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Abstract 
In the last 10 years, artificial intelligence (AI) has shown more 
predictive accuracy than humans in many fields. Its promising 
future founded on its great performance increases people’s 
concern about its black-box mechanism. In many fields, such as 
medicine, mistakes lacking explanations are hardly accepted. As a 
result, research on interpretable AI is of great significance. 
Although much work about interpretable AI methods are common 
in classification tasks, little has focused on segmentation tasks. In 
this paper, we explored the interpretability on a Deep Retinal 
Image Understanding (DRIU) network, which is used to segment 
the vessels from retinal images. We combine the Grad Class 
Activation Mapping (Grad-CAM), commonly used in image 
classification, to generate saliency map, with the segmentation 
task network. Through the saliency map, we got information about 
the contribution of each layer in the network during predicting the 
vessels. Therefore, we adjusted the weights of last convolutional 
layer manually to prove the accuracy of the saliency map 
generated by Grad-CAM. According to the result, we found the 
layer ‘upsample2’ to be the most important during segmentation, 
and we improved the mIoU score (an evaluation method) to some 
extent.  
Keywords: 
Retinal image synthesis, generative adversarial networks, image-
to-image translation, medical image segmentation. 

 
1. Introduction 

 
Deep learning achieved astonishing success in 

computer vision during the last few years because of 
its great performance. However, there is still a long 
way to go before widespread use in some fields, such 
as medicine. In those fields, failure is intolerant given 
the connection between disease diagnosis and living 
quality, or worse, fatality. Therefore, it is hard to adopt 
algorithms with poor “explainability” or 
“interpretability” just because its high black-box 
performance [21]. According to [16, 5, 3, 9], although 
machine learning (ML) and neural networks (NN)  
show promising performance in several medical tasks, 
they are far from perfect.  

As a result, interpretability has become an 
urgent problem that appeals to many researchers. It 
includes a series of issues: Do we know where it goes 

against our expectation if the prediction is wrong? Can 
we understand further how the algorithm works if its 
performance is beyond specialists? What are the most 
important parts in the network leading to its prediction? 
To figure out those questions, researchers focus on 
such aspects that (1) to explain the decisions made by 
algorithms, (2) to expose the patterns of the inner 
mechanism of a network, (3) to add some coherent 
models and demonstrate them with more mathematics.  
However, there typically is a trade-off between 
performance and interpretability: complex, high-
performance networks like deep residual networks 
(ResNets) [7] have a huge number (L > 200) of layers. 
It is challenging to explore how these layers work and 
connections between them, and we therefore choose to 
start with a relatively small network for Deep Retinal 
Image Understanding (DRIU) presented in [13]. We 
explored how the network segment the vessels from a 
retinal image.  

Zhou et al. [24] proposed a technique called 
Class Activation Mapping (CAM) to identify 
discriminative regions used by a restricted class in 
image classification. R. Selvaraju et al. [17] then 
introduced an advanced method called GradCAM 
based on the previous work. It generates visual 
explanations for any CNN-based network. The 
advantage of this method is that it doesn’t require 
architectural changes or retraining.  

Inspired by them, exploring perceptive 
interpretability based on DRIU network. We first 
followed [17], expecting to apply grad-cam, which is 
used to generate heat/saliency/relevance-map with the 
results of the final max-pooling layer, to our network. 
Soon we found it inappropriate because it is a more 
common approach in classification task while our 
work is a segmentation task. But we reserved the idea 
of plotting the saliency map since it seemed significant 
in the process of decision making even in a 
segmentation task. We then regarded the segmentation 
task as a particular case of classification task. We 
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assumed when there are only two classes, 
classification will transform to segmentation. That 
assumption helped a lot in our interpretation. Besides, 
we employ this method on more layers such as 
convolution layers instead of just final maxpooling 
layer in order to explore more possibilities about 
interpretability.  

