
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

147

Manuscript received November 5, 2024
Manuscript revised November 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.11.17

Protection Android App with MultiDEX and SO Files from Reverse
Engineering

MA Rahim Khan1† and Manoj Kumar Jain2††,

Department of Computer Science and Engineering, Lingayas Vidyapeeth, Faridabad, Haryana India

Abstract
Reverse engineering technique gives the attacker the gamble to
embed the new code with apps; there is a chance of losing
confidential information or adding some adware. Some most
popular tool protects from reverse Engineering like LIAPP,
IJIAMI, and ALIBABA, etc. Those tools can encrypt the DEX
file in APK; before loading the files dynamically, it decrypts the
files; the MultiDEX files do not defend these tools. We propose
an approach to protect from reverse engineering methods. Our
aim to protects against static repackaging attacks and provides
better efficiency in decrypts and loading apps. We introduce the
Virtual Machine (VM)-based MultiDEX and share object (SO)
protection approach; we used the newly stack-based native code
system in this approach. It provides intense level protection
under the virtual machine. It leverages multiple dynamic virtual
machines protection of bytecode to minimize the overhead. The
significant advantage of our approach to protecting the MutiDex
files and SO files is that very few systems are available, which
take care of both types of files.
Keywords:
MultiDEX files, Reverse Engineering, multiple virtual machines,
AES encryption, SO files.

1. Introduction

The repacked app, the attacker, takes a benign and
genuine app and injects malicious code in the source.
Again, repacked the app for distribution is the most of the
previous approach used for hijacking benign profits and
committing other malicious acts to achieve financial or
non-financial objectives. Additionally, third-party apps are
weaker than Google play stores; as per one statics survey
of 2020, [1] 1.7 million users are infected from malicious
apps. Some Android devices do not use the support of
Google Play, using the third-party apps store. Many third-
party apps are not trustworthy, found that most apps are
repackaged apps embedded with malicious code and
published on third-party apps stores.

A recent survey shows that 95% app of games is
repackaged [2]. App repackaging is especially notorious
due to financial loss and honest developer, but its terrible
impact on the total app ecosystem and users. Most
attackers download the app from the various site, then
repackaged the app with malicious code with their name to
earn the purchase profit or embed ad library, causing the

ad’s benefit to attackers [3]. Therefore, some techniques
can protect reverse engineering and protect the source
code from embedding malicious code. Code Obfuscation
is an essential method to protect the android application
against reverse engineering and repackaging.

Table 1. Code protection scheme from different attacks

Type

of
File

Method Counte-
ractant

Set
Threshold

Core
dump

Other
operatio

n
DEX
Files

DEX
Encrypti
on

DexExtra
ctor[4]

memcpy Get the
Complete
source
code from
Dex File

-

DEX
Files

DEX
Extracto
r

ZjDroid[
5],
DexHunt
er[6]

DvmDefin
e class

Get the
Complete
source
code from
Dex File

-

DEX
Files

DIVILA
R[7]

PackGrin
d[8]

memcpy Get the
Complete
source
code from
Dex File

Get the
key,

repacka
ge the

accordin
g to the
mapping

table
SO
Files

UPX
Shell[9]

UPX
Shell
Tool[10]

Init/.init_a
rray

Get the
dump file

Fix the
fields,
open
with
IDA

SO
Files

OLLVM
[11]

DEC
LLVM[1
2]

Init/.init_a
rray

Get the
dump file

Decrypt
JNI,

editing
into

source
code

Mult
i
DEX
and
SO
Files

MultiDe
x and
SO
protectio
n

DexHu
nter[6],
Packer
Grind
[8],

DroidU
npack
[26]

memcpy
Init/.init_a

rray

Unable to
get source
code from
MulDex

Files

-

In Tab 1., previous works are summarised, multiple

approaches goal at the DEX bytecode level. Two
methods, such as DexGuard[13] and ProGuard[14], are
used to protect the DEX files in Android App, but those
methods cannot protect the obfuscated code if the tool like
DexExtractor[15] finds the entry point. The attacker
monitors the standard library call using tools like ZjDroid

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

148

and DexHunter, debugging the native code. A
DELILAR[7] is a vital technique use to protect against
observing the function calls, but one tool, PackGrind[8],
can restore the source code by mapping between a function
call and native code.

