
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

1

Manuscript received July 5, 2024
Manuscript revised July 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.7.1

Bridging the Gap: Follow-up Strategies for Effective Software
Architecture Implementation

Abdullah A H Alzahrani 1†

Engineering and Computers College – Alqunfuda,
Umm Al Qura University, Makkah, P.O.Box: 715 Saudi Arabia

Abstract
Software architecture are High-level design decisions shaping a
software system's components, structure, and interactions. It can
be a blueprint for development, evolution, and ongoing
maintenance. This research investigates the communication
practices employed by software architects and developers to
ensure adherence to the designed software architecture. It explores
the factors influencing the selection of follow-up methods and the
impact of follow-up frequency on successful implementation.
Findings reveal that formalized follow-up procedures are not yet a
ubiquitous element within the software development lifecycle.
While electronic communication, particularly email, appears to be
the preferred method for both architects and developers, physical
and online meetings are utilized less frequently. Interestingly, the
study suggests a potential confidence gap, with architects
expressing concerns about developers' ability to faithfully
implement the architecture. This may lead to architects providing
additional clarification. Conversely, while most developers
reported confidence in their software knowledge, overly detailed
architecture documentation may pose challenges, highlighting the
need for architects to consider alternative communication
strategies. A key limitation of this study is the sample size,
restricting the generalizability of the conclusions. However, the
research offers valuable preliminary insights into the
communication practices employed for architecture
implementation, paving the way for further investigation with a
larger and more diverse participant pool.
.Keywords:
software architecture, software styles, software maintenance,
software development, software engineering.

1. Introduction

Software architecture represents the high-level

design decisions of a software system, typically made
during the early stages of the development lifecycle
[1]. However, validating the successful
implementation of the intended architecture within the
source code can be a challenging and complex process.

Modern software development practices utilize
various follow-up methods to bridge this gap,
including physical meetings, online meetings, and
social media communication. Email remains a

traditional and important follow-up channel as well.
Despite these diverse methods, ensuring accurate
software architecture implementation remains a
persistent challenge. Effective collaboration between
software architects and developers is crucial for
achieving this goal, and follow-up practices can play
a significant role in facilitating communication and
ensuring alignment.

This research aims to investigate the follow-up
methods employed by software developers and
architects to ensure proper software architecture
implementation. The study will explore the factors
influencing the choice of follow-up methods and
examine the impact of follow-up frequency.

This paper is structured as follows. The first
section provides background information on software
development and software architecture, followed by a
review of relevant existing research. The second
section details the research methodology and research
questions. The third section presents and discusses the
research findings. Finally, the concluding section
summarizes the key findings, discusses limitations of
the study, and suggests avenues for future research.

2. Related work and background

This section reviews existing literature relevant

to the research topic of follow-up practices in ensuring
software architecture implementation.

A) Software Development and Architecture

Software development methodologies, such as
Agile, involve a Software Development Life Cycle
(SDLC) that emphasizes meeting client requirements
and quality assurance (QA) practices [2, 3, 4, 5, 6, 7,

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

2

8]. Software architects and developers share
responsibility for ensuring proper software
architecture implementation, which can be
challenging due to factors like architecture complexity
and developer knowledge [9, 10, 11, 12].

B) Communication in Software Development

Effective collaborative communication between
developers and other stakeholders is crucial for
software development processes [13]. Various
communication channels, such as email and meetings,
are employed for collaboration and follow-up
purposes. However, communication can be hindered
by factors like distance or multiple project teams,
despite the emphasis on close collaboration within
Agile methodologies [14, 15].

C) Previous Research

Several studies have explored aspects of software
architecture and communication. Wiese et al. [16]
investigated software architects' practices for
identifying, managing, and communicating
architecture mistakes, highlighting the importance of
standardized communication for improvement
purposes. Muccini et al. [17] examined the evolving
role of software architects in developing machine
learning systems, emphasizing the impact of
communication and collaboration on overall
architecture. Malavolta et al. [18] analyzed
architectural languages (ALs) and user needs through
a survey, finding that researcher-proposed ALs lack
features like communication support desired by
professionals.