A “Signal Method” referring to interpretability 
that observe the stimulation of neurons or a collection 
of neurons in [10] is also taken into consideration. 
After completion, there will be two advantages. On the 
one hand, the activated values of neurons can be 
manipulated for performance advancing. People can 
intervene the learning process of the network to guide 
it towards a right direction especially when the loss 
function is not perfect during all stages. On the other 
hand, this method offers another way to testify which 
part is most crucial in the network. The sensitivity of 
the stimulation value is highly related to the 
importance of that part.  
 
 

2. Related Work  
 

Our work focuses on the interpretability on 
retinal images. In that aspect, visualizing CNNs and 
medical explainability are essential.  

 

A. Visualizing CNNs  
Previous works [19, 23, 18, 6] have visualized 

CNN predictions by highlighting ‘important’ pixels. 
Some [4, 11] add an inversion of layers to explain the 
feature map. In those works, Guided Backpropagation 
[16] modify ‘raw’ gradients to get qualitative 
improvements. Most of these works are compared in 
[12]. Besides, in [15], LIME is another structure 
related to saliency method which may be instructive. 
Layer-wise Relevance Propagation (LRP) in [1] is also 
a method to construct saliency maps. If possible, these 
methods can be tuned for conducting saliency maps in 
segmentation task.  

The most relevant to our approach is the Class 
Activation Mapping (CAM) approach in [24] and the 
improved Grad-CAM in [17]. They illustrated how 
every pixel contributes to the desired class in 
classification. We made some adjustments so that it 
can be used in segmentation tasks.  

B. Interpretability  
Most work in this part is summarized in [21, 

2]. In these two papers, the authors introduced the 
concept of explainability, interpretability and many 
specific words in this field. They also reviewed many 
methods chasing for explainability in recent years.  
 
 

3. Methodology 

A. Preprocessing of data  
The original retinal image has low contrast 

between the tissue target and the background, uneven 
illumination, and much noise. The original image 
needs to be processed in the following ways:  

 

Step 1. Acquire single-channel color: Separate the 
original image into RGB three channels. The G (Green) 
channel has the largest contrast between the blood 
vessel and the background, so it is selected as the next 
input.  
Step2. Noise filter: use Gaussian filter to eliminate 
isolated point noise, set r to 2 to avoid blurred images. 
The filter here is a two dimensional Gauss filter, which 
can be defined as.  

 
where σ represents the standard deviation, that is, the 
expansion width of the Gaussian function from the 
center, and x and y represent the distance from the 
center of the template in the x-axis and y-axis 
directions, respectively. Gaussian filtering is to 
change the pixel value of the pixel by the value of 
neighboring pixels and the corresponding weight. 
Therefore, the Gaussian filter is very likely to filter out 
noise and may also blur the image, mainly by setting 
the standard deviation σ. If σ is too large, the image is 
blurred. The purpose here is mainly to eliminate 
isolated noise without blurring the image, so σ only 
takes one pixel around the current pixel.  
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Step3. ROI extraction: To eliminate the influence of 
the background, we only process the region of interest, 
so we need to extract the ROI from the retinal touch 
image. Here we take retinal blood vessel segmentation 
as an example. The algorithm uses the entire fundus 
image as the processing object, so the ROI is the entire 
eyeball. This work uses the image and the mask 
extracts the ROI, that is, the image to be processed and 
the mask of the region of interest are multiplied bit by 
bit to obtain the ROI.  

 
Step4. Image gray inversion transformation: The 
blood vessel target in the retina image collected by the 
fundus camera is dark, and the rest of the retina is 
brighter than the blood vessel. To better adapt to 
human visual habits, the blood vessels and 
background colors are inverted here, that is, blood 
vessels are displayed in high brightness, and the rest 
of the retina is displayed in dark colors. The 
realization of the inverted transformation process is 
relatively simple. It only needs to subtract the pixel 
value of each pixel from the maximum value in the 
retinal single-channel image. The image needs to be 
normalized after filtering and ROI selection 
processing, so that the maximum value of pixels in the 
image is 1. Therefore, the normalization and gray 
inversion of the image are expressed as:  

 

Step5. Light equalization: Due to the uneven 
illumination of the fundus camera during the image 
collection process, and the uneven absorption and 
reflectivity of the light by each part of the retina, the 
contrast of each part in the retina image is uneven and 
the difference is large. To eliminate the influence of 
illumination on the algorithm’s segmentation, the 
illumination equalization method is adopted for the 
retinal image: 

 

where M represents the expected average pixel value, 
for 8-bit grayscale image, we directly take 128.  