In the current scenario, many android apps are

developed on share libraries, written in high-level
languages interpret into native instruction. These share
libraries are helping to build the apps frequently and
quickly used the core algorithm. Therefore, very important
to protect the share object (SO) files from reverse
engineering. As a present state, very few techniques are
available to protect the SO file against reverse engineering,
and those techniques are not providing sufficient
protection from reverse engineering attacks.

UPX shelling [9] is a technique to protect against

reverse engineering, but the UPX tool [10] can launch the
attack to observe the function calls. OLLVM [11] is
another method for code obfuscation at compile-time, but
against this method, we have ani tool such as DecLLVM
[12] for reverse engineering.

In this paper, we proposed an approach that will

protect the SO files and MultiDEX files. This approach
uses the stack base virtualization to secure the algorithm's
functionality and logic used in SO files—stack-based
virtualization giving the strength to protect the native
instruction. We are using the multiple protection schemes
that dynamically choose at runtime. In the next phase, we
are implementing the MultiDEX protection scheme using
the code obfuscation method. There are very few
techniques used for protecting both types of protection in a
single approach—our result protecting from reverse
engineering and repackaging.

To avoid reverse engineering, some developers using

the obfuscation technique to prevent the application code,
but the obfuscation technique gives high securities to
protect the source code. Source code transforms into a
different form [15].

Dynamic scheduling scheme for Virtual Machine-

based code obfuscation to protect the MultiDex files of the
android app. To increased diversity of code obfuscation
through applying the multiple VMs. Stack-based
virtualization to protect the SO file.

Section 2: introduce the MultiDex file, VM base code
obfuscation, VM components, SO protection, diversifying.
Section 3: Describe the Proposed approach. Section 4:
Multiple VM techniques. Section 5: Case Study. Section 6:
Evolution. Section7: Result Analysis. Section 8:
Conclusion and Future works.

2. Background

2.1 MultiDex Files

Meanwhile, some tools (Ijiami and Alibaba) are useful
for protecting the source code by using encrypt DEX
(Dalvik Executable) [16], stub DEX File moves to under
root directory APK, whenever the app is executed, DEX
stub decrypt, dynamically loading. However, we found
some weaknesses in the tools [17]. It never encrypts all the
class files of DEX, shown in Fig.1.

Figure 1: File structure of APK

 If any app has more than 65536 methods, apps need to
create the multi DEX file; those tools never encrypted
entire classes.dex files, tools have the facility to encrypt
only one class file. However, apps have the multiDEX file,
shown in Fig. 2, except one, all other classes.dex file will
be unencrypted. Fig. 2. showing the app having multiple
*.dex files.

Figure 2: Directory structure of APK with MultiDEX files

A proposed dynamic methodology is used to encrypt
all *.dex files [18]. The proposed method supports the
Multidex library (Developed by Google). This approach
never encrypts/decrypt all *.dex files and resource files
into the Dalvik Virtual Machine (DVM). Since the app’s
execution decrypted all *.dex files and resource files and

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

149

dynamically loaded it, attackers can do decryption and do
reverse engineering on all DEX files to find the apps
source code; the decryption technique creates too much
burden during the translation time.

Table 2: Different type of APK have the MultiDEX files

Name of APK
2048_v4.6.2.com.apk

Tiktok_v17.8.4.com.apk

Snapchat_v11.4.5.73.com.apk

Netflix_v7.80.0 build 10 35175.com.apk

Viber messenger calls group chats_v14.1.0.16.com.apk

Shan koe mee skm777_v1.1.com.apk

Golden card games tarneeb trix solitaire_v20.1.0.27.com.apk

Videobuddy youtube downloader_v1.36.136000.com.apk

Waze gps maps traffic alerts live
navigation_v4.68.1.0.com.apk
Watched multimedia browser_v1.0.2.com.apk

Nvidia geforce now_v5.33.29272392.com.apk

Yahoo mail – organized email_v6.14.1.com.apk

Kinemaster video editor video
maker v4.15.9.17782.gp.com.apk
Mx player_v1.24.6.com.apk