Bailey et al. [19] investigated developer
responses to user feedback through reviews in over
1,700 applications, demonstrating the need for
communication channels between developers and
users. Ozkaya et al. [20] studied developer
understanding of software architecture using the
Unified Modeling Language (UML), revealing
preferences for specific UML diagrams in visualizing
different architectural aspects. Haoues et al. [21]
proposed a guide for selecting appropriate software
architecture styles, drawing on prior research and
expert validation.

D) Software Architecture and Code

da S. Carvalho et al. [22] explored the
relationship between software architecture and code
smells, identifying potential associations between
specific code smells and certain architectural styles.
Garcia et al. [23] introduced the "SAIN" framework
for reverse engineering software architecture from
source code, highlighting its potential to reduce
maintenance costs but acknowledging maturity
limitations.

Nahar et al. [24] explored collaboration
challenges between software engineers and data
scientists in developing machine learning systems,
identifying miscommunication as a key issue.
Savarimuthu et al. [25] investigated the impact of
communication between users and developers on
mobile app development using review data,
emphasizing the need for further research in this area.
Chen et al. [26] proposed a framework for developers
to analyze user feedback and improve mobile apps,
further highlighting the importance of communication
between users and developers.

E) Communication and Software

Maintenance

Several studies by various researchers (e.g., [27,
28, 29, 30]) have explored the use of communication
methods like emails, feedback reviews, and social
media for software maintenance and improvement
purposes, often employing natural language
processing and machine learning techniques. This
existing research underscores the significance of
investigating communication methods in software
development.

F) Gap in Existing Research

While extensive research has addressed topics
like architecture selection, architectural languages,
and developer understanding of architecture, the
current study aims to fill a gap in existing knowledge.
Specifically, this research investigates the choice and
impact of follow-up practices and communication
methods employed to ensure proper implementation
of software architecture. While some studies (e.g., [31,
32, 33]) acknowledge the importance of collaborative

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

3

communication between software architects and
developers, the nature of this communication,
particularly regarding follow-up practices, has not
been sufficiently explored.

3. Research Design

This section outlines the research design
employed to investigate the use of follow-up practices
in ensuring software architecture implementation.

A) Research Questions

Stemming from the research motivation, this
study addresses two central research questions (RQs)
focused on follow-up practices:

RQ 1: What factors influence the choice of follow-up
methods for ensuring proper software architecture
implementation?
RQ 2: Is following up a standard practice for
guaranteeing correct software architecture
implementation?

B) Participants

To answer these questions, the study involved
two participant groups: software developers and
software architects. Aiming for generalizability, the
participants were anonymous and not affiliated with a
specific workplace. Additionally, participant
experience levels were varied to capture a broader
perspective.

C) Methodology

Surveys were chosen as the primary
methodology due to their efficiency in collecting data
from a large pool of participants. The targeted
participants, software architects and developers, were
able to provide anonymous responses through a web-
based survey tool.

D) Sample

The survey, distributed via email and text
messages, was sent to 200 software developers and
architects. A total of 75 participants responded.
Figure 1 presents the distribution of participants based

on job title and gender. As shown in Figure 1, 59% of
participants identified as software developers, and the
majority (88%) were male.

Figure 1: Distribution of participants.

E) Survey Instrument

The survey design consisted of four sections:

1. Consent: Obtained informed consent from
all participants.

2. General Information: Collected
demographic data, including job title.

3. Main Questions: This section presented
relevant questions tailored to the participant's
job title (software architect or developer)
based on their response in Section 2, creating
an interactive format.

4. Open Question: Allowed participants to

provide additional insights.

F) Measurement Instruments

The majority of questions employed a Likert
scale ranging from 0 (never) to 4 (always) to gauge
frequency or agreement. One question regarding
developer knowledge of software architecture utilized
a similar but distinct scale, ranging from 0 (none) to 4
(excellent). Additionally, a single closed-ended
question with yes or no answer options inquired about
participant adherence to an Agile development model.
Figure 2 illustrates that 83% of participants reported
working within an Agile environment.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

4

Figure 2: participants beliefs of Agile adoption in

workplace.