 

Fig. 1.  DRIU Net structure  

IW-mean(x,y) represents the average pixel value in 
window w. 

B. Deep Retinal Image Understanding 
(DRIU) Model 

The structure of the DRIU network is shown in Figure 
1. and described as follows. 

 Model Transformation  

In model training, we first transform the 
primitive caffe model into pytorch model to make it 
more convenient for later operations. We use the 
DRIU[14] network. It mainly consists of 
convolutional layers coupled with Rectified Linear 
Unit (ReLU) activations. The use of three max pooling 
layers in the architecture separates the network into 
four stages, each consisting of several convolutional 
layers. Between the pooling layers, feature maps of the 
same stage that are generated by convolutions with 
different filters have the same size. And we connect 
task-specific “specialized” convolutional layers to the 
final layer of each stage. Each specialized layer 
produces feature maps in K different channels, which 
are resized to the original image size and concatenated, 
creating a volume of fine-to-coarse feature maps. We 
append one last convolutional layer which linearly 
combines the feature maps from the volume created 
by the specialized layers into a regressed result. In our 
experiments, we used K = 16. Most convolutional 
layers employ 3 × 3 convolutional filters for efficiency, 
except the ones used for linearly combining the 
outputs (1 × 1 filters).  

 Retraining 

First, we loaded the weights and bias from the 
caffe model and applied them into our pytorch model 
and then retrained the network. For training the 
network, we do not reproduce the class-balancing 
cross entropy loss function originally proposed in [22] 
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for the task of contour detection in natural images. 
Cause we just focus on the explanation of net work, 
we choose a base loss function of pytorch: Binary 
Cross Entropy Loss(BCELoss), which is used in 
binary classification. We denote the training dataset 
by S = (Xn, Yn), n = 1,2,...,N with Xn being the input 
image and Yn = yj(n) ,  j= 1,...,Xn, yj(n) ∈ {0, 1} the 
predicted pixel-wise labels. For i ∈ {1, 2, ..., N }, the 
BCELose function is defined as:  

 
At training time, we fine-tune the entire architecture 
(base network and specialized layers) for 20000 
iterations. We use Adaptive moment estimation with 
momentum, operating on one image per iteration. Due 
to the lack of data, the learning rate is set to a very 
small number (lr = 10-6), which is gradually decreased 
as the training process proceeds. We use several 
preprocessing methods in DRIU[14] and our methods 
mentioned before.  

 Grad-CAM  

To understand whether the model focuses on 
blood vessels and where the focus of each layer of the 
neural network is, it is necessary to visualize each 
layer to see its impact. The CAM method requires that 
the model must use the GAP layer, because the GAP 
layer makes the model more interpretable. The idea is 
to use the weight w of the node as the weight of the 
feature map. The specific method is to select the node 
with the largest softmax layer value to propagate and 
calculate the gradient of the GAP layer as the weight 
of the feature map. However, the CAM method needs 
to change the network structure, which leads to the 
need to retrain the model, and the GAP layer is not 
suitable to appear in the blood vessel segmentation 
model. In order not to change the network structure of 
the model, we adopt the Grad-CAM method, which is 
characterized by not changing the structure of the 
model, but cleverly calculating the weight of each 
feature map. The principle of Grad-CAM is to select 
the node with the largest softmax value for back 
propagation, calculate the gradient of the layer we 
specify, and use the average value of each feature map 
as the weight of the feature map.  

Step1: Calculate the partial derivative of the blood 
vessel probability yc corresponding to each pixel in 
the final output two-dimensional matrix with respect 
to all pixels Aij of the specific layer feature map, where 
y is the probability value of each pixel in the output 

two-dimensional matrix, and c is the serial number of 
the class representing blood vessel. A is the feature 
map output by the specified layer, k is the serial 
number of the channel dimension of the feature map, i 
and j are the serial numbers of the width and height 
dimensions respectively.  

