
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

85

Manuscript received August 5, 2024
Manuscript revised August 20, 2024

https://doi.org/10.22937/IJCSNS.2024.24.8.9

DNA Sequences Compression using Repeat technique and
Selective Encryption using modified Huffman’s Technique

Syed Mahamud Hossein1 Debashis De2 Pradeep Kumar Das Mohapatra3

1 Department of Computer Science, Vidyasagar University, Midnapore-721102, West Bengal, India
2Department of Computer Science and Engineering,

Maulana Abul Kalam Azad University of Technology, Nadia-741249.
3Department of Microbiology, Raiganj University, Raiganj, West Bengal, India

Abstract
The DNA (Deoxyribonucleic Acid) database size increases
tremendously transmuting from millions to billions in a year.
Ergo for storing, probing the DNA database requires efficient
lossless compression and encryption algorithm for secure
communication. The DNA short pattern repetitions are of
paramount characteristics in biological sequences. This algorithm
is predicated on probing exact reiterate, substring substitute by
corresponding ASCII code and engender a Library file, as a result
get cumulating of the data stream. In this technique the data is
secured utilizing ASCII value and engendering Library file which
acts as a signature. The security of information is the most
challenging question with veneration to the communication
perspective. The selective encryption method is used for security
purpose, this technique is applied on compressed data or in the
library file or in both files. The fractional part of a message is
encrypted in the selective encryption method keeping the
remaining part unchanged, this is very paramount with reference
to selective encryption system. The Huffman's algorithm is
applied in the output of the first phase reiterate technique,
including transmuting the Huffman's tree level position and node
position for encryption. The mass demand is the minimum
storage requirement and computation cost. Time and space
complexity of Repeat algorithm are O(N2) and O(N). Time and
space complexity of Huffman algorithm are O(n log n) and O(n
log n). The artificial data of equipollent length is additionally
tested by this algorithm. This modified Huffman technique
reduces the compression rate & ratio. The experimental result
shows that only 58% to 100% encryption on actual file is done
when above 99% modification is in actual file can be observed
and compression rate is 1.97bits/base.
Keyword :
Sequence, Compression, decompression, Huffman, encryption &
decryption .

1. Introduction

The whole DNA chains of many structures are
already recognized and the entire human genome challenge
is making regular progress. The statistics of DNA, RNA
and amino-acid chains of proteins are stored in molecular
biology databases. Now a day’s data reliability is a tough
mission, a way to shield the DNA facts from the hackers
[1].The size of DNA database for both prokaryotes and

eukaryotes are extremely increasing [2], complex, and
have a few logical structures [3], so this large database
required a systematic compression approach for storing[4-
7]. However, if one implements standard software such as
“compack”, “pkzip” and “arj”, these software enlarges the
file size with increasingly above 8 bits per base, albeit
these standard compression software are used in text files
and structure & function in DNA chains are more precise.
It means that traditional compression algorithm m is
inapplicable on DNA chains. To compress DNA content a
better model is essential, higher statistics compression
outcomes can be completed. The Huffman’s code
additionally is inapplicable also on genomic data both for
the adaptive and static version, as the occurrence of
probabilities of the 4 representatives are not extremely
unlike [6]. In dictionary base compression, the genomic
identity is not fully maintained, compromise genome
identity. The use of reliability straight in the cellular DNA
chain, obtain extremely small tag reliability because the
DNA chain holds only 4 characters, by trial and error
methods anyone can hack the data. The Data Encryption
Excellence (DES), Advanced Encryption Excellence
(AES), Rivest-Shamir-Adleman (RSA) and Escrowed
Encryption are not systematic when the data size is
large[8]. Also the problem is how to differentiate by naked
eye the randomly generated artificial chains and Cellular
DNA chains over communication point of view. Most of
the available compression techniques are reducing the
compression rate without considering the reliability
concern. In selection- encryption, small part of the
sequence is encrypted, other part is unencrypted, shown in
fig.1.

This string matching is scanned left-to-right by the
use of individual shift rule[8], for the encryption purpose
exchange inside the Huffman’s tree branches at a specific
node & level on the same key required for decoding the
encoded representatives using the particular modified
Huffman’s tree. This approach is applicable on compressed
genomic data string and has to be compressed due to
constraint of the network bandwidth before
communicating. As per Shannon theory [9-10], source
entropy is equal to the average bit rate when lossless
compression occurs. If joined both the compression &

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

86

selection encryption process, getting another property as
shown in fig. 1

Fig.1 compression- encryption process

The selected encryption is done only in the match

region of plain text and group of nucleotide is selected for
encryption. The match region identification is the basic
principal of this technique. If the subsequence match is
high in a sequence, in that situation the security level is
increased, also increase the time for encryption. In a plain
text to find the match region is the benefit of the
compression. The redundancy of the plain text is reduced
by this technique and cipher text size is not larger than the
plain text. So, the technique is user friendly. The plain text
is reformed by selective encryption where match region is
higher, as a result producing great effect on encryption
through decompression. The remaining part where no
match occurs produces no effect on encryption after
decompression. The compression is done by the grouping
of three/ four nucleotide sequence and replace by a single
ASCII code, at the same time getting very high security by
selection encryption. The nucleotides group are replaced
by ASCII code, acting as key. This key is private, known
only who encrypt and sequence is sending. If anyone tries
to decrypt the sequence without proper grouping of
sequence/key or library file, the sequence is changed. The
decryption process is known to everyone and the private
key is unknown to everyone so this process of
cryptography is reliable.

To find out exact repeat is not an easy task in a very
long sequence. The exact repeat searching algorithm
requires more time for execution. Every compression
algorithm has an aim to minimize the compression rate
with operational time. It is based on dynamic repeat
searching and repeat substring is placed in Library file and
maximum repeat places is replaced by ASCII character.
The operating time is very less and it depends on the input
file size. The evaluation of any encryption system depends
on its speed and levels of security it provides. The

operating time is minimum, required minute recollection
and facilely utilizes this algorithm.

The Huffman [11] coding is used for lossless
compression technique. It is a particular type of optimal
prefix code and output can be viewed as a code of variable
length. The Huffman’s code is one sort of measuring code
[12] and entropy coding [13-14] it allocates codes to
images as to coordinate code lengths with the probabilities
of the images.

Four phases of the proposed algorithm i) All exact
repeat finding ii) finding un-match and match regions and
encode match region iii) apply modified Huffman’s
technique on tree node position and label position for
security purpose and iv) Selective encryption applied in a
compressed, library file or in both.

Our developed algorithms as discussed with
experimental results, are compared with standard available
results [15-21]. To complete this work, also developed
other related algorithms as file size measurement,
calculating numbers of bases in a file, i,e file size, file
mapping algorithm; is developed because no mathematical
formula for proving the two files are same or not, this
check input-output file character one by one, change the
DNA sequences orientation for reverse, reverse
complement the sequence and the same work on random
string also. We observed that compression rate, ratio and
run time on benchmark [22] DNA sequences is better than
any standard technique, simultaneously. Also find out the
run time performance of this algorithm.

2. Motivation and contribution

The primary objective of any compression techniques
is to reduce the disk cost, by this techniques the order can
be obtained independently of the exiting sequences as
auxiliary storage as such the databases store
compactly .These processes have need of much time for
I/O compression-encryption and decryption decompression
method. But in some examples, compression enlarges the
over head like size of place for keeping records and
processing time and so on. To prevent data loss during
sending, many compression algorithms are used to get
changed to other forms, the size of the facts during
transmission. However, they are also deeply related to
order and data mining and observations genomic facts
compression, and the connected techniques related to
theory of information, are often thought as centre of main
aim of facts exchange and space for storing. The repeat
identification is an important characteristic of compression
technique. A chief trouble in repeat identification comes
about from the facts that the repeat unit can be certain,
errorless and given details of measure end to end.