Textnow free texting calling app_v20.42.0.2.com.apk

Discord talk video chat hang out with friends_v46.3.com.apk

Our proposed methodology decrease difficulties in

terms of efforts and time for the attacker to perform
reverse engineering—our aim to present a code
obfuscation mechanism for share object(SO) Files at the
binary level. Stack base virtualization mechanism protect
algorithms logics and protocol implemented into SO files.
Stack-based virtualization to save native ARM instructions
to increased security strength at the machine code level
uses multiple virtual protection schemes [19]; at run time,
dynamically method is chosen. Our approach protects the
MultiDEX files and SO files. We evaluate our method
under various repackaging tools; the result showed that our
process protects the android app from various repackaging
attacks, and it reaches this in minimum overhead. Our first
achievement is to protect SO files, and second
achievement binary code virtualization for ARM
instruction.

 2.2 VM based Multidex Android app Protection

The VM protection scheme has some steps to
protect the MultiDEX android app. The first target to
decompile binary SO file and gather all ARM instruction
giving to the pre-set tag. All ARM instruction to mapped
to virtual instruction(VI), which similar to ARM

instruction. Second target to convert the Virtual instruction
into a binary SO file to follow the norm of encoding.
Lastly, united the custom interpreted is enclosed in the SO
binary file. The VM-based process creates a high cost to
the attacker to perform reverse engineering.

To demonstrate the operation, used the DIVILAR [7]
as an illustration. DIVILAR provides the VM-based
protection technique. It translates the actual instruction set
into the virtual instruction set and uses a hook method to
restore virtual instruction and interpret it at runtime. It is a
beneficial technique to protect the DEX file. VM based
protection is useful in static and dynamic analysis.

Our Multidex obfuscation and SO files protection
more effective than the DIVILAR, because our approach
protects the lower level of SO files and multDEX.
DIVILAR object to safeguard the DEX file. The major
drawback of DIVILAR design, it used the hook technique
to communicate within components. However, an attacker
can benefit from a hook mechanism to obtain information
whenever the instruction translation happens. Our
approach never accepts the restoration process when the
program is translated.

Code virtualization is an emerging approach for
obfuscation; it builds upon VM (Virtual Machine) and
safeguards the program from unauthorized penetration. It
is state of the art, and effective VM-based protection
methods use a fixed scheduling framework wherever this
system always uses just one, deterministic performance
course for the same input. Nevertheless, such methods are
vulnerable when the enemy may recycle information
removed from the formerly observed process to break
applications secured with the same obfuscation scheme.

2.3 VM Components

Our method applies the stack-based VM execution,
involving various components in the proposed
methodology in Fig. 3. The native program background,
which has some local variable, a function parameter,
return values, address, etc., will be saved into a register-
based VM memory location known as VMContex. When
VM passes into the system, the native context program is
saved and Initialized by the VMInit components. After the
execution of protecting the code, VMExit will bring back
the native program context. Restore program control return
the original program to execute the native machine code.

As per our approach, VM heart consists of Dispatcher
and handler; Dispatcher fetch bytecode that is ready for
execution interprets the fetched bytecode and gives the
handler translation into native machine code the fetched
bytecode.

This process will continue till all bytecode translates
into specific code segments are executed. The key point is
to know the protected code segment logic from the

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

150

attacker's perspective and find how the bytecode is
mapped into native machine code.

2.4 SO Protection

As mention in Tab. 1, we observed that the SO file
also more effective than the MultiDex files. However, we
want to know that the existing method could protect
authentically or not? We will continue some manual try to
attack to understand protection methods in SO files. We
are here trying to apply the disassembler IDA Pro [20] to
analyze the SO files.

At present, a secure SO file uses encryption; as we
know, the UPX shell disassembles the most common form
[9]. The complete instructions are encrypted and error full;
it is very puzzling for the challenger to understand the
semantic code. However, as a top talented cracker to
analyze the packing tool, create the dump point into
memory.