 
Step2: After calculating the partial derivative of yc with 
respect to each pixel of the feature map, take a global 
average in the width and height dimensions.  

 
Step3: Use the above results as weights to weight the 
feature maps of the specified layer, and finally 
combine them linearly. Then perform ReLU activation 
function processing on them.  

 
 

 Mask: 

The image predicted by our model will generate 
much noise on the edge of both retinal region and the 
image which is not expected. As a result, we employed 
a mask operation before doing mIoU rating. This mask 
is generated from the original mask which is offered 
by the dataset. We reordered the mask at a one-pixel 
level so that the edge effect could be greatly reduced.  

 

 Change Weights  

According to the heat map from Grad-CAM, we 
can find the contributions of each activations’ outputs. 
Then we adjust the weights of our network. As we 
append one last convolutional layer which linearly 
combines the feature maps, we just need to change the 
weights of conv1 2 16, upsample2, 4 and 8 (according 
to Figure 1). To expand or decrease one feature map’s 
influence, we multiply the feature map with a constant. 
And we use mIoU to test the performance of changed 
and unchanged results.  
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Fig. 2. The heat map on each layer 

 

Fig. 3. MIoU after operations  

 
Fig. 4. The heat map on each layer 

3.  Experiments 

A. Preprocessing of data  
First, we perform preprocessing operations on 

the retinal image. This is the steps that most retinal 
blood vessel segmentation algorithms follow before 
image segmentation. It mainly includes acquire single-
channel color, noise filter, ROI extraction, image grey 

inversion transformation and light equalization. 
Results are presented in Figure 2. 

 
Fig 5. Blood vessels result on changed and unchanged network  

B. Retraining Network  
We tested the model on the DRIVE dataset. 

The initial results (presented in Figure 3) show that our 
network doesn’t perform very well. This is 
understandable: we didn’t use the class-balancing 
cross entropy loss function, and the layers of our 
network aren’t pre-trained. It is obvious that our 
results have outlines. So, when we use mIoU on results, 
we do a mask on our photographs.  

C. Grad-CAM  
We use the Grad-CAM method for each layer 

to understand its impact on the results. Figure 3 show 
results of this step. The green part indicates a positive 
contribution to the blood vessel segmentation result, 
and the red part indicates a negative contribution to the 
result. All the layers focus on the blood vessel part, 
especially the upsample2 layer. And it shows a 
positive contribution in the blood vessel part. 
Therefore, we believe that the upsample2 layer could 
have a higher weight on the result. So, the accuracy of 
model segmentation can be improved by increasing 
the weight of the upsample2 layer.  

 Change Weights  

According to the heat maps provided by Grad-
CAM (Figure 4), we change the weights of layers 



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.10, October 2024 
 

 

211 

 

before the final convolutional layer. Figure 5 shows 
the results when we improve the upsample2 layer’s 
weight, where the segmentations become better. The 
mIoU will be calculated for every image in the test set 
(only pixels within the mask are considered). We use 
the average mIoU as one of the basis for model 
evaluation, and the average mIoU of without any 
change is 0.7502. After improving the weight of 
upsample2 layer, the average mIoU is 0.7674, which 
is better than before. This corresponds with our 
hypothesis.  

 

4. Conclusions and Discussions  

According to our work, we thought there are 
two parts can be improved or continued to get more 
precise results. First, more datasets can be used for 
more precise interpretations. We only employed our 
method on DRIVE dataset due to many problems, 
most of which is in the retraining process. More 
datasets can help find more robust explanations. 
Besides, many other methods referred in the 
introduction part needed to be applied to segmentation 
tasks. Such trial may bring amazing results.  

In this work, we put forward a series of pre-
processing methods to raise the contrast of the retinal 
image. Although not used in later work, it is still a 
powerful approach according to the result image. 
Besides, we compute the saliency map on the 
segmentation task using grad-CAM, which is rarely 
done by others before. According to the saliency map, 
we adjusted the weights of some layers manually to 
explore the ‘importance’ further.  
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