This algorithm is an effective tool for compression-
encryption of DNA sequences by using exact repeat and

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

87

modified Huffman’s technique. The important feature of
repetition in biological sequence has not been observed by
all available algorithm. Our algorithm overcome this
drawback & considered this issue.

3. Methods

3.1 Process diagram

Fig.2 Process diagram

3.2 File format : The algorithm testing purpose use text
file and end of file is indicated by the blank space. The
result is also stored in a text file, the output file is the
mixture of unmatched four base pair and ASCII notation.

3.3 Formation of substring / word of different size
 Consider a DNA sequence is atggtagtaatgtacatg …… ...n.
Where n is the number of a,t,g & characters present in a
file. n is the size of file, required n byte to store this file.
The sub-string formation method is in paper[23-24].

3.4 Merge Process :The Merge process is used for
reducing the compression rate and other parameter of this
work. The merge compression process is two pass, 1st pass
followed by repeat and in 2nd pass uses excellent lossless
compression techniques available in the market such as
Huffman's technique. The first step consists of repeat
coding (let each individual repeat process is called A, the
output is O1), and second step use excellence Huffman
coding (let each individual process called B, the output is
Of) process. Of is the final output, shown in fig.3.

The procedure for Multi step DNA Chains compression

Define as - Let, S be source file to be coded.
Step 1 : O1 1st pass of Repeat coding(s)
Step 2 : Of Huffman’s’ coding (O1)
For reliability purpose, introduced a new reliable method
two tier selection encryption method as shown in fig. 4.

Tier one- the input order has within only 4 symbols (c, t. g
& a), after compression is changed to the other form, get
four characters to 256 notation with un-match c, t. g & a
and one sub-string has in it three characters, replaced by
single ASCII symbol. As a result the output file is safer
than the input file.

In tier two- In this way of encryption process the file is
encrypted either in compressed file or in the library file or
in both. The process of encryption is done by exchanging
of the branches of Huffman’s tree.

This technique bulwarks the DNA sequence
information from hackers. The decoding time required the
authentic encoding value, this value can provide the
security, this security is applied in tier one. This technique
uses only available ASCII code for encryption purpose and
different pattern is utilized for cull encryption purport.
The DNA sequences probing purpose the utilizer can send
the encrypt compressed data to the receiver and the
receiver decrypt the encrypted data by utilizing correct
coded value. The transmission time is reduced over the
Internet while the compressed file is decrypted followed
by decompression at the client end. The utilizations of
DNA sequence is incremented by applying compression
and security techniques. This technique increases the
efficiency of DNA uses.

3.5 Introduction of Repeat technique

In repeat technique, the highly repeated sub- sequence
is replaced by a single ASCII code in source file and
subsequence is placed into the library file dynamically.
This dynamic library file work as a lookup table and act as
security key, known only who encrypt the sequence. This
substring length and ASCII code starting position depends
on the user.
In two ways proposed algorithm work as first find out all
the perfect match repeated substring. Second perfect match
region is encoded by ASCII code and non match bases
placed into the output file.

3.6 Methodology of Repeat Technique

Consider a DNA sequence as
s=atgtggtagtaatgtacatgcatgtgg……..n

In repeat technique, the principal idea is as the substring
s1=atg is repeated in how many places, is shown by red
color. The s2=tgg sub-string repeated in how many places
is shown by the green color and so on.
First replace maximum repeated substring by the
corresponding ASCII code in appropriate places.
The input string S, assume that a part wr (variable
word/sub-sequence size) has been compressed , it is
defined as S=wri (where i is denoted different word from 1
to n nos.) . The algorithm finds an optimal match position,
stored in ascending order that can be encoded

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

88

economically. This left to right scanning process is search
character by character, if no optimal match is found, left
the character, moved the process forward at the end of file,
shown in fig.5.

Fig. 5 Process of Repeat technique

3.7 Searching procedure
Searching for exact repetitions, encoding procedures of
Repeat technique , the encoding analysis of Repeat
technique and decoding procedure of Repeat technique are
discussed in detail in paper[22]
3.8 Compression & decompression algorithm of Repeat
technique

The DNA sequence compression algorithm based of
Repeat technique
INPUTS:
i. DNA sequence & Artificial sequence in text format
ii. l is the length of word
iii. S=wri

OUTPUT :
i. Library file and compressed file

BEGINING
i. First start position of ASCII code is defined
ii. 1 to <10 is the word size and count
iii. Different word is produced
iv. Hole DNA sequence is scan by sub word
v. Output store in two different files

ITERATION

while wr ≠ end of file do
Search for an optimal postfix of different word with the
DNA sequence
if an optimal postfix is found , store in ascending
order then
 Encode the maximum repeat substring by ASCII
code, where i is
 Starting word position and l is the length of word.
Output the code.
else Set wri in next step, encode and output it.
 Remove the temporary compressed file and Library
file
End

The DNA sequence decompression algorithm based
on Repeat technique
INPUTS INITIALIZE:
i. First input library file and compressed file
OUTPUT :
i. Original sequence extracted

BEGINING
iv. DNA sub sequence is replace by ASCII value

ITERATION
1. for(library file size check)
 flib[i]=fcom[i]
 for(match library file size with subsequence size)
 fname[i]=fcom[i]

2. Search character by character in the compressed file.

3. if(Sub sequence is match with ASCII value);
 produce original sequence
 Else repeat the process

4. Do step 2 to 3 until end of file is reached.

5. Generate original file.

7. End

3.9 Methodology of experiments performed in modified
Hoffman’s technique

In the first phase repeat experiment is done on
different size of DNA sequences and Huffman’s tree is
generated using the output of statistical property of 1st
phase compressed data. The main aim is to select the r part
in the output of the 1st phase compressed data and on the
basis of key swapping the Huffman’s tree branches, this is
called encoding, decoding required actual encoding key.
This modified Huffman’s technique is classified in the
process I, II & III.
Process-I: Swapping the Huffman tree nodes at a
particular level.
Process-II: Swap the Huffman tree particular nodes at
different level. This process is done on character as well
word.
Process-III : considering words instead of character
Process-I : First select the r part in the compressed text.
On the key basis the Huffman’s tree nodes is swapped at a
particular level and decode using the encoding key of the
modified Huffman’s tree. The left and right nodes are
interchanged at a particular level. Due to interchanging of
node corresponding code is affected and remaining codes
are also altered. Only interchanged nodes are affected
other node is as usual and nodes related bit is altered.

W2

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

89

The above process-I is explained below fig 6,7 & 8 where
Huffman’s codes are M=00, N=01, R=10, S=11.

Fig. 6 example of process –I

Swapping is done at level 1 where E is single node is
called root node and the level 0. Now change the child
node position at level 1 with their sub tree is explained in
fig. 8. Simultaneously sub tree position and value are
changed as M=01, N=00, R=11, S=10. The actual text
“MMNRNS” is encrypted as “010100110010”. Decoding
without actual encoding key the text is “RRSMSN”. Here
the Lavenstein distance is 6.

Next swapping at level 2, the interchange left node S
with right node M explain in fig. 7, codes are also changed
and remaining code is same. The actual text is “MMNRNS”
and corresponding encrypted value is “000010011011”.
Decoding without actual encoding key the text is
“SSNRNM”. Here the Lavenstein distance is 3. The
corresponding binary code is shown in table 1.

Table 1 Huffman code before and after encryption

Character Before
Encrypt

After Encrypt
Swapping at
Level 1

Swapping at
Level 2

M 11 01 00
N 10 00 10
R 01 11 01
S 00 10 11

To find Lavenstein distance on Modified Huffman

techniques faced some problem on interchanging file.
Interchanging of nodes are not applicable in all the cases
for example, if the frequency is E=2, F=1 and G=1 then
tree is explained in fig.9, interchanging binary node value
is E=0, F=10, G=11 and assume string is ‘EEFFG’ it
would be encoded as 00101011.

Fig. 10 Huffman tree after

Sw apping at level 0

Fig. 9 Huffman tree after

swapping at level 1

The Huffman tree will look like as in the fig. 10,
when the swapping is done at level 0 causing codeword as
M=1, N=00 & R=01 and the string would be encoded as
11000001.