OLLVM is a method for obfuscation to hide the
control flow of the apps. We select the Tencent Legu
method to protect the SO file, SO file disordered by
JNI_Onload, attacking target where SO file is disorder.
Apply the adversary attack on the target, can decrypt the
JNI_onload methods.

Hence, in this, we have an obvious conclusion that
OLLVM is more problematic than the UPX shell, but the
attacker can penetrate both techniques through dynamic
debugging.The experiment of paper VM obfuscation can
prevent SO file from both static and dynamic debugging
attacks, and even avoid any attack on VM.

2.5 Attack Tool

In present research [21] has demonstrated the reverse
step of the VM Protection program. Here are the following
steps

Step 1: The first main target to find the initial point
from VM Interpreter;

Step 2: Find the correlation between the bytecode and
corresponding handler function

Step 3: Apply the first both two-step to recover the
logic and target code section. These attacking steps are a
primary task to perform attacks.

 Assume in the system; the attacker has very skillful,
talented, hands-on experience in reverse engineer expertise
uses the safeguard program multiple times to protect the
apps. Also, the attacker can use IDA- Pro, Valgrind[22]
tools to modify the SO file in memory, do restore and
track.The attacker aims to launch the attack based on the
VM working scheme and conversion logic between
instructions. Our objective is to secure the VM Working
mechanism and mapping scheme between instruction.

3. Methodology

3.1 Design objective

Our proposed approach gives a high level of
abstraction and protection from various types of reverse
engineering attacks. The software runs on the same
execution track in the first setup, it will run several times,
and the attacker will learn or obtain appropriate knowledge
of the program behaviors. In the second setup, the software
runs on different execution tracks. It will run several
times; an attacker will not learn or obtain sufficient
knowledge of the program behaviors. Variety is the key to
protecting the software again the dynamic cumulative
attacks—our objective diversity of execution for code
obfuscation. Our approach will provide the security of
apps at a lower and depth level using binary code level.
Fig. 3 depicts the whole system of the proposed
methodology.

Figure 3: Proposed Methodology

Apk is input into the system; it binds them with the
virtualized binary system to interpret the apk as output.
Code obfuscation focus on the protection of native SO
files and MultiDEX files. We can divide our methodology
into different virtualization modules.

3.2 ARM VM Based Model

This protection scheme is based on stack virtualization

for ARM instructions. Our prevent approach divided into
two segments

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

151

I. Multiple virtualizations code transformation
II. Customize interpreter engine

In the first segment, obfuscation rephrases the

instruction into a new form, enclosing the mapping table
and nuclear handles. First, extract the key and obtain
binary instruction from the pre-set code segment from the
beginning and end address of apk, then, putting on this
mapping scheme, the system could translate the one by
one instruction from native to the virtualized format. We
commonly employ multiple custom instructions to
interpret into a native instruction. We can rapidly conclude
that the mapping scheme is essential. To evade being
cracked, multiple set schemes and consistent handlers are
designed for interpretation instead of the lone map ARM
VM. Each time every original instruction can be
transformed into virtual instruction with a different code
set. In the second segment, obfuscation design is an
abstract interpretation engine as VMSecction in a secured
SO file. VMSection is known as a code pump; it simulates
several schedule operation types on a real CPU.
VMSection has various kinds of components.

VMData changed over custom virtual instruction, the
Initialization of program VMInit, VMContex designed by
register setting, Dispatcher is a virtual machine scheduler.
The leave from the system program is HD_Exit and
comparing tasks Handlers. VM section interprets into
bytecode at run time.

Subsequently, suppose an attacker needs to break this
virtualization scheme. In that case, he/she should get a
handle on all data to complete translation into virtual
instruction. Then, he/she needs to reestablish the original
functionality of the running virtual instruction, which is
challenging to find the actual instruction from Multiple
VM, which is very effortless. There are multiple
schedulers to deal with virtual instruction from Bycode
instruction.

3.3 Diversifying

Our VM based approach used code obfuscation, which

has policies for scheduling multiple instructions, multiple
dispatchers handling the single virtual instruction, and
bytecode handlers. This approach offers semantically
equivalent to a virtual instruction implementing in
different ways by various handlers. Thus, the scheduler is
dynamically controlled, which of handlers are used to
interpret virtual instruction into bytecode. By applying the
obfuscation method, multiple sets of handlers are produced.
The rule of the handler is obfuscated could differ for a
different region of code. Our multiple VM scheme
approaches provide multiple VM implementation.
Therefore, we obfuscated each handler using the
deformation engine. N set of handlers has semantically
equivalent with different execution and control flow.