G) Survey Development and Administration

The survey was designed and implemented using
Google Forms. The survey was then disseminated to
the target population through email and direct text
messages. A simplified version of the survey is
provided in Appendix A.

4. Research Findings

This section presents the key findings of the
study, categorized into three subsections (A, B, and C)
based on the survey instrument's structure. Each
subsection delves into the responses received from
software architects and developers regarding follow-
up practices, architect perspectives on implementation
fidelity, and developer knowledge and resource access.

A. Frequency of Follow-up Methods

This subsection examines the frequency with
which software architects and developers utilize
various follow-up methods (e.g., in-person meetings,
email, social media) to ensure proper software
architecture implementation.

Overall Follow-up Practices:

Data presented in Figure 3 suggests that 42% of
software architects consistently (always or often)
follow up with developers regarding architecture
implementation. While a similar proportion (46%) of
software developers reported using some form of
follow-up, the findings from Figure 4 indicate that
"sometimes" was the most common response for both

groups regarding initiating follow-up requests. This
inconsistency suggests that regular follow-up is not a
standard practice within the development process.
There might be an absence of established follow-up
policies, or a reluctance among some developers or
architects to engage in frequent follow-up. Further
investigation is needed to explore this aspect.

Figure 3: Frequency of Follow-up.

Figure 4: Frequency of Follow-up Requests.

Preferred Follow-up Methods:

Figures 5-8 illustrate the preferred methods for
follow-up communication between architects and
developers. Both groups utilize email frequently
(Figures 5 & 8). Interestingly, software developers
appear to favor online meetings (Figure 6) over in-
person meetings (Figure 5), while the opposite is true
for software architects.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

5

Figure 5: Frequency of Follow-up in Person.

Figure 6: Frequency of Follow-up via Online meetings.

Figure 7: Frequency of Follow-up via Emails

Social media usage for follow-up is also notable,
with a significant portion of both groups using it
frequently (Figure 8). It is important to acknowledge
that experience might influence follow-up method
selection (Figures 9 & 10). However, with limited data,
further research is needed to confirm this relationship.

Figure 8: Frequency of Follow-up via Social media.

Figure 9: Software architects’ experience and the frequent

follow-up means

Figure 10: Software developers’ experience and the

frequent follow-up means

These findings highlight the need for a more
standardized approach to follow-up practices within
the development process. Establishing clear
guidelines and considering communication
preferences of both architects and developers could
lead to more effective and efficient follow-up
strategies.

Formalized follow-up procedures for ensuring
adherence to software architecture are not yet widely
adopted. Further research could explore potential
benefits and barriers to implementing such procedures.

B. Software Architects' Perspectives

This subsection focuses on the opinions of
software architects concerning the frequency of
correct software architecture implementation by
developers and the need for further explanation
(Figures 11 & 12). As shown in Figure 11, only 48%

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

6

of software architects believe developers always or
often implement the architecture correctly. This
finding suggests potential concerns about developer
understanding or adherence to the architecture. There
could be several explanations for this. The initial
documentation might be unclear or lack sufficient
detail, leading to misinterpretations by developers.
Alternatively, developers might not have received
adequate training or knowledge sharing opportunities
regarding the specific software architecture being
implemented.

Figure 12 further supports this notion, revealing
that 42% of software architects frequently need to
explain the software architecture to developers. This
finding suggests potential communication gaps
between architects and developers. The frequent need
for clarification could be a consequence of the
aforementioned issues with documentation clarity or
developer knowledge. Alternatively, it might indicate
a lack of ongoing communication channels where
developers can readily ask questions or seek
clarification during the development process.

Figure 11: Software Architects opinions on correct

implementation of software architecture.

Figure 12: opinions Frequency of need for software

architecture explanations to developers.

C. Software Developers' Perspectives

This subsection examines software developers'
self-reported knowledge of software architecture and
the frequency with which they receive detailed
documentation (Figures 13 & 14). Figure 13 illustrates
the distribution of self-reported knowledge levels
among developers. While 57% report high or excellent
knowledge, 16% indicate low or no knowledge. This
variation in self-reported knowledge could be
attributed to factors such as experience level, prior
training, or the complexity of the specific software
architecture itself. Developers with less experience or
those working on a particularly complex architecture
might feel less confident in their understanding
compared to their more experienced colleagues.