Finding the effect on the actual text and calculate the
Lavenstein distance. Then decode the encoded string
without swapping technique, the string will look like as
table 2 with respect to fig.8.

Table 2 Huffman code after swapping
1 1 0 0 0 0 0 1
R R M M M M M -

There is no corresponding character for 1 in the last

column of the table-3. For accuracy purpose the actual text
size is altered in the above cases.

Proceed-II :Two different node at specified level of
swapping

The r part is selected by swapping two notes in
specified level. This technique is useful for interchanging
any two nodes of the Huffman’s tree at its subtree level.
This technique modifies the actual Huffman concept and
enhance the security aspect. This technique required two
level value with their corresponding binary codes. The
corresponding binary codes are equivalent to their level
value with respect to nodes. This process uses two key
values for execution, it enhances the security aspect than
process-I. This process is depicted as in fig. 11 with their
code as M=11, N=10, R=01, S=00.

Fig. 7 level 1 swapping

Fig. 8 level 2 swapping

Fig. 12 swapping two nodes in
level 1

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

90

Fig. 11 Huffman Tree

Now, interchange in between F & S, as in fig. 12 of level 1,
in this case the binary value of S is 1 and F is 00. Also the
interchange in between N and G is depicted as in fig.13.
The code value of M, N, R, S are changed as in table 3. If
the actual text is as “MMNRNS”, the binary value is
encrypted as “111110011000”. If decrypt is done without
considering the changed value, the string is as “SNRSSNS”
and in this case the D

SID is 10. The corresponding binary
code shown in table 3.

Table 3 Huffman code before & after encryption

Character Before
Encrypt

After Encrypt
Swapping

Between F and
S

Swapping
Between G and

N
M 11 001 11
N 10 000 0
R 01 01 101
S 00 1 100

Process-III : considering words instead of character
In the previous section applied selective encryption
considering each character as a symbol in a text document.
The characters alone does not possess any meaning but
words do have. Generally it is found that in any text
document file, there are few vital words. It amends the
protection of the whole document. So by swapping the
Huffman tree at a lower level (i.e. encrypt a small % of the
original file) can encrypt all the keywords. With this idea,
new process-III is now illustrating below.
In this scheme take a small text file and using the statistical
property of the words of the text, encode input text file.
Then made swapping on the basis of process-I and
compute the damage occurred due to the swapping with
respect to the original text file and got the original text file
decoding by modified Huffman tree. Here illustrate this
with an example. Now take a simple text
“L.AA.ATG.ATGC.ATGCA.ATGATG.ATGCA.AA”
It contains words and also some punctuation marks. These
punctuation marks are also considered as words.
Frequencies of words are given in table 4.

Table 4 word frequency

Distinguishable words Frequency
L 1
. 7

AA 2
ATG 1

ATGC 1
ATGCA 2

ATGATG. 1

The above string corresponding Huffman’s tree is
depicted in the fig.14.

Fig.14 Huffman tree using word

Now generate Huffman’s code from Huffman’s tree which
are given in table 5.

Table 5 word base Huffman code

Distinguishable words Code
L 1110
. 0

AA 100
ATG 1111

ATGC 1100
ATGCA 101

ATGATG. 1101

So after encoding text message will be
11100100011110110001010110101010100. For this
approach perform a swapping method at a specified level
(same as performed in case of considering characters).
Now apply swapping method at level 2. Fig. 14 shows
after swapping.

Fig. 15 Huffman tree after swapping

So corresponding codes of words are changed selectively,
i.e. since in fig. 15, where 2 and 4 interchange their
positions as “ATG”, “AA.ATGCA” are only changed,
other should be unchanged. After modifying the tree codes
corresponding to distinguishable words are changed which
are shown in table 6

Table 6 Huffman code after swapping
Distinguishable words Code

L 1110
. 0

AA 11110

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

91

ATG 10
ATGC 1100

ATGCA 11111
ATGATG. 1101

So after encoding text message will be encrypted like
11100111100100110001111101101011111011110
If not consider changed of level in decoding time the text
will be look like “L.ATG.AA.ATGC. ATG.
ATGCAATGCA. ATG. ATGCA.L”. D

SID in this case is 19
.
3.10 Encoding algorithm of modified Huffman’s
technique

Compressed DNA sequence encryption process using
Swapping the Huffman tree nodes at a particular level
(process-I)
INITIALIZATION OF INPUTS:
i. The output of Reverse technique is input of this
technique
ii. Enter the level of 1st node
iii. Enter the binary path of 1st node
iv. Enter the level of 2nd node
v. Enter the binary path of 2nd node

ESTIMATED OUTPUT :
i. Input file size
ii. Output file
iii. Output file size
iv. Compression rate
v. Encoding time

START
i. Generate Huffman tree
ii. Swapping the Huffman tree nodes at a particular
level
iii. Request to store the output file

ITERATION
1. The key basis of Huffman tree nodes are swapped at
a specific level and modified Huffman tree is use for
decoding.
2. The r part selection swaps two nodes at specified
levels or same levels. To exchange right most node
with left most node at specified level. The swapping
nodes are only affected also other codes also altered
including bits. Except swapping nodes, the remaining
nodes are as usual.
3. End
Compressed DNA sequence decryption process using
Swapping the Huffman tree nodes at a particular level
(process-I)
INITIALIZATION OF INPUTS:

i. Enter the compressed text file
ii. Enter the level of 1st node

iii. Enter the binary path of 1st node
iv. Enter the level of 2nd node
v. Enter the binary path of 2nd node

ESTIMATED OUTPUT :
i. Exact original sequence
ii. Decoding time

START
i. Generate Reverse Huffman tree

ITERATION
1. for(sort the Huffman tree)
 for(decoding the swapping tree)
 if(frequency match)
 reconstruct the code
 else repeat the step
 End
2. File decompressor for files compressed with
HuffEnc.
3. End

Compressed DNA sequence encryption process using
Swap the Huffman tree particular nodes at different
level. This process also done on character as well word
(Process-II).
INITIALIZATION OF INPUTS:
i. The output of Reverse technique is input of this
technique
ii. Enter the lebel to change
iii. Enter the binary value

ESTIMATED OUTPUT :
i. Input file size
ii. Output file
iii. Output file size
iv. Compression rate
v. Encoding time

START
i. Generate Huffman tree
ii. Swap the Huffman tree particular nodes at different
level
iii. Request to store output file

ITERATION
1: This process is done in any two particular nodes and
including their subtree of Huffman tree. For
interchanging purpose use more than one key of
modified Huffman tree.
2: This process first identify two particular node of
their corresponding level and their binary value, also
kept in mind that the binary value is same as level

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

92

value. This process uses two key value for two nodes, it
improves the security than process-II.
3. End

Compressed DNA sequence decryption process using
Swap the Huffman tree particular nodes at different
level. This process is also done on character as well
word (Process-II).
INITIALIZATION OF INPUTS:
i. Enter the compressed text file
ii. Enter the level to change
iii. Enter the binary value

ESTIMATED OUTPUT :
i. Exact original sequence
ii. Decoding time

START
i. Generate reverse Huffman tree

ITERATION
1. for(sort the Huffman tree)
 for(decoding the swapping tree)
 if(frequency match)
 reconstruct the code
 else repeat the step
 End
2. File decompressor for files compressed with
HuffEnc.
3. End

4. Results and discussion

The benchmark DNA data[22] are used for testing
this al described in different fig. from 16 to 44, throughput
result is described in table 8, improvement results
described in table 9 and comparison results describe in
table 10 & 11.