Virtual instruction will be translated into a unique
bytecode from each VM.

4. Multiple VMs

VM has two types of obfuscation approaches; the first
is a single VM (SVM) base; the second is the multiple VM
base. Multiple VM (MVM) base is more secure compared
to SVM because it has bytecode instruction and set of the
handlers. Bytecode instruction manages or schedules by
the multiple VM; similarly, virtual instruction is translated
by the numerous handlers. Therefore, we can understand
various mapping is possible between bytecode instruction
and handler. This paper approaches increase the diversity
of the program.

4.1 Switching between multiple VMs

This paper can use multiple VM, number VM, and
parameters depend on the target program. If we want to
increase the program protection, we need to increase the
number of VM; multiple VM can create an overhead issue.
Therefore, we need to balance the between multiple VM
and overhead of the program. This approach for each VM
produced a set of handlers. We have N sets of handlers
deal with N VMs. Our current scenario interprets the
virtual instructions into a handler set; each handler set has
two different type bytecode sets. Different bytecode has
other VMs so that various handlers translate the different
bytecode in different VMs.

Our approach, dynamically Dispatcher decide,
which VM in use at run time, Fig. 4, is depicted as
Dispatcher. VM switching technique selects one among
the multiple VM (Seg. 0X0328 up to 0X0339) update
program counter moves to target VM (Seg. 0X033B-
0X0353), our approach follows X86 register scheme for
the opcode instruction set. The set of bytecode instruction
and a set of bytecode handler will be switching aimlessly
between different code segments.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

152

Figure 4: An execution trace showing context switching

in the virtualized program

4.2 The VM scheduling process
In this paper dynamic scheduling scheme generated

by the two control units:
The segment control unit randomly decided that control
should be given to the dispatcher or bytecode handler.
 Switching VM Unit, random selection of VM for use.

Dynamic scheduling present into an algorithm, the
instruction of bytecode will be executed sequential mode.
The virtual interpreter fetches standard bytecode to
dispatches to the handler. After completion of bytecode
execution, the control unit decision, program control goes
back to Dispatcher or VM handler if the control goes back
to bytecode dispatcher, Dispatcher, and VM random select
executed bytecode from standard bytecode. If the control
moves to the Bytecode handler, execution will be held
from offset Bytecode. This process continues till All
virtual instruction of the protected code region will not end.

5. Case Study

5.1 Defense Process
To demonstrate how our approach protects the APK

(Android Application Package), we have chosen a game
app 2048.apk [23] to describe the defense process.
Step1: As given in Fig. 4, first of all, try to obtain binary
SO file from unzipping app packages; secondly,
disassemble the app to get the key-code section. We

undertake the offset start from 00x328 and a close offset
address 00x354. Step 2: Segment of instructions being
protected are virtualized one by one. As depicted in Fig. 5,
select the random set of virtual instruction into VMData
for binary bytecode presentation.

Step 3: Design the relating VM as per the custom
configuration decision. Showing in Fig. 5, if the
configuration decision is VM02, it will naturally deliver a
practically equipollent usage for a particular handler.
Every VM has various handles execution arrangements for
each running, and the planning tables between virtual
directions and the overseers are additionally profoundly
influential. In particular, the control flow goes through
interminable changes

Figure 5: Represent handlers entrenched in VM under
tradition implementation, and similar stripe boxes denote
the functionality of handler

Step 4: The critical thing under this step to monitor the
VM jumping entry point; Garbage instruction is associated
with the implementation of obfuscation due to the VM
jumping statement.

Step 5: In the design system, a new code segment
(VMSection) embed into the SO file; VMSection is a very
composed method of multiple VM, VMData, and VMInit,
etc.
Step 6: In the last advance, the framework repackages the
beginning application. The capacity of the form early on
incited paper newly_2048.apk is indistinguishably
identical to the pre-sponsorship one.