Figure 13: Software Developers Rate of Knowledge in

Software Architecture
The data in Figure 14 reveals a disparity in

receiving detailed architecture documentation. While
37% of developers receive it frequently, 39% report
rarely or never receiving it. This uneven distribution
could contribute to the inconsistencies observed in
follow-up practices and potential knowledge gaps
among developers. Unequal access to detailed
documentation could lead to confusion and hinder
developers' ability to correctly implement the software
architecture. Furthermore, the lack of readily
available documentation might necessitate more
frequent follow-up from architects to provide
necessary clarification, potentially contributing to the
inconsistencies observed in follow-up practices.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

7

Figure 14: Frequency of providing software developers with

detailed document of the required software architecture
The findings in this section suggest a need for

further investigation into communication gaps and
knowledge disparities between software architects and
developers. Addressing these issues through improved
documentation, regular communication channels, and
knowledge-sharing initiatives could contribute to a
more efficient and effective software development
process.
.

5. Conclusion

This study investigated various follow-up
methods employed by software architects and
developers to ensure the implementation of software
architecture. It explored factors influencing the choice
of follow-up methods and the impact of follow-up
frequency.

The findings revealed that following up on
architecture implementation is not a routine practice in
software development. While software architects
initiate follow-up more frequently, developers
sometimes take the initiative as well. Interestingly,
emails emerged as the preferred follow-up method for
both parties. Physical meetings were less favored by
architects, while online meetings were less appealing
than social media platforms. However, developers
seemed to prefer meetings for follow-up discussions.

The research also highlighted a potential lack of
confidence among software architects, who expressed
concerns about developers' adherence to the
architecture. This may lead them to provide additional
explanations. Conversely, while most developers
reported confidence in their software knowledge,
detailed architecture documentation could present

challenges, suggesting a need for adaptation by
architects.

A key limitation of this study is the sample size.
With only 75 participants, generalizing the
conclusions may be difficult. Nevertheless, the
research provides valuable initial insights into the
follow-up practices between software architects and
developers, laying the groundwork for further
exploration.

Acknowledgment

 This research journey would not have been
possible without the unwavering support of a
remarkable network. I extend my deepest gratitude to
my esteemed family and friends whose constant
encouragement, patience, and unwavering belief in me
fueled my determination throughout this process. I am
also incredibly thankful to Umm Al Qura University
for providing the exceptional environment and
invaluable resources that facilitated my exploration of
software development within the vast field of software
engineering. Their guidance proved instrumental in
shaping this project. To all of you, my heartfelt thanks.

References

[1] M. C. Oussalah, Software architecture 1. Wiley Online
Library, 2023. Accessed: Jun. 06, 2024. [Online]. Available:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/978111893
0960

[2] S. Al-Saqqa, S. Sawalha, and H. AbdelNabi, “Agile software
development: Methodologies and trends.,” Int. J. Interact.
Mob. Technol., vol. 14, no. 11, 2020, Accessed: Jun. 06, 2024.
[Online]. Available:
https://pdfs.semanticscholar.org/2fef/154748093288894dbd
0b98db1b9b54731c71.pdf

[3] E. Laaraib et al., “A Methodology for Incorporating Quality
Assurance Practices during Software Development Life
Cycle,” Int J, vol. 10, pp. 2296–2301, 2021.

[4] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, Agile
Software Development Methods: Review and Analysis.
arXiv, 2017. Accessed: Jun. 05, 2024. [Online]. Available:
http://arxiv.org/abs/1709.08439

[5] V. R. Basili, “Software development: A paradigm for the
future,” in [1989] Proceedings of the Thirteenth Annual
International Computer Software & Applications Conference,
IEEE, 1989, pp. 471–485. Accessed: Jun. 05, 2024. [Online].
Available:
https://ieeexplore.ieee.org/abstract/document/65127/

[6] H. S. Bok and K. S. Raman, “Software Engineering
Productivity Measurement using Function Points: A Case

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

8

Study,” J. Inf. Technol., vol. 15, no. 1, pp. 79–90, 2000, doi:
10.1177/026839620001500108.

[7] I. C. S. S. E. T. Committee, IEEE Standard Glossary of
Software Engineering Terminology, vol. 729. IEEE, 1983.

[8] I. Sommerville, Software Engineering, 10th edition. Boston:
Pearson, 2015.

[9] D. E. Perry and A. L. Wolf, “Foundations for the study of
software architecture,” ACM SIGSOFT Softw. Eng. Notes,
vol. 17, no. 4, pp. 40–52, Oct. 1992, doi:
10.1145/141874.141884.

[10] D. Spinellis and G. Gousios, Beautiful architecture: leading
thinkers reveal the hidden beauty in software design.
O’Reilly Media, Inc., 2009. Accessed: Jun. 07, 2024.
[Online]. Available:
https://books.google.com/books?hl=en&lr=&id=h34pwy005
nYC&oi=fnd&pg=PR5&dq=beautiful+architectures&ots=Y
WhejCmTV2&sig=YKo_a69ks28hrobI1yry1t6Rq5g

[11] S. Herold, C. Knieke, M. Schindler, and A. Rausch,
“Towards improving software architecture degradation
mitigation by machine learning,” in The Twelfth
International Conference on Adaptive and Self-Adaptive
Systems and Applications (ADAPTIVE 2020), Nice, France,
October, 26-29 2020, 2020. Accessed: Jun. 06, 2024.
[Online]. Available: https://www.diva-
portal.org/smash/record.jsf?pid=diva2:1484805

[12] N. Ford, M. Richards, P. Sadalage, and Z. Dehghani,
Software Architecture: The Hard Parts. O’Reilly Media, Inc.,
2021. Accessed: Jun. 06, 2024. [Online]. Available:
https://books.google.com/books?hl=en&lr=&id=OX1EEAA
AQBAJ&oi=fnd&pg=PP1&dq=%22Software++Architectur
e:++The+Hard+Parts%22&ots=eS4q_nkmUQ&sig=PAZm7
Wh-F7ZqtjfcMOUypg2pPI8

[13] S. Berczuk and B. Appleton, Software configuration
management patterns: effective teamwork, practical
integration. Addison-Wesley Professional, 2020. Accessed:
Jun. 07, 2024. [Online]. Available:
https://books.google.com/books?hl=en&lr=&id=kmfnDwA
AQBAJ&oi=fnd&pg=PR11&dq=%22Software+Configurati
on+Management+Patterns:+Effective+Teamwork,+Practical
+Integration%22&ots=cHCqEw-
u2r&sig=qYtsrS1SyTSEKIjGK0797TP703o

[14] P. A. Laplante and M. Kassab, What every engineer should
know about software engineering. CRC Press, 2022.
Accessed: Jun. 07, 2024. [Online]. Available:
https://www.taylorfrancis.com/books/mono/10.1201/978100
3218647/every-engineer-know-software-engineering-
phillip-laplante-mohamad-kassab

[15] A. Goldberg, “Collaborative software engineering,” J. Object
Technol., vol. 1, no. 1, pp. 1–19, 2002.

[16] M. Wiese, A.-F. Brand, and A. Van Hoorn, “Learning from
Each Other: How Are Architectural Mistakes Communicated
in Industry?,” in Software Architecture, vol. 14212, B.
Tekinerdogan, C. Trubiani, C. Tibermacine, P. Scandurra,
and C. E. Cuesta, Eds., in Lecture Notes in Computer Science,
vol. 14212. , Cham: Springer Nature Switzerland, 2023, pp.
319–336. doi: 10.1007/978-3-031-42592-9_22.

[17] H. Muccini and K. Vaidhyanathan, “Software architecture for
ML-based systems: What exists and what lies ahead,” in 2021
IEEE/ACM 1st Workshop on AI Engineering-Software
Engineering for AI (WAIN), IEEE, 2021, pp. 121–128.

Accessed: Jun. 07, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9474391/

[18] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A.
Tang, “What industry needs from architectural languages: A
survey,” IEEE Trans. Softw. Eng., vol. 39, no. 6, pp. 869–
891, 2012.

[19] K. Bailey, M. Nagapan, and D. Dig, “Examining User-
Developer Feedback Loops Facilitated by Mobile
Application Stores”, Accessed: Jun. 07, 2024. [Online].
Available:
http://dig.cs.illinois.edu/papers/FeedbackPaper.pdf

[20] M. Ozkaya and F. Erata, “A survey on the practical use of
UML for different software architecture viewpoints,” Inf.
Softw. Technol., vol. 121, p. 106275, 2020.

[21] M. Haoues, A. Sellami, H. Ben-Abdallah, and L. Cheikhi, “A
guideline for software architecture selection based on ISO
25010 quality related characteristics,” Int. J. Syst. Assur. Eng.
Manag., vol. 8, no. S2, pp. 886–909, Nov. 2017, doi:
10.1007/s13198-016-0546-8.

[22] L. P. da S. Carvalho, R. Novais, and M. Mendonça,
“Investigating the Relationship between Code Smell
Agglomerations and Architectural Concerns: Similarities and
Dissimilarities from Distributed, Service-Oriented, and
Mobile Systems,” in Proceedings of the VII Brazilian
Symposium on Software Components, Architectures, and
Reuse, in SBCARS ’18. New York, NY, USA: Association
for Computing Machinery, Sep. 2018, pp. 3–12. doi:
10.1145/3267183.3267184.

[23] J. Garcia et al., “Constructing a shared infrastructure for
software architecture analysis and maintenance,” in 2021
IEEE 18th International Conference on Software
Architecture (ICSA), IEEE, 2021, pp. 150–161. Accessed:
Jun. 06, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9426737/

[24] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration
challenges in building ML-enabled systems: communication,
documentation, engineering, and process,” in Proceedings of
the 44th International Conference on Software Engineering,
Pittsburgh Pennsylvania: ACM, May 2022, pp. 413–425. doi:
10.1145/3510003.3510209.

[25] B. T. R. Savarimuthu, S. A. Licorish, M. Devananda, G.
Greenheld, V. Dignum, and F. Dignum, “Developers’
Responses to App Review Feedback – A Study of
Communication Norms in App Development,” in
Coordination, Organizations, Institutions, Norms, and Ethics
for Governance of Multi-Agent Systems XIII, vol. 12298, A.
Aler Tubella, S. Cranefield, C. Frantz, F. Meneguzzi, and W.
Vasconcelos, Eds., in Lecture Notes in Computer Science,
vol. 12298. , Cham: Springer International Publishing, 2021,
pp. 57–75. doi: 10.1007/978-3-030-72376-7_4.

[26] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-
miner: mining informative reviews for developers from
mobile app marketplace,” in Proceedings of the 36th
International Conference on Software Engineering,
Hyderabad India: ACM, May 2014, pp. 767–778. doi:
10.1145/2568225.2568263.

[27] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G.
Canfora, and H. C. Gall, “How can i improve my app?
classifying user reviews for software maintenance and
evolution,” in 2015 IEEE international conference on
software maintenance and evolution (ICSME), IEEE, 2015,

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

9

pp. 281–290. Accessed: Jun. 07, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7332474/

[28] F. Kooti, L. M. Aiello, M. Grbovic, K. Lerman, and A.
Mantrach, “Evolution of Conversations in the Age of Email
Overload,” in Proceedings of the 24th International
Conference on World Wide Web, Florence Italy:
International World Wide Web Conferences Steering
Committee, May 2015, pp. 603–613. doi:
10.1145/2736277.2741130.