Fig.16 compression rate versus file size among original,
reverse, complement and reverse complement sequences
using Repeat technique of data set-I

Fig.17 compression rate versus file size among original,
reverse, complement and reverse complement sequences
using Repeat technique of data set-II

file1(5287 byte)

file2(6022byte)

file3(9647byte)

file4(10014byte)

file5(10833byte)

file6(19338byte)

file7(52173byte)

file8(58949byte)

2.5

3

3.5

4

4.5

5

File size

C
o

m
p

re
ss

io
n

 r
a

te

File size vs. compression rate
Original sequence of word size 3
Reverse sequence of word size 3
Complement sequence of word size 3
Reverse complement sequence of word size 3
Original sequence of word size 4
Reverse sequence of word size 4
Complement sequence of word size 4
Reverse complement sequence of word size 4
Original sequence of word size 5
Reverse sequence of word size 5
Complement sequence of word size 5
Reverse complement sequence of word size 5

file1(38770byte)

file2(56737byte)

file3(58864byte)

file4(66495byte)

file5(73308byte)

file6(100314byte)

file7(121024byte)

file8(155844byte)

file9(186608byte)

file10(191737byte)

file11(229354byte)

3.1

3.22

3.34

3.46

3.58

3.7

File size

C
o

m
p

re
ss

io
n

 r
a

te

File size vs. compression rate
Original sequence of word size 3
Reverse sequence of word size 3
Complement sequence of word size 3
Reverse complement sequence of word size 3
Original sequence of word size 4
Reverse sequence of word size 4
Complement sequence of word size 4
Reverse complement sequence of word size 4

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

93

 Fig.18 the file size versus compression rate of

artificial data(data set-I)

Fig. 19 compression rate vs file size of cellular DNA
sequences and artificial data(data set-I)

Fig. 20 compression rate vs. file size of artificial data (data

set-II)

Fig. 21 file size versus compression rate of cellular DNA

sequences and artificial data(data set-II)

5287 6022 9647 10014 10833 19338 52173 58949
0

1

2

3

4

5

File size

C
o

m
p

re
ss

io
n

 r
a

te

File size vs. compression rate
Original sequence of word size 3
Reverse sequence of word size 3
Complement sequence of word size 3
Reverse complement sequence of word
Original sequence of word size 4
Reverse sequence of word size 4
Complement sequence of word size 4
Reverse complement sequence of word

9647 6022 10014 5287 58949 52173 10833 19338
-1.4

-1.24

-1.08

-0.92

-0.76

-0.6

File size

C
o

m
p

re
ss

io
n

 r
a

tio

File size vs. compression ratio

Cellular se
Artificial s

38770
56737

58864
66495

73308
100314

121024
155844

186608
191737

229354

3.6

3.616

3.632

3.648

3.664

3.68

File size

C
o

m
p

re
ss

io
n

 r
a

te

File size vs. compression rate Original sequenceWord size 3
Reverse sequence word size 3
Complement sequence word size 3
Reverse complement sequence word size 3
Original sequenceWord size 4
Reverse sequence word size 4
Complement sequence word size 4
Reverse complement sequence word size 4

38770 56737 58864 66495 73308 100314 121024 155844 186608 191737 229354
3.2

3.3

3.4

3.5

3.6

3.7

File size

C
o

m
p

re
ss

io
n

 r
a

te

File size vs. compression rate Artificial sequence
Cellulaer sequence

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

94

Fig. 22 % encryption vs. % modification for the actual text

of data set-I using Repeat technique

Fig.23 % encryption vs. % modification for the actual text

of data set-II
Table 7 relative frequency

 Using Repeat Using RHUFF
Sequence

Name
File size
(byte)

Relative
frequency
for input

file

Relative
frequency
for output

file

File size
(byte)

Relative
frequency

for input file

level Relative
frequency
for output

file

Hehc
mvcg

229354 57339 1244 92077 1244 1 233
2 389
3 242
4 252

Humd
y
strop

38770 9693 168 15585 166 1 40
2 66
3 41
4 43

Celk
07e12

58949 14737 310 23585 310 1 61
2 100
3 66
4 65

Atrd
naf

10014 2504 30 4146 30 1 11
2 17
3 12
4 11

Fig.24 file size vs. % modification of the actual text of

different level in process-I(data set-I)

Fig. 25 file size vs. entropy of different level in process-I

(data set-I)

43.92392 43.85445 43.75412 44.51561 43.9388 42.1967 41.4479 41.50594
94.2

94.44

94.68

94.92

95.16

95.4

% encryption

%
 m

o
d

ifi
ca

tio
n

 o
f a

ct
u

a
l t

e
xt

Encryption vs. effect on actual text

42.4174 41.92843 42.11041 42.18268 41.96327 41.92123 42.27536 41.52403 41.92554 41.52106
94.7

94.8

94.9

95

95.1

95.2

% encryption

%
 m

o
d

ifi
ca

tio
n

 o
f a

ct
u

a
l t

e
xt

Encryption vs. effect on actual text

2224 2494 3986 4146 4509 7626 20616 23585
99.5

99.6

99.7

99.8

99.9

100

File size

%
 m

o
d

ifi
ca

tio
n

 o
f a

ct
u

a
l t

e
xt

File size vs. effect on actualtext
Swapping at level 1
Swapping at level 2
Swapping at level 3
Swapping at level 4

58.76 61.05 75.79 84.05 86.98 87.46 90 100
5

5.6

6.2

6.8

7.4

8

% encryption

E
n

tr
o

p
y

Encryption vs. Entropy Level 1 encryption
Level 2 encryption
Level 3 encryption
Level 4 encryption

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

95

Fig. 26 different level time in encryption & decryption vs.

file size in process-I (data set-I)

Fig. 27 file size vs. % modification of actual file of

different level in process-I (data set-II)

Fig. 28 % encryption vs. entropy of different level in

process-I (data set-II)

Fig. 29 different level time in encryption & decrypt vs. file

size in process-I (data set-II)

2224 2494 3986 4146 4509 7626 20616 23585
4

6.4

8.8

11.2

13.6

16

File size

E
n

cr
yp

ti
o

n
&

 d
e

cr
yp

ti
o

n
ti

m
e

First Level encryption time
Second Level encryption time
Third Level encryption time
Fourth Level encryption time
First Level decryption time
Second Level decryption time
Third Level decryption time
Fourth Level decryption time

15583 22572 23237 26277 29270 40310 48086 62364 74406 76341 92062
99.7

99.73

99.76

99.79

99.82

99.85

File size

%
 m

o
d

ifi
ca

tio
n

 o
f a

ct
u

a
l t

e
xt

File size vs. effect on actual text
Swapping at level 1
Swapping at level 2
Swapping at level 3
Swapping at level 4

51.2 52.87 53.22 54.06 56.44 56.92 57.34 57.35 60 60.19 61.62
7.6

7.68

7.76

7.84

7.92

8

% encryption

E
n

tr
o

p
y

Encryption Vs. Entropy
Level 1 encryption
Level 2 encryption
Level 3 encryption
Level 4 encryption

15583 22572 23237 26277 29270 40310 48086 62364 74406 76341 92062
0

4

8

12

16

20

File size

E
n

cr
yp

ti
o

n
 &

 d
e

cr
yp

ti
o

n
 t

im
e

First Level encryption time
Second Level encryption time
Third Level encryption time
Fourth Level encryption time
First Level decryption time
Second Level decryption time
Third Level decryption time
Fourth Level decryption time

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

96

Fig. 30 file size vs. % modification of library file in

process-I (data set-II)

Fig. 31 % encryption vs. entropy of different level of

library file in process-I (data set-II)

Fig.32 different level time in encryption & decryption vs.

library file in process-I (data set-II)

Fig. 33 % encryption vs. compression rate of different

level of process-II(data set-I)

1696 1784 1832 1848 1896 2000 2032 2048 2048 2048 2048
80

80.8

81.6

82.4

83.2

84

File size

%
 m

o
d

ifi
ca

tio
n

 o
f a

ct
u

a
l t

e
xt

File size vs. effect on actual text Level 1 encryption
Level 2 encryption
Level 3 encryption
Level 4 encryption

87.7 87.94 88.23 89.1 90.82 91.06 92.14 94.32 95.2 98.54 100
6

6.3

6.6

6.9

7.2

7.5

% encryption

E
n

tr
o

p
y

Encryption vs. Entropy Level 1 encryption
Level 2 encryption
Level 3 encryption
Level 4 encryption

1696 1784 1832 1848 1896 2000 2032 2048 2048 2048 2048
0

4

8

12

16

20

File size
E

nc
ry

p
tio

n
 &

 d
e

cr
yp

tio
n

 t
im

e

First Level encryption time
Second Level encryption time
Third Level encryption time
Fourth Level encryption time
First Level decryption time
Second Level decryption time
Third Level decryption time
Fourth Level decryption time

1.880812 1.929887 2.391147 2.798855 2.875091 2.896745 3.375623 3.5453
50

60

70

80

90

100

Compression rate

%
 e

n
cr

yp
tio

n

Encryption vs. compression rate
Level-a encryption
Level-b encryption
Level-c encryption
Level-d encryption

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

97

Fig.34 different level time in encryption & decryption vs.

file size of process-II(data set-I)

Fig.35 the % encryption vs. compression rate of different

level of process-II(data set-II)

Fig.36 entropy vs. encryption of different level of process-

II(data set-II)

Fig. 37 different level time in encryption & decryption vs.

file size of process-II(data set-II)

2224 2494 3986 4146 4509 7626 20616 23585
0

20

40

60

80

100

FIle size

E
n

cr
yp

tio
n

 a
n

d
 d

e
cr

yp
tio

n
 ti

m
e

File size vs. time Level 0 encryption time
Level 1 encryption time
Level 2 encryption time
Level 3 encryption time
Level 0 decryption time
Level 1 decryption time
Level 2 decryption time
Level 3 decryption time

1.639071.69163 1.6977 1.724551.78227 1.799351.825261.826371.84588 1.922731.98153
50

53

56

59

62

65

Compression rate

%
 e

n
cr

yp
tio

n

Encryption vs. compression rate
Level-a encryption
Level-b encryption
Level-c encryption
Level-d encryption

51.3 52.97 53.31 54.17 56.53 57.04 57.46 57.56 60.31 61.72 61.75
7.5

7.6

7.7

7.8

7.9

8

% encryption
E

n
tr

o
p

y

Encryption vs. entropy
Level 0 encryption
Level 1 encryption
Level 2 encryption
Level 3 encryption

1 2 3 4 5 6 7 8 9 10 11
0

8

16

24

32

40

File size

E
n

cr
yp

tio
n

 &
 d

e
cr

yp
tio

n
 ti

m
e

File size vs. encryption & decryption time
encryption time of level 0
encryption time of level 1
encryption time of level 2
encryption time of level 3
decryption time of level 0
decryption time of level 1
decryption time of level 2
decryption time of level 3

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

98

Fig.38 % encryption vs. entropy of different level of

process-II(data set-II) on library file

Fig. 39 different level time in encryption & decryption vs.

library file of process-II(data set-II)

Fig. 40 % encryption Vs. % modification of original file

Table 8 data encryption & decryption throughput (Byte/See)
Data set Process-I Process-II

Encryption

throughput(Byte/See)

Decryption

throughput(Byte/See)

Encryption

throughput(Byte/See)

Decryption

throughput(Byte/See)

Data set-I 862.9911 869.3415 184.656 195.9417

Data set-II 3665.994 3672.331 1908.53 1916.386

Table 9 improvement of Repeat & Huffman Technique over Gzip

Data
set

Sequence File
Size
byte

Using Repeat algorithm. Using RHUFF algorithm. Improvement
over gzip Compression

ratio
 Compression rate

(bits /base)
Compression

ratio
Compression

rate
(bits /base)

D ta se atatsgs 9647 -0.65274 3.30548 0.016896 1.966207 1 2 . 0 1

90.14 90.82 91.06 91.36 91.68 92.2 94.1 95.2 97.29 98.54 100
7

7.08

7.16

7.24

7.32

7.4

% encryption

E
n

tr
o

p
y

Encryption vs. entropy Level 0 encryption
Level 1 encryption
Level 2 encryption
Level 3 encryption

1696 1784 1832 1848 1896 2000 2032 2048 2048 2048 2048
0

4

8

12

16

20

File size

E
n

cr
yp

tio
n

 a
n

d
 d

e
cr

yp
tio

n
 ti

m
e

File size vs. time Level 0 encryption time
Level 1 encryption time
Level 2 encryption time
Level 3 encryption time
Level 0 decryption time
Level 1 decryption time
Level 2 decryption time
Level 3 decryption time

49.48 53.68 59.79 64.44
80

83

86

89

92

95

% encryption
%

m
o

d
ifi

ca
tio

n
 o

f a
ct

u
a

l t
e

xt

Encryption vs. effect on actual file
2681byte
4382byte

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

99

atef1a23 6022 -0.65659 3.31318 0.014945 1.97011
atrdnaf 10014 -0.65608 3.31216 -0.016577 2.033154
atrdnai 5287 -0.68262 3.36523 -0.005485 2.01097
celk07e12 58949 -0.60037 3.20073 0.007413 1.985174
hsg6pdgen 52173 -0.586108 3.17221 -0.007724 2.015449
mmzp3g 10833 -0.66491 3.32982 -0.001754 2.003508
xlxfg512 19338 -0.57741 3.15482 -0.007343 2.014686

 Average 3.26920 1.999907

D
at

a
se

t-
II

MTPACGA 100314 -0.68710 3.374205 0.07705804 1.84588

21
.0

2%

MPOMTCG 186608 -0.63881 3.27763 0.13772186 1.72455
CHNTXX 155844 -0.65324 3.306486 0.18046251 1.63907
CHMPXX 121024 -0.65646 3.31293 0.15418429 1.69163
HUMGHCSA 66495 -0.68800 3.376013 0.10032333 1.79935
HUMHBB 73308 -0.69705 3.394118 0.03863153 1.92273
HUMHDABCD 58864 -0.70786 3.415738 0.1088611 1.78227
HUMDYSTROP 38770 -0.78271 3.565437 0.00923394 1.98153
HUMHPRTB 56737 -0.72162 3.443256 0.08736803 1.82526
VACCG 191737 -0.63534 3.270688 0.08681162 1.82637
HEHCMVCG 229354 -0.64130 3.282611 0.15114626 1.6977

 Average 3.365374 1.794213

Fig. 41 compression rate vs. file size for data set-I using

Repeat & Huffman’s method

Fig.42 compression rate versus file size for data set-II

using Repeat & Huffman’s methods

5287 6022 9647 10014 10833 19338 52173 58949
1.5

1.9

2.3

2.7

3.1

3.5

File size

C
o

m
p

re
ss

io
n

 r
a

te

File size vs. Compression rate
Compressiong using repeat technique
Compression using Huffman technique

100314
186608

155844
121024

66495
73308

58864
38770

56737
191737

229354

1.5

2

2.5

3

3.5

4

File size

C
o

m
p

re
ss

io
n

 r
a

te

File size vs. compression rate
Compressiong using repeat technique
Compression using Huffman technique

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

100

Fig. 43 entropy vs. file size for data set-I

Fig.44 the entropy vs. file size for data set-II

Table 10 comparison our results with others standard results (data set-I)

S
eq

ue
nc

e

F
il

e
S

iz
e

by
te

G
Z

ip

B
Z

ip
2

U
si

ng
 R

H
U

F
F

atatsgs 9647 2.1702 2.15 1.966207

atef1a23 6022 2.0379 2.15 1.97011

atrdnaf 10014 2.2784 2.15 2.033154

atrdnai 5287 1.8846 1.96 2.01097

hsg6pdgen 52173 2.2444 2.07 2.015449

mmzp3g 10833 2.3225 2.13 2.003508

xlxfg512 19338 1.8310 1.80 2.014686

 Average 2.109857 2.058571 1.999907

Table 11 comparison our results with others standard results (data set-II)