5.2 Running process

In this section, we represent how we protect
our app in the form of execution, and we
illustrate some technical detail here about the
New2048.apk
Step 1: In this step, new-2048.apk execute to the protected
code segment, Fig. 3, showing that protected apk jump on
VMInit. The VMInit initializes the virtual machine. All
protected instructions perform to achieve the correct

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

153

restoration; VMContex saves the real-time environment
register value for simulating the CPU register behavior.

Figure 6: Process Model of Dispatcher

Step 2: An important step is to initialize the VMContex,
Inside the VMData, Bytecode executed by Dispatcher. Our
approach chooses the equivalent set of VM to perform as
per the guideline of virtual Instructions. In Fig. 6, In this
paper, we select VM01 for illustration, begin the decision
to choose the VM, select the equivalent handler to execute
to obtain the offset. We demonstrate an example of the
parsing process based on Fig. 6; VMData keeps the
address of register R7. The program controller starts
executing the handler from offset 0x3F36C.
Step 3: VM interpreter chooses the first handler to
execute; here, one genuine instruction is planned
semantically into multiple virtual ones. When this process
successfully over dispatcher jump to entrance offset
0x3F2E0.
Step 4: Program Bytecode execution inside the VMData;
once complete bytecodes fetched out, the program
controller jumps to Step 5; otherwise, it reiterates Step 2.
Step 5: All VMData bytecodes are interpreting and
executing, then the program moves to HD_Exit;
VMContext saved the latest value of real registers.
 Step 6: Finally, the controller moves the forfended code
segment endpoint address and continuous, executing
outside VM instruction.

6. Evolution:

It provides the protection of binary protection of file,
attacker unable to make reverse engineering attacks. We
evaluate the performance of our approach by using a
different type of attacks on protected apps.VM based
MUltiDEX protection approach using Multi VM technique
to safeguard the SO and MultiDex files. To verify the
protection level of our system, have the two type of
analysis

I. Static analysis
II. Dynamic analysis

6.1 Static analysis:
Many Static tools are available in the market to

launch the reverse engineering attack to repackage the app.
We found JEB [24] and Apktool [25] can disassemble the
parse DEX and MultiDEX files system for reverse
engineering.
Similarly, we have IDA-Pro, which can parse the SO file
into ARM Instruction. One more essential approach of
potential vulnerability JNI-OnLoad by the cracker. This
JNI-OnLoad function is used in IDA-Pro for debugging.

6.2 Dynamic Analysis:

We found six shelling tools to test the different
approaches. We select the three latest tools to test our
system. DexHunter[6] uses this tool to unpack the DEX
file from the app, restore all instruction, and modifies the
code. As above shown in the table, DextHunter unable to
unpacking the VM Based MultiDEX protection files.
PackerGrind [8] can analyze the DEX Files, loading class,
and unpacking the app at runtime. The significant
advantage of this app is to monitor the memory operation
at runtimes. App protected from approach, have no
memory operation VM base MultiDEX protection app safe
from packaging tool. DroidUnpack [26]is a potent tool for
reverse engineering; it works on a multi-layer detection
environment. It has hidden code extraction, self-modified
code.

7. Result Analysis

We compare our approach from other previous
systems; the present system protects only one DEX class
file, in the current scenario, with rapid development in-app
size. Every APK has the MultiDEX file, shown in Fig. 7;
our approach protected MultiDEX files and SO files. In
this segment, we analyze the VM-based MultiDEX
protection in terms of space and time complexity. Time
complexity calculates the apps startup time and space
complexity calculated by the app size and consuming
memory by the app at run time. We applied our VM Based
MutltiDEX approach to protecting the binary SO file on
the priority in the first section. In the second section, we
select the 16 apps category under the 1,000,000 popular
download apps from google play. Detail of selected apps
given in Tab. 3. Previous works shown DSVMP [27]
suggest 5 VM Configuration is the latest for virtual
machine protection. Therefore, we select the 5 VM
configuration overhead for experimental results, suitable
for modern virtual machine protection. The key factor in
judging app protection is size; if any app protection size is
large, it is better protection. Still, our approach uses
minimal space for protection in multi VM environments.
In Fig. 8, we found that the protected app increased by
15.81%. If we evaluate the app 2048.apk, this app

