
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

119

Manuscript received August 5, 2024
Manuscript revised August 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.8.11

A Preliminary Exploration on Component Based Software
Engineering

N Md Jubair Basha†, Dr Gopinath Ganapathy††, and Dr Mohammed Moulana†††

†Research Scholar, Department of Computer Science, Bharathidasan University, Tiruchirapalli, Tamil Nadu, India
††Professor & Head, Department of Computer Science, Bharathidasan University, Tiruchirapalli, Tamil Nadu, India

†††Professor, CSE Department, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India

Abstract
Component-based software development (CBD) is a
methodology that has been embraced by the software industry to
accelerate development, save costs and timelines, minimize
testing requirements, and boost quality and output. Compared to
the conventional software development approach, this led to the
system's development being completed more quickly. By
choosing components, identifying systems, and evaluating those
systems, CBSE contributes significantly to the software
development process. The objective of CBSE is to codify and
standardize all disciplines that support CBD-related operations.
Analysis of the comparison between component-based and
scripting technologies reveals that, in terms of qualitative
performance, component-based technologies scale more
effectively. Further study and application of CBSE are directly
related to the CBD approach's success. This paper explores the
introductory concepts and comparative analysis related to
component-based software engineering which have been around
for a while, but proper adaption of CBSE are still lacking issues
are also focused.
Keywords:
components, scripting technologies, reusability, component based
systems

1. Introduction

A well-known subfield of software engineering is
component-based software engineering. Object-oriented
design, software architectures, architecture definition
languages (ADLs), middleware, and various development
methodologies like structural and modular development
are the sources of the techniques and technologies that
make up CBSE. The idea of creating systems out of parts
originated in other engineering fields.

The issue of locating a standard and sufficiently

accurate definition of the phrase "software component"
presented itself to CBSE right away. Software components
are compositional entities having explicitly stated context
dependencies and interfaces that are legally determined. A
software component may be independently offered and is
open to third-party compilation[1].

The creation of component-based software is

essential for boosting a business' productivity. A wide

variety of reusable components are required in the
repository. Once the requirements are documented, the
development activity typically begins from scratch.
Overruns in both time and money may occur from this.
Instead of starting from scratch and creating the entire
system, it is faster and more effective to reuse an existing
component. Setting up a software recycling process
requires a primary asset, however only few recycling
operations make use of this asset.

In other words, building a reuse process and
repository establishes a knowledge base that raises the
caliber of the final result after each cycle of reuse. This
lowers the risk of new initiatives based on repository
knowledge and lowers the development work for
subsequent projects. As the component will already have
been successfully tested in the repository, it also aids in
reducing the testing work.

The introduction to component-based software
engineering and the many stages of its implementation in
software development are covered in this paper. The
following sections make up the remainder of the paper.
Section II compares CBSD with traditional software
development to outline the fundamental ideas of CBSE.
The CBSD lifespan is presented in Section III. The various
scripting technologies needed for CBSD are covered in
Section IV. The technologies based on components are
presented in Section V. Section VI compares the
qualitative performance of scripting and component-based
technology. Section VII outlines the issues and obstacles
that still need to be overcome to complete various works in
component-based software engineering.

2. Basic Concepts of CBSE

The CBSE model suggests separating component
creation from system development and creating systems
out of reusable components. This split has important
effects on economic goals, such as creating a market for
components, technological developments, such as offering
new functionality immediately, as well as legal and

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

120

societal concerns (e.g. trust, accountability and
maintenance). The CBSE is based on the following four
guiding principles to achieve its main objectives of
improved development efficiency, quality, and shorter time
to market.

2.1 Reusability: Only if the components can be utilised
again in various applications after they are constructed will
the CBSE strategy be effectively adopted. Commercial
off-the-shelf (COTS), product line, and open source
components are only a few examples of reusability types
that the industry has recognised as best practices. When
developing architectural components for a particular
system with no plans to reuse them in other systems,
CBSE is also helpful.