DNA
sequence
name

M
TP

A
C

G
A

M
P

O
M

TC
G

C
H

N
TX

X

C
H

M
P

X
X

H
U

M
G

H
C

SA

H
U

M
H

B
B

H
U

M
H

D
A

B
C

D

H
U

M
D

YS
TR

O
P

H
U

M
H

P
R

TB

V
A

C
C

G

H
EH

C
M

V
C

G

A
ve

ra
ge

Size 100314 186609 155844 121024 66495 73308 58864 38770 56737 191737 229354 ----

off-line 1.915 1.986 1.998 1.902 1.5993 1.969 1.9740 2.068 1.983 1.907 2.015 1.937

dna0 1.993 1.956 1.675 1.832 1.3860 1.939 1.9441 2.003 1.969 1.842 1.881 1.856

dna1 1.995 1.959 1.676 1.833 1.3946 1.945 1.9512 2.005 1.976 1.844 1.881 1.860

dna3 1.873 1.931 1.622 1.678 1.3750 1.880 1.9130 1.953 1.919 1.764 1.846 1.795

gzip 2.2919 2.3288 2.3345 2.2818 2.0648 2.245 2.2389 2.3618 2.2662 2.2518 2.3275 2.272

gzip-4 1.8827 1.9727 1.9519 1.8635 1.7372 1.8963 1.9141 1.9473 1.9207 1.874 1.9817 1.903

gzip -9 2.232 2.280 2.291 2.220 1.551 2.228 2.209 2.377 2.232 2.190 2.279 2.189

lz (32K) 2.249 2.289 2.300 2.234 1.580 2.255 2.241 2.427 2.269 2.194 2.286 2.211

WinRAR 2.23 2.30 2.24 2.25 1.38 2.22 2.19 2.37 2.23 2.23 2.32 2.19

lz (1M) 2.285 2.326 2.352 2.276 1.513 2.286 2.264 2.432 2.287 2.245 2.344 2.237

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

En
tr

o
p

y

File size

Entropy before
encryption

Entropy of
compressed file using
repeat technique
Entropy of library file
using repeat technique

Etropy using process-I
Huffman technique

Etropy using process-
II Huffman technique

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11

En
tr

o
p

y

File size

Entropy before
encryption

Entropy of
compressed file
using repeat
technique
Entropy of library
file using repeat
technique

Etropy of
compressed file
using process-I
Huffman technique

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

101

arith 1.880 1.984 1.957 1.867 2.001 1.969 1.999 1.949 1.972 1.919 1.985 1.952

arith+ (32k) 1.873 1.972 1.957 1.866 1.488 1.913 1.951 1.948 1.943 1.862 1.985 1.887

arith+ (1M) 1.873 1.961 1.956 1.866 1.438 1.911 1.950 1.948 1.942 1.862 1.985 1.881

normal PPMD+ 2.018 2.075 2.062 1.977 2.077 2.116 2.130 2.237 2.130 2.002 2.053 2.079

adapted PPMD+ 1.872(1) 1.966(2) 1.934(1) 1.840(1) 1.694(11) 1.921(2) 1.948(2) 1.921(1) 1.932(2) 1.910(2) 1.965(3) 1.900

PPMD+ escape 1.869(3) 1.964(3) 1.935(3) 1.839(3) 1.514(11) 1.923(3) 1.938(3) 1.931(3) 1.926(3) 1.908(3) 1.959(3) 1.882

normal CTW 1.902 1.989 1.974 1.879 1.376 1.917 1.909 1.960 1.922 1.897 1.997 1.883

CTW-4 1.866 1.962 1.933 1.838 1.363 1.892 1.897 1.920 1.913 1.857 1.958 1.854

Compress 2.12 2.20 2.19 2.09 2.19 2.20 2.21 2.23 2.23 2.14 2.20 2.18

bzip 2.1225 2.1701 2.1845 2.1218 1.7289 2.1481 2.0678 2.1802 2.0944 2.0949 2.1685 2.098

bzip-4 1.9847 2.0117 2.009 1.9667 1.8697 1.9957 1.9921 2.0678 2.0045 1.952 2.0091 1.987

bzip-2 2.12 2.17 2.18 2.12 1.31 2.07 2.18 2.09 2.09 2.17 2.05

ac-o2 1.8723 1.9654 1.9333 1.8364 1.9377 1.9176 1.9422 1.9235 1.9283 1.904 1.9647 1.920

ac-o3 1.8761 1.9689 1.9399 1.8425 1.9416 1.930 1.9466 1.9446 1.9352 1.906 1.9619 1.926

 RHUFF 1.84588 1.72455 1.63907 1.69163 1.79935 1.92273 1.78227 1.98153 1.82526 1.826 1.6977 1.794

dna2 1.869 1.927 1.616 1.673 1.3668 1.867 1.9036 1.932 1.910 1.763 1.848 ---

GenCompress 1.8624 1.9058 1.6146 1.673 1.0969 1.8204 1.8192 1.9231 1.8466 1.7614 1.847 ---

CTW+LZ 1.8555 1.9000 1.6129 1.6690 1.0972 1.8082 1.8218 1.9175 1.8433 1.7616 1.8414 ---

DNACompress 1.8556 1.8920 1.6127 1.6716 1.0272 1.7897 1.7951 1.9116 1.8165 1.7580 1.8492 ---

Biocompress-2 1.8752 1.9378 1.6172 1.6848 1.3074 1.88 1.877 1.9262 1.9066 1.7614 1.848 ---

This algorithm takes variable length sub-sequence
size, starting from size 3 because less than 3 sub- sequence
size is meaningless. Find out the results on normal &
artificial sequences as well as reverse, genetic palindrome
and invert complement of the sequences.

For cellular sequences, the data set-I results are
presented in graphically in fig. 16 and data set-II is
presented in fig.17. The fig. 16 and 17 shows that the
compression rate is dependent on word size and
independent of the file size. In case of data set-I, the
average compression rate is 3.26920 bits/base and in data
set-II the average compression rate is 3.190246 bit/base
where sequence orientation is complement and word size
is 4. If the word size increases simultaneously the
compression rate is increased. The word size increases
from 3 to 4 also improve compression rate/ratio, the
compression rate decrease from 3.57189 bits/ byte to
3.327587 bits/base i,e 6% decreased, the library file
increases about three to four times of word size 3 to 4
library size. The word size increases from 3 and onward,
processing time is highly increases. So, the compression
rate is minimum when the sub sequence size is 3, is better
than sub sequence size is 4. For both the data sets, the fig.
16 & 17 shows that the graph nature is heterogeneous
because sequences come from different species. In
comparison library file size with compressed file size is
too small. After applying Huffmans’ technique the average
compression rate of data set-I is 1.9999 bit/base and in
case of data set-II the rate is 1.7942 bit/base. The result of
data set-I is presented in fig.-41 and data set-II result is
presented in fig. 42, shows that the increase in file size
decreases the compression rate and Repeat plus modified
Huffman technique is more acceptable.

For artificial data, the results of data set-I are presented
graphically in fig. 18 and data set-II is presented in fig. 20.
The dependence of the word size and the file size on the
compression rate is shown in fig. 18 & 20. We can get
minimum compression rate when the sub sequence size is
3 and reverse is the sequence orientation and compression
rate is 3.22323bit/base and 3.62444 bit/base in case of data
set-I and II. As the sequences are generated randomly, the
fig. 18 & 20 shows graphical nature is homogeneous. Now
draw a fig. on the basis of data set-I is fig. 19 and data set-
II present in fig. 21 on the basis of cellular sequences
versus artificial data, getting district fig. 19 & 21 where as
graph characteristic can be seen by naked eye. The random
sequence is unstructured and cellular sequences are non
random, have logical organization, systematic and
structure. It is also seen that in case of cellular sequence
the library file varies in size whereas it is constant in size
in case of artificial sequence. In comparison library file
size with compressed file size is too small.

It is observed that the compression ratio in case of
artificial sequence calculated follow by the formula {1-
Output/input} and in case of cellular sequence
compression ratio is calculated follow by the formula {1-
2*Output/input}, where number of bit is the output file
size. The result shows that the compression rate and
compression gain is inversely proportional.

We have calculated percentage modification of
actual text and percentage of encryption, shown in fig. 22
& 23 for the data set-I & II , on the basis of three/four
characters secret key. It is observed that in data set-I the
average 41%-43% & data set-II the average 41%-42% of
actual text encryption and 95% modification is observed in
actual file.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

102

It is proved that after compression the two or three times
increased the entropy as shown in fig. 43 & 44. The
randomness is increased in both the output file of library
and compressed, as a result it is hard to hack the sequence
by the hacker. Data set-I is presented fig. 43 and data set-II
is presented in fig. 44 shows the entropy of compressed
file and library file before and after compression.

This repeat compression technique produces two
separate text file over DNA sequence and applied modified
Huffman method on it. If changing the level, percentage
of encryption and effect on actual file is observed.

The table 7 shows the relative frequency for the
different input file and encrypted output file, also shows
the ratio is maintained in between input and output is 48:1
that mean possibility of frequency attack is minimized.
The percentage of encryption did not vary significantly
with compression rate, presented the data set-I result in fig.
24 and data set-II result is presented in fig. 27. The
percentage of encryption varies due to sub-sequence/word
consisting different characters with respect to file size & %
modification of actual text also data set-I is presented in
fig. 24 and data set-II is presented in fig. 27. The major
effectiveness is found in the sequences. But decrypt the
sequences without actual sub-sequence/word value or
entered an incorrect sub-sequence the sequence will be
different.

This is to observe that in case of repetition of input
text having same frequency counting is not more. For key
purpose use level number. The same frequency character
ratio is approx 4:1 with respect to input and output text, in
that situation frequency analysis attack is reduced. But if
decrypt is done without applying key value or entered an
incorrect key the text will be different.
In process –I : The result shown for data set-I & for data
set-II that above 99% modification of actual file can be
observed in data set-I & II by only when encrypting 58%
to 100 for data set-I & 51% to 61% for data set-II of the
actual file.
If top level is interchanged, we can get the higher effect on
original file on the basis of Lavenstein distance highest
level and in case of lower level, the effect is proportional.
This result of data set-I is presented in fig.24 to 26 and
data set-II result is presented in fig.27 to 32 on the basis of
different file size, % effect on the original file, %
encryption and compression rate. The encryption depends
on the effectiveness of the output text. If the input file size
is increased, the percentage effect on actual file also
increases

In process-II : now taking the same text which was
considered for previous experiment and do the same job i.e.
first calculate frequency of each character and then
measure the relative frequency to analyze probability of
attack. Before encryption the text use two key values in
binary form. These are actually specified two nodes at

different levels. The results are shown in fig.33 for data
set-I & fig.34 to 38 for data set-II.
Now measure relative frequency in case of encrypted text
in the same manner when calculating this for input text.
For encrypt text the redundancy value is 389. But in case
of input text this value is 1244. The attack is low when
output and input sequences relative frequency ratio is
nearly 4:1. The results in the table shown that different
input text and encrypted output value relative frequency
are different at different level.
Now using appropriate key, we can generate the actual file.
Without proper key value or entered an incorrect key the
message will different.
The results of data set-I is presented in graphically in fig.
33 and data set-II is presented in fig. 34; shown that 99%
original text will affect and reduce percentage of
encryption when swapping at lower level. If encrypt the
sequence on the basis of two binary values as a key getting
higher security. Also increase the encryption & efficiency
of the sequences.

In process –III : Testing purpose use two text files of size
2681 & 4382 bytes, find out the actual effect on the text by
interchanging the different nodes based on calculating %
encryption and % modification on the actual text, result
shown in table 4.24.

Based on data, drawn a graph of fig.38, observed that
88% actual text effected when 57% encryption is done on
the actual text. Since number of distinguishable words are
huge so it need more %of encryption, but in case of
considering character if apply minimum 42% encryption of
real text it will affect more than 90% of real text case.

The throughput of encryption and decryption is
shown in table 8.It is seen that encryption throughput is
higher than decryption throughput, so the throughput of
data set-II is better than data set-I. We may conclude the
encryption of process-I is much better than process-II.

Table 9 shows the improvement results on Gzip
technique , the improvement is 12.01% on data set-I and
21.02% on data set-II, graphically shown in fig. 38.

The encryption & decryption time is presented in
graphically of fig. 26,29,32,35 & 35 of process-I & II. The
decryption is always less than encryption time. The time in
decryption and encryption is proportional to the size of file.
The above process of encryption is very useful from
security point of view because our principal and
AES/DES/RSA/DNA encryption are same.

The Table 10 & 11 shows the comparison result on
standard available techniques. This combine technique
RHUFF (Repeat + Modified Huffman’s) shown by red
color is better than 23 nos. techniques (mention 1st coloum
of table 11), also below RHUFF red color results are better
than column 1 standard techniques.
This RHUFF technique is far better than gzip techniques
with respect to compression rate and information security.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

103

The gzip technique is Lempel-Ziv “LZ”+Huffman [6]
without any security concept. This method is the
combination of method of Repeat with modified Huffman
for compression as well as security.
Important observations are :

• The cellular DNA sequences have logical
organization, structure, systematic and non
random where as artificial data are random and
unstructured.

• The substring measure end to end different from 2
to 5 and no match is discovered if the substring
measure end to end becoming more than 6.

• The cellular DNA sequence encode amino
acid/protein that why sub-sequence of
repeat/reverse/palindrome/genetic complement
are found in the original sequence, more exact
match are found in the repeat search method,
other orientation the exact match are found in less
number over repeat method.

• The results are showing that cellular DNA
sequence are reasonable compressible in any
orientation (cellular DNA sequence, reverse
sequence, complement sequence and reverse
complement sequence) result is homogeneous in
nature also where as artificially (random sting)
generated sting of same length compression rate
is heterogeneous in nature.

• All compression rate are similar also suggests a
highly similar sequences

• This technique are also apply on corresponding
other orientation of cellular DNA sequences like
Reverse, Complement & reverse complement of
cellular DNA sequence, the better result found on
normal i.e cellular DNA sequence performance is
better.

• Best encryption result is found when modified
Huffman’s technique apply on library file

• The output text having ASCII code and non
match DNA bases, containing more than four
character than the input text. So, after first pass
Huffman’s and two bit encoding technique is
easily applicable and overcome the drawback of
using Huffman’s & two bit encoding technique.

5. Conclusion

The compression rate of Cellular DNA sequences lies
between 3.25 bits/bases & 3.3 bits/base, where as in case
of artificial data value lies in between 3.3 bits/bases & 3.5
bits/base. This combine technique, the compression rate
lies between 1.69 bit/base to 1.92 bits/base. In process-I
& II, the percentage of encryption rate is 81.76, 56.23 and
81.89, 56.35 with respect to data set-I & II. This
compression and percentage encryption rate is better in my
earlier paper [25]. The nature of graph is homogeneous in

case of cellular sequence where as artificial sequences the
nature of graph is heterogeneous in nature.
The lowest compression rate is found when repeat
technique run on the bench mark DNA sequences in
complement orientation and the sub sequence size is 4,
lowest compression rate is 3.26920 bit/base. Also the
output is secured than input sequences in transmission
point of view. The output contains 256 characters include a,
t, g & c. So, the resultant test is highly secure than input
text. The substring measure end to end different from 2 to
5 and no match discovered if the boat able to go under
water line measure end to end becoming 6 or more.
The results show that the compressed pattern matching
algorithm for DNA order is in competition among the best
algorithm.

The results are showing that the compression rate &
ratio are different to each other in case of reverse,
complement and reverse complement, it make certain that
the point of comparison facts are a part of same family.
If consider library with compress file, the overall
compression rate is slightly increase. So better result find
only when compression rate is calculated on compressed
file size. In comparison to compressed file the library life
is too minuscule.

In case of selective encryption of compressed text, as
compression follows the encryption process, the effect on
text based on statistical properties, plain text will not be
possible because of the reduction of redundancy due to
process of compression. This approach of selective
encryption has got some advantage due to constraint of the
bandwidth in network before communicating and also it
needs to be encrypted so confidentiality is maintain or to
protect the digital rights.

This is a static Huffman coding method applied on
compressed text (1st pass output use here as input) based
on selection encryption and effectiveness compare by
dissimilarity in original file. If anyone can decrypt without
key, the cipher text resistance from the attacks based on
statistical property of the plain text

For applying selection encryption, the result found
that the encryption effectiveness is increases at where
interchanging is done. So the attack is very low on the
basis of probability of frequency analysis.
 Another conclusion is that if consider word instead of
characters then workspace is increased. But in this case, it
is found the percentage of encryption is 57 then the actual
effect on the text is 88%, so the different number of word
is more and their frequency is less on character frequency.
It is observed that relative frequency ratio of input text and
encrypt text is nearly 4:1, so same frequency character
ration in between input and output is approx 4:1.
In case of word consideration word’s frequency are high
but other word have very lower frequency. These lower
frequency words are representing by higher bit. So
percentage of compression decreases. In terms of security

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

104

word encryption is more effective than character
encryption. In case of character encryption, There is only
256 characters are available and since workspace is short.
So here is a possibility to break the security. But in case of
word encryption, numbers of distinguishable words are
huge, not known by all, so that workspace is also increased
and breaking the security is not possible.

This techniques provide the better facts safety than
other techniques. Also biological order compression is an
useful apparatus for recovering useful knowledge from
biological orders. This lossless compression technique
achieve a moderate compression rate & ratio than that of
existence DNA order compression algorithm and provides
the better knowledge safety with encryption least
decompression time, the execution time of this algorithms
is fraction of second and optically points the different in
between cellular DNA order and not natural DNA of equal
measure end to end.

The process-II encryption techniques requires
optically higher number of bits for encoding the data and
repeat technique requires optically less number of bits,
indicating process-II Huffman’s requires transmission of
higher bandwidth.

The entropy increased from 1.98 to 7.90 per byte of
encryption. The information entropy is measure by a
degree of randomness. Randomness is an important and
desirable property of compression-encryption algorithm. It
is impossible to attack the output file by the attacker
because the library & compressed file produced high
degree of randomness.

References

[1]Deloula Mansouri, Xiaohui Yuan and Abdeldjalil Saidani, A New
Lossless DNA Compression Algorithm Based on A Single-Block
Encoding Scheme, Algorithms, pp 1-18,2020

[2]Deorowicz, S., and Grabowski, S., 2011, Robust relative compression
of genomes with random access, Bioinformatics, 27(21), 2011, pp
2979–2986.

[3] Schrodinger, E. What is Life; Cambridge University Press: Cambridge,
UK, 1944.

[4]B. Saada,” DNA Sequence Compression Technique Based on
Nucleotides Occurrence” Proceedings of the International
MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018

[5]A. Jahaan, Dr. T. N. Ravi, Dr. S. Panneer Arokiaraj” Bit DNA
Squeezer (BDNAS) : A Unique Technique for Dna Compression”
International Journal of Scientific Research in Computer Science,
Engineering and Information Technology,pp-512-517,2017

[6] Nour S. Bakr, Amr A. Sharawi, ‘DNA Lossless Compression
Algorithms: Review ‘, American Journal of Bioinformatics Research,
2013 pp 72-81

[7] Kirill Kryukov, Mahoko Takahashi Ueda, So Nakagawa and Tadashi
Imanishi, ‘Nucleotide Archival Format (NAF) enables efficient
lossless reference-free compression of DNA
sequences’ ,Bioinformatics, pp 1-3,2019

[8] William stallings, “cryptography and network security principles and
practise”, 5th edition 2011

[9] A. Amir, and G. Benson, “Effcient two-dimensional compressed
matching”, In Proc. CC'92, pp. 279-288,2002.

[10] C. E. Shannon, “Communication theory of secrecy systems,” Bell
Systems Technical Journal, v. 28, October 1949, pp. 656-715.

[11] D. A. Huffman, “A method for the construction of minimum-
redundancy codes,“Proc. IRE, vol. 40, pp. 1098-1101,1952.

[12]Kryukov K, Ueda MT, Nakagawa S, Imanishi T (2019) Nucleotide
Archival Format (NAF) enables efficient lossless reference-free
compression of DNA sequences. Bioinformatics I, 2019, pp 1–3

[13]K. Kryukov, M. T. Ueda, S. Nakagawa, and T. Imanishi, ``Nucleotide
archival format (NAF) enables efficient lossless reference-free
compression of DNA sequences,'' Bioinformatics, vol. 35, no. 19, pp.
3826-3828,Oct. 2019.

[14]Diogo Pratas,Morteza Hosseini,Jorge M. Silva and Armando J. Pinho,
A Reference-Free Lossless Compression Algorithm for DNA
Sequences Using a Competitive Prediction of Two Classes of
Weighted Models, Entropy, pp 1-18,2019

[15] Xin Chen, Ming Li, Bin Ma and John Tromp, DNACompress: fast
and effective DNA sequence Compression, Bioinformatics
Applications Note, Vol. 18 no. 12 2002, Pages 1696–1698

[16]Maleeha Najam, Raihan Ur Rasool , Hafiz Farooq Ahmad,Usman
Ashraf, and AsadWaqarMalik, Pattern Matching for DNA
Sequencing Data Using Multiple Bloom Filters, BioMed Research
International, pp 9,2019

[17] Ashutosh Gupta and Suneeta Agarwal, A Novel Approach For
Compressing DNA Sequences Using Semi-Statistical Compressor,
International Journal of Computers and Applications, Vol. 33, No. 3,
2011,pp 1-7

[18] Nahida Habib, Kawsar Ahmed, Iffat Jabin and Mohammad Motiur
Rahman, Modified HuffBit Compress Algorithm – An Application
of R, Journal of Integrative Bioinformatics, pp 1-13. 2018

[19] Jahaan A, Ravi TN, Panneer Arokiaraj S (2017) Bit DNA Squeezer
(BDNAS): a unique technique for DNA compression. Int J Sci Res
Comput Sci Eng Inf Technol 2, 2017, pp 512–517

[20]Deloula Mansouri, Xiaohui Yuan and Abdeldjalil Saidani, “ A New
Lossless DNA Compression Algorithm Based on A Single-Block
Encoding Scheme”Algorithms 2020,pp 1-18

[21]Giovanni Manzini and Marcella Rastero, “ A Simple and Fast DNA
Compressor”, Dipartimento di Informatics, University del Piemonte
Orientale,Italy, February 17,2004

[22] S. Grumbach and F. Tahi, “A new challenge for compression
algorithms: Genetic sequences,” J. Inform. Process. Manage., vol. 30,
no. 6, pp. 875-866, 1994.

[23] Md. Syed M.H. ,D.Roy , S.Saha, A Compression Algorithm for
DNA Sequences based on repeat sequences and its applications in
Genome comparison with Information security, International
Journal HIT Transactions on ECCN (Electronics, Communication,
Computer & Networks), 0973-6875, Vo. 2, No. 6, April-June 2007,
INDIA

[24] Syed Mahamud Hossein,P. K. Das Mohapatra and Debashis De,”
DNA Compression & Security based on Reverse Technique”,
Journal of Bionanoscience, 2013, pp 1-5

[25] Syed Mahamud Hossein, Debashis De , (Senior Member,
IEEE),Pradeep Kumar Das Mohapatra, Sankar Prasad Mondal,Ali
Ahmadian, Ferial Ghaemi and Norazak Senu “DNA Sequences
Compression by GP2 R and Selective Encryption Using Modified
RSA Technique” IEEE Access,2020,pp 76880-76895