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

154

increased by 17 % in protection apps; some apps increased
widely in Virtual Machine protection. An increase in
Protection app size depends on VMSection, some apps
have an initial size of the app, and growth in VMSection is
a very close or maybe very high rate in the development of
VMSection. Next, we measure the VM Based MutltiDEX
approach to provide the average 15.81 % increase in
protection rate, shown in Fig 8. It is an adequate level for
any algorithm level program. We found startup time
overhead of from 1.23% to 6.83%.

Due to various approaches, we compared two
commercial approaches for the protection of MultiDEX
and SO files. We selected the UPX- Shell [9] and
Hikari[28] approach for comparison. Hikari gave the very
worst performance in comparison to UPX-Shell and our
VM-based MultiDEX approach. UPX-Shell gave very
close results from our VM base MultiDEX approach, but
our system doesn’t have a decryption and unpacking
process at the initial stage. In conclusion, our system has
time complexity, and space complexity is more effective
than UPX-shell., showing in Tab. 5 and Fig. 8

Table 3: Different type of APK with MultiDEX file and
size of APK

Name of APK MultDEX

Files
Size
of
APK
(MB)

2048_v4.6.2.com.apk 3 16.5

TikTok_v17.8.4.com.apk 8 68.2

Snapchat_v11.4.5.73.com.apk 4 69.8

Netflix_v7.80.0 build 10
35175.com.apk

4 58.3

Viber Messenger Group
Chats v14.1.0.16.com.apk

4 53.8

Shan Koe Mee SKM777_v1.1.com.apk 2 75.1

Golden Card Games Tarneeb Trix
Solitaire v20.1.0.27.com.apk

1 12.3

VideoBuddy YouTube
Downloader v1.36.136000.com.apk

4 16.7

Waze GPS Maps Traffic Alerts Live
Navigation v4.68.1.0.com.apk

4 85.1

WATCHED Multimedia
Browser_v1.0.2.com.apk

1 21.6

NVIDIA GeForce
NOW v5.33.29272392.com.apk

2 43.3

Yahoo Mail – Organized
Email_v6.14.1.com.apk

4 25.9

KineMaster Video Editor Video
Maker v4.15.9.17782.GP.com.apk

3 90.9

MX Player_v1.24.6.com.apk 3 33.2

TextNow Free Texting Calling
App_v20.42.0.2.com.apk

4 80.6

Discord Talk Video Chat Hang Out
with Friends v46.3.com.apk

2 76.9

Average 3.33 54.11

Figure 7: Different APKs with MultiDEX Files

Table 4: Represent the APK volume, Memory consumption and
startup time of VM based MultiDEX protection

VM Based MultiDEX Appraoch

Name of APK APK
Volume
(MB)

Memory
Used(
MB)

Startup
time(
MS)

2048_v4.6.2.com.apk (16.5 MB) 19.8 73.8 882.7

TikTok_v17.8.4.com.apk (68.2
MB)

95.5 304.9 3648.5

Snapchat_v11.4.5.73.com.apk (69.8
MB)

77.8 310.7 3718.1

Netflix_v7.80.0 build 10
35175.com.apk (58.3 MB)

67.0 260.6 3118.9

Viber Messenger Free Video Calls
Group Chats_v14.1.0.16.com.apk
(53.8 MB)

63.4 238.3 2851.4

Shan Koe Mee
SKM777_v1.1.com.apk (75.1 MB)

101.9 337.5 4039.0

Golden Card Games Tarneeb Trix
Solitaire_v20.1.0.27.com.apk (12.3
MB)

19.6 73.8 882.7

VideoBuddy YouTube
Downloader_v1.36.136000.com.apk
(16.7 MB)

22.5 74.7 893.4

Waze GPS Maps Traffic Alerts
Live Navigation_v4.68.1.0.com.apk
(85.1 MB)

100.4 380.4 4552.6

WATCHED Multimedia
Browser_v1.0.2.com.apk (21.6 MB)