[29] F. Kooti, H. Yang, M. Cha, K. Gummadi, and W. Mason,
“The emergence of conventions in online social networks,”
in Proceedings of the International AAAI Conference on Web
and Social Media, 2012, pp. 194–201. Accessed: Jun. 07,
2024. [Online]. Available:
https://ojs.aaai.org/index.php/ICWSM/article/view/14267

[30] E. Guzman, R. Alkadhi, and N. Seyff, “A needle in a haystack:
What do twitter users say about software?,” in 2016 IEEE
24th international requirements engineering conference (RE),
IEEE, 2016, pp. 96–105. Accessed: Jun. 07, 2024. [Online].
Available:
https://ieeexplore.ieee.org/abstract/document/7765515/

[31] G. G. Lucassen, “Dynamics of Software Product
Management & Software Architecture,” Master’s Thesis,
2014. Accessed: Jun. 07, 2024. [Online]. Available:
https://studenttheses.uu.nl/bitstream/handle/20.500.12932/1
8340/Thesis%20FINAL.pdf?sequence=2

[32] O. G. Fragoso-Diaz, R. Santaolaya-Salgado, and S. De
Gyves-Avila, “Web Services for Software Development: The
Case of a Web Service That Composes Web Services,” in
2008 The Third International Conference on Software
Engineering Advances, IEEE, 2008, pp. 31–36. Accessed:
Jun. 07, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/4668084/

[33] H.-K. Kim, “Diversity of Mobile Distribution Systems,” Int.
J. Smart Home, vol. 7, no. 3, pp. 355–364, 2013.

Appendics : Appendix A

I. Survey on opinions of architects and developers.
Question Type of response

1. What is your job title? Software architect

 Software developer
2. Specify your experience

range?
 1 year to 6 years

 6 years to 10 years

 Over 10
3. Do you employ Agile

development methodology
in your workplace?

 Yes

 No

4. Is there any sort of follow-
up to ensure the
implementation of software
architecture?

 0 - never

 1 - rarely

 2 - sometimes

 3 - often

 4 – always
5. Do you initiate the follow-

up?
 0 - never

 1 - rarely

 2 - sometimes

 3 - often

 4 – always
6. How often do you follow up

using physical meetings?
 0 - never

 1 - rarely

 2 - sometimes

 3 - often

 4 – always
7. How often do you follow up

using online meetings?
 0 - never

 1 - rarely

 2 - sometimes

 3 - often

 4 – always
8. How often do you follow up

using emails?
 0 - never

 1 - rarely

 2 - sometimes

 3 - often

 4 – always
9. How often do you follow up

using social media
(WhatsApp, etc.)?

 0 - never

 1 - rarely

 2 - sometimes

 3 - often

 4 – always

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.7, July 2024

10

II. Survey on opinion of architects.
Question Type of response

1. How often developers
implement the required
software architecture
correctly?

 0 - never

 1 - rarely

 2 - sometimes

 3 - often

 4 – always
2. How often do you need to

explain software
architecture to developers?

 0 - never

 1 - rarely

 2 - sometimes

 3 - often

 4 – always

III. Survey on opinion of developers.
Question Type of response

1. Rate your knowledge of
software architecture in
general?

 0 - None

 1 - Low

 2 - Medium

 3 - High

 4 - Excellent
2. Do you receive a detailed

document of the required
software architecture?

 0 - never

 1 - rarely

 2 - sometimes

 3 - often

 4 – always

.

 Abdullah A H Alzahrani’s
educational journey began with a
Bachelor of Science (BSc) from
King Abdulaziz University (KAU)
in Jeddah, Saudi Arabia,
completed in 2007. He furthered
his studies at the University of

Essex in Colchester, UK, obtaining
both a Master of Science (MSc) in 2011

and a Doctor of Philosophy (PhD) in 2016.

Dr. Alzahrani's professional career commenced at Umm Al-
Qura University in Makkah, Saudi Arabia, in 2008. Since
then, he has been affiliated with the Engineering and
Computing College at Alqunfuda, where he currently holds
the esteemed position of Associate Professor. Software
engineering serves as his primary research focus.

Dr. Alzahrani's leadership qualities are evident in his past
administrative roles. He served as the Vice Dean of the
Engineering and Computing College at Alqunfuda from 2016
to 2019. Subsequently, from 2019 to 2020, he held the
position of Vice Dean for Development and Entrepreneurship
at the College of Computing in Al Lith, another branch of
Umm Al-Qura University. In February 2020, his expertise
was recognized with an appointment as the Vice Dean for
Information Technology Deanship in Makkah, a position he
held until 2023.