2.2 Substitutability: Systems stay proper even when a
component is substituted thanks to substitutability. The
Liskov substitution principle is what this stipulation
amounts to
Let q(x) be a property that can be demonstrated for all
x-type T objects. If S is a subtype of T, then q(y) should be
true for objects y of type S. For functional features, this
idea is reasonable, but it is less clear for extra functional
properties because it depends on other aspects, such, for
instance. B is subject to the system context. A speedier
component, for instance, could deadlock and interfere with
timing demands in a system that employs a
non-preemptive scheduling technique.

2.3 Extensibility: By incorporating new components or
enhancing already existing ones to improve system
functioning, extensibility in CBSE attempts to enable
evolution. Giving components numerous interfaces is a
common way to support component evolvability.

2.4 Composability: Composability is a cornerstone of
CBSE education. The composition of functional qualities
is supported by all component-based technologies
(component binding). Less frequently, the composition of
non-functional qualities, such as component dependability,
execution time, or memory use, is supported. One of the
primary issues facing CBSE research is the assembling of
extra functional characteristics.

The following are the primary advantages of
employing the software components[2]: Cost and
development time savings: Because the component is
reused, these factors are reduced. The component can be
changed if necessary. Reduced Testing Effort: Since
testing takes up more than 60% of the time spent
developing software. The domain-specific component
approach reduces test effort. A higher level of quality has
been achieved because every successfully developed
component is certified. As a result, the components in the

repository are frequently of high quality.

Many businesses have created their own domain-specific
parts that serve as assets and can be used again in the
future. The component can be changed even if it is not
mirrored and reused. A component change requires less
work than a new development. However, a practical
method for locating and creating the components is
required. The distinction between conventional and
component-based software development is described here..

Table 1: Comparison of CBSD and Traditional Software
Development [3]

Component Based
Software Development

Traditional Software
Development

Housing System from
already available
components.

Housing system from
bottom-line.

Components and Systems
integrated from those
components are developed
through interfaces.

Software System is
developed by following all
the phases of life cycle.

Component selection,
identification and
evaluation are special life
cycle phases.

There is no provision for
selection, identification and
evaluation in this life cycle.

Effort is required for
component selection,
testing & verification only
once.

Much effort is required for
throughout the software
development cycle.

Reuse of components guide
to development of
component in a faster
manner

Reuse property is
applicable in a less manner.

Cost and time management
is required less.

Cost and time management
is applicable for every
project.

Depends on the
requirements, component
management can be done
applicable to the project.

Software development
activity has to be carried
out for every project.

3. Component Based Development Life Cycle

The component-based development model
incorporates the characteristics of spiral models (CBD).
The applications of the grouped software components
make up the CBD model (called classes). The
identification of potential components serves as the first
step in the component development process. This is
accomplished by determining the data that the programme
will modify and the pertinent algorithms that will be used.
The classes serve as a container for the data and
algorithms.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

121

The component-based development model

incorporates the characteristics of spiral models (CBD).
The applications of the grouped software components
make up the CBD model (called classes). The
identification of potential components serves as the first
step in the component development process. This is
accomplished by determining the data that the programme
will modify and the pertinent algorithms that will be used.
The classes serve as a container for the data and
algorithms. The repository houses the software project
components that were produced. The repository is mined
to see if the desired components are present after candidate
components have been discovered. They are collected and
reused when they are accessible. If the component is
created using object-oriented technique and does not
already exist in the repository. The components for the
application's initial build are taken from the repository and
new ones are created to accommodate the changing
requirements of each application.

As demonstrated in Figure 1, the process flow
eventually loops back to the spiral model and continues the
component assembly loop over successive iterations of the
component lifecycle. The CBD model can be used to
achieve software reusability, which is particularly
beneficial for software engineers. Software reuse,
according to QSM Associates Inc., leads in a shorter
development lifecycle, an 84 percent decrease in project
expenses, and a productivity index of 26.2 as opposed to
the industry average of 16.9. Software developers can
benefit greatly from CBD models and component
robustness repositories.

Figure 1 illustrates the sequential procedure that
Sommerville [4] described for CBSD. There are six steps
in total, and they are as follows:
1. Because specific needs restrict the amount of
components that can be employed, the user requirements
are established in broad strokes rather than in fine detail.
2. As many components as possible are found to be
reusable using the given requirements.
3. The standards are stringent and specifically designed to
be satisfied by the components.
4.Using the aforementioned procedures, architectural
design development is achievable.
5. The architecture can be designed using this system.
Repeat steps 2 and 3 as necessary.

Figure 1: CBSD Process

4. Scripting Technologies

The foundation of scripting technologies is a
language interpreter included with web server software.
The interpreter normally accesses the database while
processing the code that is embedded in the HTML pages.
The output of the script is substituted for the script's code,
and the resulting HTML code is sent back to the client.
The static HTML code, often known as the HTML
template, does not change. Language processors like PHP,
ASP, and ColdFusion are examples of scripting technology.
Because they are closely tied to the web server, scripting
technologies are effective for producing dynamic content.
They are perfect for monolithic, medium-sized
programmes that need an effective execution environment.
Large volumes of static HTML from templates with only a
(relatively) tiny amount of dynamically created data
embedded characterize other scripting-enabled
applications.

As an illustration, consider the typical product description
page of an e-commerce application, which uses an HTML
template with variable data pulled from the database. On
the other side, scripting languages are known for their
intimate connectivity between the frontend and middle
layer. It follows that great scalability is necessary for the
use of web-related applications. However, scripting
technologies sometimes lack built-in high-level support for
the coordination and synchronisation of processes
operating on several nodes, making the addition of nodes
potentially necessary to achieve scalability. The majority
of the widely used scripting languages come with function
libraries that can be used to build this feature. However,
this necessitates additional, significant programming work.
Because of this, distributed web-based systems rarely use
scripting technologies.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

122

5. Component-Based Technologies

Software objects are used in component-based
technologies to implement the application logic.
Containers are unique execution contexts that are used to
create these things. Java2 Enterprise Edition (J2EE), which
comprises standards for Java Servlets, Java Server Pages
(JSPs), and Enterprise Java Beans, is a well-known
component-based technology for creating dynamic online
resources (EJBs). Java classes called servlets implement a
web application's application logic. They are created in a
servlet container with a web server interface, such as
Tomcat. Java servlets' object-oriented design promotes
superior modularity, and their ability to execute different
containers on various nodes enables a level of system
scalability that scripting solutions are unable to provide.

The J2EE framework's building pieces are
represented by Java Servlets. In actuality, they simply offer
the basic methods for handling dynamic queries.
Numerous elements must be taken care of by the
programmer, including creating the HTML document
template and managing communication with outside
information sources. Due to these factors, J2EE
technologies like JSP and EJB are frequently combined
with Java servlets. Java Servlet API standard extensions
known as JSPs enable the embedding of Java code in
HTML documents. For future requests, each JSP is
automatically transformed into a Java servlet. JSP pages
aim to preserve the advantages of Java servlets without
penalising web pages with a high percentage of static
HTML templates and a low percentage of dynamic content.
JSP is therefore a more effective method for creating
dynamic content than Java servlets, which are better suited
for handling client requests and data processing. JSP is
frequently used as the default option for creating dynamic,
component-based content.

EJBs are Java-based server-side software elements
that allow for the creation of dynamic content. Similar to
the Java servlet container, an EJB runs in a unique
environment called an EJB container. Atomic transactions
are supported natively by EJB and are helpful for
preserving data consistency through commit and rollback
procedures. Additionally, they handle persistent data
across numerous queries. The overhead of these extra
features causes performance to suffer. Only services that
want user session persistence between various user
requests to the same application should make advantage of
them. Database transactions and shopping cart services in
e-commerce applications are common examples.

6. Technology Comparison

Scripting and component-based solu
ons exhibit an intriguing performance. In this study, a
straightforward e-commerce application is implemented
using PHP scripting technology and compared to Java
Servlets and EJB. In comparison to other
component-based technologies, PHP offers superior
performance while using the same hardware architecture.
When compared to Java Servlets, the information gain is
30%; when compared to EJB, it is more than double. On
the other side, Java servlets outperform script technology
if the system platform has a large enough number of
nodes.

Figure 2 compares the performance of two
software systems on a qualitative level by examining
system throughput in relation to client traffic volume. This
graph demonstrates how component-based technology
tends to provide the highest throughput for scripting
technologies. This is influenced by their environment for
more effective performance. Component-based solutions,
on the other hand, scale better than scripting technologies
and can achieve even higher throughput, but they often
perform badly for small to medium-sized web applications.
The primary driving force is its high degree of modularity,
which enables the distribution of application functionality
over numerous nodes.

Figure 2: Qualitative Performance of Scripting and

Component based Technology

7. Issues and Challenges of CBSE

The following are the issues and difficulties with
component-based software engineering:

7.1 Component Certification Process: It is necessary to
certify the components before classifying them. A
component's certification aids in the identification of
possible components. The certified components guarantee
that the associated component has already been planned,
carried out, tested, and used for a certain purpose. Even
though certification is a common practice in many
industries, it is typically not applicable to software

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

123

components.

7.2 Component Predictability: The process by which
these attributes determine the corresponding attributes of
the systems that they are a part of is unknown, despite the
fact that it is presumed that all pertinent components are
described. Research is continuously being done to
determine the best method for determining system
attributes from component attributes. Is it even feasible to
derive in this way? Or is it better to focus on measuring
the characteristics of component composites? [1]

7.3 Requirements Management and Component
Selection: The overall lack of completeness, accuracy, and
consistency in requirements is a challenge for
requirements management. The basic goal is to design a
system that, within a given framework of various boundary
conditions, as closely as possible complies with the
requirements. Reusing previously created components is
the fundamental strategy of component-based development.
As a result of the potential components typically not
having one or more features that completely match the
system requirements, the requirements creation process is
much more difficult. Even if a component fits the system
well on its own, this does not necessarily mean that it will
function poorly or not at all when combined with other
components. Due to these restrictions, requirements
engineering may need to be approached differently, the
practicality of requirements in connection to the
components at hand evaluated, and requirements modified
as a result. A risk management approach is necessary in
the component selection and development process since
there are numerous unknowns in the component selection
process.

7.4 Long-term Management of Component-based
Systems: The subsystems and components of
component-based systems have independent life cycles.
The accumulation of components, subsystems, and
autonomous life cycles makes system progression
challenging. There are many various types of research
questions, including technical, administrative,
organizational, and legal problems. The technological
considerations centered on the notion that the system could
technically be updated by swapping out individual parts.
Updateable components that should or must be updated
make up the administrative and organizational difficulties.
the legal concerns examining the system or component
manufacturer's liability for a system failure. The
maintainability of such systems is still carefully practiced,
notwithstanding CBSE's modern approach. There is a
chance that many of these systems will be difficult to

maintain.

7.5 Component Development Models: The current
development models demonstrate dominant technology,
but they are difficult to use and contain a number of
ambiguous qualities. The overview of the classification of
component models for the software lifecycle dimension is
provided by I. Crnkovic et al. in their publication [5].

7.6 Component Configurations: Numerous components,
each of which has further components, can make up
complex systems. Compositions of components will
frequently be handled as components. The issues related to
structure configuration suddenly appear. The same
component, for instance, might be present in two
compositions. Will these components be recognized as two
separate entities or will they be regarded as one single
identical entity? Was one of the study questions that was
posed? Which version will be chosen if these components
are of different versions? If these versions are
incompatible, what happens? Although the issues with
dynamic updating of components are already understood,
their solutions are still being investigated.

7.7 Dependable Systems and CBSE: It is particularly
difficult to apply CBD in real-time systems, process
control systems, safety-critical sectors, and other systems
where dependability standards are more strict. The
inability to guarantee some system properties as well as
the limited ability to verify component quality and other
non-functional attributes is a significant issue with CBD.

7.8 Component Quality Service: The quality of the
component's service is given more consideration at CBSE.
There is still a challenge with the research subject of how
Quality of Service (QoS) of components may be defined
and described [6]. It is possible to see this research
question as a research problem.

7.9 Tool Support: Component testing tools, component
repositories and tools for managing the repositories,
component-based design tools, runtime system analysis
tools, component configuration tools, etc. are all urgently
needed. Efficiently constructing systems from components
is the aim of CBSE. The only way to do this is with
complete tool support.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.8, August 2024

124

8. Conclusion:

Software development has been considerably
enhanced by implementing a component-based software
engineering method. However, there needs to be a way to
find and make the components. This paper provides an
introductory comparative analysis related to
component-based software engineering, with the goal of
formalizing and normalizing CBD-related behavior across
all disciplines supported by CBSE. Therefore,
component-based technologies beat scripting-based ones
in terms of qualitative performance. The life cycle
dimension of classification component model overview is
also shown. There are other outstanding problems with
CBSE that can be looked into more thoroughly.

References

[1] I. Crnkovic, J Stafford, C Szyperski,” Software Components

beyond Programming: From Routines to Services”, IEEE
Software, pp.22-26 May/June 2011
DOI: 10.1109/MS.2011.62

[2] Basha, N.M.J.; Moiz, S.A., "Component based software
development: A state of art," Advances in Engineering,
Science and Management (ICAESM), 2012 International
Conference on , vol., no., pp.599,604, 30-31 March 2012.
https://doi.org/10.48550/arXiv.1406.3728

[3] Fahmi, S.A; Ho-Jin Choi, "Life Cycles for Component-Based
Software Development," CIT Workshops 2008. IEEE 8th
International Conference on Computer and Information
Technology Workshops, pp.637-642, 2008.
DOI: 10.1109/CIT.2008.Workshops.82

[4] Sommerville I, “Software Engineering”, 7th Edition, Pearson
Education, 2004.
https://dl.acm.org/doi/book/10.5555/983346

[5] I. Crnkovic, S Sentilles, A Vulgarakis, M R.V. Chaudron,” A
Classification Framework for Software Component Models”,
IEEE Transactions on Software Engineering Vol. 37 No.5,
2011. DOI: 10.1109/TSE.2010.83

[6] Z Chengbang, L Bing, L Shufen,” A Component Quality of
Service Modeling Method”, IEEE 18th International
Conference on Computer Supported Cooperative Work in
Design, pp.695-699, 2014.
DOI: 10.1109/CSCWD.2014.6846929

[7] Liu, C., van Dongen, B. F., Assy, N., & van der Aalst, W. M.
(2019, May). A General Framework to Identify Software
Components from Execution Data. In ENASE (pp. 234-241).
https://doi.org/10.5220/0007655902340241

[8] Ajayi, Olusola O., Stella C. Chiemeke, and Kingsley C.
Ukaoha. "Comparative analysis of software components
reusability level using gfs and ANFIS soft-computing
techniques." In 2019 IEEE AFRICON, pp. 1-8. IEEE, 2019.
DOI: 10.1109/AFRICON46755.2019.9134021

[9] Garg Rakesh. A ranking model for the selection and ranking
of commercial off-the-shelf components. IEEE Transactions
on Engineering Management. 2020 Jul 13.
DOI: 10.5267/j.dsl.2015.12.004

[10] Basha, N.M.J., Ganapathy, G., Moulana, M. (2022).
CREA-Components Reusability Evaluation and
Assessment: An Algorithmic Perspective. In: Luhach, A.K.,
Jat, D.S., Hawari, K.B.G., Gao, XZ., Lingras, P. (eds)
Advanced Informatics for Computing Research. ICAICR
2021. Communications in Computer and Information
Science, vol 1575. Springer, Cham.
https://doi.org/10.1007/978-3-031-09469-9_12