28.3 96.6 1155.5

NVIDIA GeForce
NOW_v5.33.29272392.com.apk
(43.3 MB)

57.2 193.6 2316.4

Yahoo Mail – Organized
Email_v6.14.1.com.apk (25.9 MB)

32.0 115.8 1385.6

KineMaster Video Editor Video
Maker_v4.15.9.17782.GP.com.apk
(90.9 MB)

106.4 406.4 4862.9

MX Player_v1.24.6.com.apk (33.2
MB)

43.2 148.4 1776.1

TextNow Free Texting Calling
App_v20.42.0.2.com.apk (80.6 MB)

92.7 360.3 4311.9

Discord Talk Video Chat Hang Out
with Friends_v46.3.com.apk (76.9
MB)

93.0 343.8 4113.9

Average 63.80 232.47 2703.92

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

155

Table 5: Comparison of different previous techniques after the
protection of 16 Apps

Performance Initial
size

MultiDex
VM

UPX
Shell

Hikari

APK
Volume

52 63.80 47.38 78.00

Memory
Used

197.6 232.47 219.93 302.71

Startup
time(ms)

2597.92 2781.85 3637.09 3637.09

Figure 8(a). The volume of APK

Figure 8(b). Memory Consumption

Figure 8(c). StartUp time
Figure 8: Average Performance of different techniques

after the protection of 16 Apps

8. Conclusion and Future works

This paper introduces a VM-based Multidex protection
approach; we used the Stack-based native system in this
approach. It provides intense level protection under the
virtual machine. The significant advantage of this
approach to protect the MutiDex files and SO files is that
very few systems are available, which take care of both
types of files. In this approach have both static and
dynamic observation in the experiment. Our system is
shown as a result of low overhead and better performance
in time and space complexity. We observe that the UPX
shell using less memory consumption than VM based
MultiDEX approach because we are using Multiple VM
with diversity. In the future, we will try to
reduce the memory consumption of than UPX
shell.

9. References:

[1].https://arstechnica.com/information-
technology/2020/03/found-malicious-google-play-
apps-with-1-7-million-downloads-many-by-children/.

[2]. Luo, L., Fu, Y., Wu, D., Zhu, S., & Liu, P. (2016,
June). Repackage-proofing android apps. In 2016
46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN) (pp. 550-
561). IEEE.

[3]. Vidas, T., Votipka, D., & Christin, N. (2011, August).
All Your Droid Are Belong to Us: A Survey of
Current Android Attacks. In Woot (pp. 81-90).

[4] (2015). Dexextractor. [Online]. Available:
https://github.com/lambdalang/DexExtractor

[5] Jack Jia. (2014). Android App Dynamic Reverse Tool
Based on Xposed Framework. [Online]. Available:
https://github.com/halfkiss/ZjDroid

[6] Zhang, Y., Luo, X., & Yin, H. (2015, September).
Dexhunter: toward extracting hidden code from
packed android applications. In European Symposium
on Research in Computer Security (pp. 293-311).
Springer, Cham.

[7] Zhou, W., Wang, Z., Zhou, Y., & Jiang, X. (2014,
March). Divilar: Diversifying intermediate language
for anti-repackaging on android platform.
In Proceedings of the 4th ACM conference on Data
and application security and privacy (pp. 199-210).

 [8] Xue, L., Luo, X., Yu, L., Wang, S., & Wu, D. (2017,
May). Adaptive unpacking of Android apps. In 2017
IEEE/ACM 39th International Conference on
Software Engineering (ICSE) (pp. 358-369). IEEE.

[9] Fish_Ou.(2015). Android SO UPX. [Online].
Available: https://www. cnblogs.com/fishou/p/
4202061. html

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.11, November 2024

156

[10] GitHub. (2014). UPX Shell Tools. [Online].
Available: https://upxshell.en.softonic.com/

[11] Junod, P., Rinaldini, J., Wehrli, J., & Michielin, J.
(2015, May). Obfuscator-LLVM--software protection
for the masses. In 2015 IEEE/ACM 1st International
Workshop on Software Protection (pp. 3-9). IEEE.

[12] Currwin. (2015). DecLLVM. [Online]. