. 

 
 

 
 

Fig 3. Typical IoT Security Challenges 

The development of an IoT network architecture 
presents numerous challenges. The challenges include 
scalability, interoperability, security, and privacy. In IoT 
networks, scalability is crucial as the number of connected 
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devices increases, requiring architectures that can handle 
increased traffic. Interoperability is another significant 
challenge, ensuring seamless communication between 
devices using different protocols. Security and privacy are 
paramount due to the vulnerability of IoT devices to cyber-
attacks. Physical security measures can address risks such 
as tampering and theft, while robust authentication, access 
control, and encryption technologies safeguard against 
unauthorized access and data breaches. Regular software 
updates and patches mitigate software vulnerabilities, and 
measures like traffic filtering and connection reduction 
prevent DoS attacks. Protecting data privacy involves 
techniques like anonymization and data minimization. 
Ensuring supply chain security is essential to prevent 
unauthorized access or the introduction of malicious 
components. Implementing a multilayered approach 
involving physical, technical, and organizational measures 
is crucial. Additionally, the exponential growth of IoT 
devices introduces security challenges, given their 
constraints in terms of memory and computational power. 
Monitoring such a vast number of devices becomes 
increasingly challenging, potentially leaving gaps in 
security protocols that can be exploited. Data integrity is 
vital, and identifying anomalies in IoT data is crucial to 
maintain security[17]–[19]. Machine learning algorithms 
can play a significant role in real-time anomaly detection, 
but selecting the right algorithm and producing optimal 
models can be a complex task due to various dimensions 
involved. 

In this paper we have used random forest algorithm to 
find the anomaly in the data to secure the Internet of Things 
Networks. The algorithm offers several advantages. It 
typically provides higher accuracy compared to a single 
decision tree since it reduces overfitting by averaging the 
predictions of multiple trees. In addition to that it can handle 
a large number of input variables and handle missing data 
effectively. Moreover, random forests can provide 
estimates of feature importance, allowing for better 
understanding of the underlying data. 

Random forest algorithms have some disadvantages, 
such as the fact that they can be computationally expensive 
and may require a greater amount of resources due to the 
fact that they combine multiple decision trees. Training a 
large number of trees and searching for the best split at each 
node can be time-consuming. Another limitation is that 
random forests can struggle with imbalanced datasets where 
one class dominates the others. 

There are several limitations to random forests, but they 
have become popular and widely used in a variety of 
domains, including finance, healthcare, and image 
recognition, due to their robustness, flexibility, and ability 
to handle complex problems. 

 
 
 

2.  Related works  
 
The Internet of Things (IoT) has transformed device 

communication and operation, but it also brings significant 
security challenges. IoT networks consist of layers such as 
devices, networks, applications, and services, each with 
specific security considerations. PANs, LANs, and WANs 
are the three types of IoT networks with distinct security 
requirements. Communication protocols like Wi-Fi and 
Bluetooth have vulnerabilities that require additional 
security measures. Challenges include physical security, 
authentication, encryption, software vulnerabilities, DoS 
attacks, data privacy, and supply chain security. The four-
layer IoT architecture and the choice of communication 
protocols are crucial for efficient and secure operation. 
Scalability, interoperability, security, and privacy pose 
challenges in IoT network development. Multilayered 
security measures and anomaly detection play vital roles in 
safeguarding IoT systems. several researchers have 
developed the algorithms to secure the IoT networks. We 
have discussed few major research conducted by the 
researchers. 

Waheed et al. [20]propose the integration of Machine 
Learning (ML) techniques and Blockchain (BC) technology 
to enhance the security and privacy of IoT systems. They 
highlight the effectiveness of ML algorithms in detecting 
and predicting vulnerabilities, while emphasizing the 
relevance of BC in ensuring data integrity and secure 
communication within IoT networks. Secondly, the authors 
recognize the need for a comprehensive approach by 
combining ML and BC, as previous studies have focused on 
either one individually. However, one potential 
disadvantage of their approach is the increased complexity 
and computational overhead associated with implementing 
both ML and BC techniques simultaneously. This may pose 
challenges in terms of resource constraints and scalability, 
especially for resource-constrained IoT devices. 
Nevertheless, the authors' contributions shed light on the 
potential synergies between ML and BC in addressing IoT 
security and provide a foundation for further research in this 
domain. 

This study done be bhabendu [21]makes significant 
contributions to the field of IoT security and privacy. It 
conducts a thorough review and identification of existing 
security and privacy issues within IoT systems, shedding 
light on the vulnerabilities that need to be addressed. 
Secondly, it explores the potential of blockchain technology 
as a solution to enhance security in IoT. The study provides 
detailed insights into the integration of blockchain with IoT, 
showcasing how this combination can mitigate security 
risks. Additionally, a case study is presented, implementing 
an Ethereum-based blockchain system in a smart IoT 
environment, which offers practical implications and real-
world application. However, it is important to note that 
while blockchain technology can enhance security, it also 
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has its own limitations and challenges. The work in this 
research recognizes these drawbacks, confirming a 
complete understanding of the benefits and drawbacks of 
implementing blockchain in IoT systems. It provides 
valuable knowledge and recommendations that can 
contribute to the improvement of security and privacy 
aspects of IoT technology. 

In a systematic review of the security requirements, 
attack vectors, and current security solutions for the Internet 
of Things done by Fatima et al [22], this lie was examined 
in its systematic review of IoT networks. Moreover, the 
identification of gaps in these solutions addressed through 
Machine Learning (ML) and Deep Learning (DL) 
approaches. In order to address a variety of security 
challenges, IoT devices and networks can benefit from 
embedded intelligence derived from ML and DL techniques. 
Furthermore, the paper discusses existing ML and DL 
solutions for different security problems in IoT networks, 
offering insights into their potential applications. However, 
it is important to note that ML and DL approaches also have 
their limitations, such as the need for significant 
computational resources and the possibility of adversarial 
attacks on the trained models. These disadvantages should 
be taken into consideration when implementing ML and DL 
solutions for IoT security. By highlighting the associated 
challenges and trade-offs of ML and DL, the research 
contributes to enhancing IoT security through ML and DL. 

A multi-layer security approach has been proposed by 
Feroz et al[23] for addressing the security issues that arise 
in IoT networks, focusing in particular on jamming attacks. 
It introduces a detection mechanism for Distributed Denial 
of Service (DDoS) attacks, enhancing the protection of 
smart devices in IoT environments. The study also 
introduces a novel threshold-based countermeasure (TBC) 
to mitigate replay attacks at different layers. The proposed 
approach improves computational efficiency and energy 
consumption compared to existing schemes, offering a 
more scalable solution for securing IoT networks. One 
potential limitation of the study is that it primarily focuses 
on jamming attacks and replay attacks, while there may be 
other security concerns in IoT networks that are not fully 
addressed. Additionally, the paper does not extensively 
discuss the potential challenges or limitations of 
implementing the proposed multi-layer security approach.  

The contributions of this paper by nizzi et al [24]include 
the proposal of a novel method called AShA (Address 
Shuffling Algorithm with HMAC) for performing network-
wide address shuffling in IoT devices. AShA offers a simple 
implementation and minimal network overhead, making it 
suitable for resource-constrained devices. The theoretical 
analysis demonstrates how AShA parameters can be 
adjusted for different network sizes, while the simulations 
show its effectiveness in achieving collision-free address 
renewal in large networks. By constantly modifying the 

device footprint, AShA reduces the attack surface and 
enhances the security of IoT devices.  

Ramya & Vijaya proposes a novel approach to address 
the security and privacy-preserving challenges in big data, 
specifically focusing on the healthcare industry[25]. In the 
A3DES algorithm, anonymization techniques and Triple 
DES encryption are integrated to protect sensitive data. 
Further, experimental results indicate that the proposed 
approach is superior to other related approaches, both in 
terms of performance and security. It is nevertheless 
important to acknowledge the potential disadvantages of the 
proposed approach as well as the advantages it offers. One 
of the potential limitation is the computational overhead 
introduced by the anonymization and encryption processes, 
which may impact the overall processing time and resource 
utilization. Additionally, the effectiveness of the approach 
may be influenced by the quality of anonymization and the 
choice of encryption algorithms.  

Abiodon et al [26] have proposed a cryptography-based 
solution to address the security and assurance concerns in 
the context of big data generated by IoT devices. 
Specifically, the Triple Data Encryption Standard (3DES) 
algorithm is utilized to secure the IoT-generated data, 
ensuring its confidentiality and integrity. The performance 
evaluation of the proposed method demonstrates its 
effectiveness compared to other techniques, highlighting its 
potential for privacy and security in IoT data generation. 
Conversely,  implementing cryptography-based technology 
introduce additional computational overhead and resource 
requirements. This affect the overall system performance.  

Tewari et al [27] proposed a mutual authentication 
mechanism based on elliptic curve cryptography (ECC) for 
securing IoT devices. This mechanism addresses the 
growing concern of security in the IoT technology and 
offers advantages in terms of communication overhead and 
resistance against attacks. The proposed solution satisfies 
essential security requirements and has been validated 
through a series of security and performance analyses that 
have been performed. Cryptography method always makes 
the system slow. 

A hybrid DNA-encoded elliptic curve cryptography 
(ECC) scheme for enhancing security in IoT devices was 
proposed by Durga [28]. The proposed scheme combines 
the strengths of ECC and DNA-based encryption in such a 
way that it offers multilevel security and enhanced stability. 
The unique way in which DNA sequences are selected and 
assigned, in combination with binary conversion and ECC 
encryption, provides double security. The paper 
demonstrates the feasibility of implementing this approach 
on IoT devices through various examples. One of the 
potential disadvantage of the proposed scheme is the 
increased computational complexity associated with DNA 
encoding and decoding processes. This may result in higher 
processing overhead and potentially impact the 
performance of resource-constrained IoT devices. Future 
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research and optimization efforts should be directed 
towards mitigating these computational challenges to 
ensure the practicality and efficiency of the proposed 
solution. 

Prokash et al [29] proposed an improved elliptic curve 
digital signature algorithm (ECDSA) scheme, which 
enhances both security and efficiency compared to the 
original scheme. The main improvement lies in the 
elimination of the time-consuming finite field inversion 
process, resulting in faster computation speed and a reduced 
ratio of verification time to signature generation time. The 
proposed scheme offers practical significance in improving 
the efficiency of elliptic curve cryptography. Simulation 
results confirm the scheme's faster performance and higher 
efficiency in signature generation and verification without 
compromising security.  

Mohammed et al [30] described an algorithm for 
securing IoT data using a three-stage encryption algorithm, 
which is specifically designed for greenhouse applications. 
There is no need for traditional RSA keys to be exchanged 
in this algorithm, thus resulting in a streamlined encryption 
process and a 30% reduction in the transmission time. The 
technology offers a high level of encryption, simplicity, and 
energy efficiency, which addresses the limitations of IoT 
nodes. Further evaluation is needed to validate its 
performance under different scenarios, and its effectiveness 
against advanced security threats should be examined. 

In supervised machine learning, Random Forest uses an 
ensemble of decision trees. A large number of industries, 
such as finance, e-commerce, and health care, use machine 
learning for a variety of purposes, including predictive 
analysis and pattern recognition. Using the algorithm, 
multiple decision trees are created, each trained on a 
different set of data and features. There are many trees in 
the forest, so the algorithm gathers predictions from all of 
them and outputs the most frequent or average prediction 
out of all trees. Using this ensemble approach, the model is 
more accurate, generalizable, and resilient to overfitting, 
due to the fact that it is more resilient to overfitting. 
Furthermore, Random Forest is known for its ability to 
handle high-dimensional data as well as dealing with 
missing values, in addition to identifying important features. 
It is still important to keep in mind that decision trees may 
be computationally expensive and may also be difficult to 
interpret when compared to individual decision trees. 
However, the versatility and effectiveness of the tool make 
it useful for a variety of different machine learning tasks, as 
a consequence of its versatility 

 
 

3. Methodology  

Random Forest is a machine learning approach 
commonly used for regression and classification tasks. It 
employs ensemble learning, a technique that combines 

multiple classifiers to address complex problems effectively. 
The random forest algorithm consists of numerous decision 
trees. These decision trees are trained using bagging or 
bootstrap aggregating, a process that enhances the accuracy 
of machine learning algorithms. In this algorithm, the 
predictions of the decision trees are used to determine the 
final outcome[31]. The algorithm makes predictions by 
averaging or taking the mean of the outputs from multiple 
trees. As the number of trees increases, the precision of the 
predictions also improves.. The algorithm offers several key 
features which inclides[32]: 

 
 Improved Accuracy: Compared to the decision 

tree algorithm, Random Forest tends to 
provide higher accuracy in predictions. 

 Handling Missing Data: It offers an effective 
mechanism for handling missing data, 
allowing for robust analysis even with 
incomplete information. 

 Reduced Hyper-parameter Tuning: Random 
Forest can generate reasonable predictions 
without extensive hyper-parameter tuning, 
simplifying the model development process. 

 Overfitting Mitigation: It addresses the issue of 
overfitting commonly encountered in decision 
trees, resulting in more generalized and 
reliable models. 

 Random Feature Selection: At each splitting 
point within each tree of the Random Forest, a 
subset of features is randomly chosen, 
enhancing diversity and reducing bias in the 
model's predictions. 

 
Random Forest algorithms are built upon decision trees, 

making it essential to understand the fundamentals of 
decision trees. A decision tree is a tree-like structure used 
for decision support. It comprises three components: 
decision nodes, leaf nodes, and a root node. The decision 
tree is built by selecting appropriate attributes to partition 
the sample set into subsets, creating branch nodes until the 
samples in each node share the same type or meet a 
termination condition. This algorithm models structured 
thinking similar to how humans approach problems. For 
example, when examining financial data, one might 
prioritize assessing profitability. Decision tree construction 
involves two main steps: generating the decision tree using 
a training sample set and pruning the tree to refine its 
accuracy[33]. The decision tree construction algorithm 
follows a specific input sample set format, which is in 
equation (1) 

 
𝐼 𝐴 … ,  𝐴 … ,  𝐴 ,𝑇 … 𝐴 … ,  𝐴 … ,  𝐴 ,𝑇 …   1  

 
In the process of constructing a decision tree, we use a 

representation in which Aij represents the value of the j-th 
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attribute in the set of the i-th sample, and Ti represents the 
mark type of the i-th sample. Then the output of the 
algorithm is the binary tree or a multi-branch tree.  the 
binary trees are commonly utilized when the collection of 
data consists of attributes that can be evaluated using the 
judgments done by  boolean logic. The decision tree method 
is shown in figure 4.   

 

 

Fig 4. Decision tree method 

Different decision tree classification algorithms employ 
various criteria to select split attributes. Among these 
criteria, information gain and information gain rate are two 
crucial ones. Information gain is used to determine the split 
attribute selection[34]. Let's consider a the sample set of 
training S and a set of attribute is in equation (2). Next, we 
calculate the proportion samples that belong to the category 
of  j-th in the dataset as in equation (3). At this point, we 
compute the information entropy of the dataset samples S 
as in equation (4). 

𝑃 𝑝 …𝑝 , …𝑝                          2  
 

𝑃 𝐶
𝑆
|𝑆|

                                   3  

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆,𝑝 𝑃 𝐶 𝑙𝑜𝑔  𝑃 𝐶          4  

 
Let's consider a sample dataset where the attribute pi has 

a value range 𝑎, 𝑏 . We can define 𝑆 as the samples 
subset in which the attribute 𝑝  takes the value 𝑥. In this 
case, the information gain in the set of samples 𝑆 for the 
attribute 𝑝  can be determined using the following as in 
equation (5). 

𝐺𝑎𝑖𝑛 𝑆,𝑝 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆,𝑝
|𝑆 𝑣 |

|𝑆|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆, 𝑝         5

⬚

∈

 

 
Once the information gain in the set samples S is 

computed, the split information of S on the attribute 𝑝   it is 
determined using the equation (6) 

𝑆𝑝𝑙𝑖𝑡𝐺𝑎𝑖𝑛 𝑆,𝑝
|𝑆 𝑣 |

|𝑆|
 𝑙𝑜𝑔  

|𝑆 𝑣 |
|𝑆|

                  6

⬚

∈

 

 
The gain rate of information of the dataset sample S 

with respect to the attribute 𝑝    is calculated as follows: 
 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 𝑆, 𝑝
𝐺𝑎𝑖𝑛 𝑆,𝑝

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜 𝑆,𝑝
                         7  

 
Random forest is a powerful ensemble classifier method 

that consists of decision trees. The combination of random 
forest and decision trees is illustrated in Figure 3. The 
samples reaching each internal node are divided into blocks 
based on this attribute. The end nodes, also known as leaf 
nodes, represent data collections with classification labels. 
The relationship between the root node and the leaf node of 
the tree is called a discriminant rule. The decision tree 
algorithm is based on a greedy approach used by top-down 
algorithms, where each internal node selects the attribute 
that yields the best classification result for the data 
partitioning. The process of classification continues until 
the tree is able to make an accurate classification. Among 
the key challenges that must be overcome in order to 
implement the decision tree algorithm is to select the 
optimal splitting attribute. Gini index used for attribute 
selection. 

 

 

Fig 5. Random forest 
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In the algorithm ensemble-based machine learning that 
combines multiple decision trees to make predictions. Each 
decision tree in the random forest is trained on a different 
subset of the training data and uses a random subset of 
features for splitting at each node[35], [36]. The predictions 
from individual trees are then aggregated to obtain the final 
prediction. 

 
4. Implementation of the Algorithm  

The Random Forest found as most appropriate machine 
learning algorithm to identify the anomalies in metrological 
dataset containing temperature and humidity as features set, 
received from IoT devices. It also proposed an optimized 
model for detection of anomalies in metrological data (i.e. 
Temperature and Humidity) received from different IoT 
devices. It uses machine learning classifier technique by 
implementation and training of model in python language 
using Random Forest Algorithm.  Figure 6 Implemented 
model for anomalies identification in data received from 
IoT Devices 

 
  

 
 

Fig 6. Implementation of random forest 

In the implementation the sequential steps of the model for 
anomalies detection in dataset of IoT devices are as follows.   

 Collection of data (Source: IoT Devices)  
 Pre-processing of received data  
 Implementing the classifier technique of 

machine using Random Forest (Classifier) 
Algorithm.  

 Evaluation of trained model based on accuracy, 
confusion matrix and prediction time.  
 

 
5. Results 

We have implemented the algorithm in  Python version 
3.9.12 is with Jupyter Notebook IDE. Considering the 
average data in muscat from accuweather for April 2023 
and May 2023 , we have created a hypothetical dataset for 
our scenario, therefore, to fit the criteria sample dataset 
containing 100 rows is being used. It contains two feature 
(temperature and humidity) and the target class labeled as 
anomaly. The normal ranges related to the environmental 
climate of Oman are 30 to 40 degree for temperature and 40 
to 60 percent humidity, any values lower or higher than 
these ranges are considered to be anomaly. The Scatterplot 
and histogram of temperature and humidity of dataset is 
shown in the figure 7. 

 
 

 

Fig 7. temperature and humidity of dataset 

The data contains one hundred unique rows with two 
features labeled as temperature and humidity. Furthermore, 
the target class has two labels ‘0’ and ‘1’, where ‘0’ 
represents the normal/no anomaly and ‘1’ represents the 
abnormal/anomaly detection. The entire dataset was split 
into two portions, i.e. 80% for the training dataset and 20% 
for the testing the trained classifier model. In this process 
the random forest tree aggregation is shown in the figure.  
To illustrate the functioning of the random forest algorithm 
as an ensemble, a decision tree sample with an estimator 
value of 3 is selected. By utilizing the voting mechanism, 
which aggregates the individual predictions of multiple 
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decision trees, a collective prediction is generated as shown 
in figure 8.  

 

 
 

Fig 8. Individual predictions of multiple decision trees 

 
The model training time is recorded up to: 4.000 secs 

and on average time of 2.87 secs, in the present environment 
explained in methodology. Furthermore, with current 
dataset the prediction time is up-to one second on average.  

For classification models the most common metric is 
accuracy, it determines the correct prediction’s fraction 
made by a model with respect to the total number of 
predictions that it has made. It gives a general overview of 
measuring metrics. Accuracy is calculated by following 
equation:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
  

 
                    (8) 

 
Accuracy score is recorded as 0.95 which means it 

classification accuracy is up-to 95%, with the given training 
and test data.  

The confusion matrix reflect the prediction’s actual 
results into four categories i.e TP – True Positive, TN – True 
Negative, FP – False Positive and FN – False Negative. 
Confusion matrix is given as following box.  

The labels, TP (True Positive) and TN (True Negative) 
shows the segment of correctly predicted from the dataset. 
Whereas, FP (False Positive) and FN (False Negative) 

indicate the segment of test data which is wrongly predicted 
by the classifier.  

Confusion matrix with respect to the test i.e. 20% of the 
actual given data as shown in figure 9. Twenty rows tested 
in trained dataset, where true positive and true negative 
values sums up (16 + 3 = 19) where as no false positive and 
false negative = 1. Based on confusion matrix the accuracy 
rate calculated is 0.95. 

 
 

 

Fig 9. Confusion matrix 

6.  Conclusion  

The rapid growth of the Internet of Things (IoT) has 
significant implications for our interactions with the 
environment. Reliable network architectures are crucial for 
supporting the large number of connected devices. IoT 
networks are classified into PAN, LAN, and WAN, utilizing 
communication protocols such as Wi-Fi, Bluetooth, Zigbee, 
and LoRaWAN. Security challenges include physical 
security, authentication, encryption, software 
vulnerabilities, DoS attacks, data privacy, and supply chain 
security. In this research we focused on anomaly-based 
security mechanisms and integrating the Random Forest 
Algorithm to find the anomaly and secure the IoT network. 
in our implementation we found that our detection accuracy 
reached 95%. In future, we would like to work on more data 
and with collection of real time data using ESP 32 dev kit .  
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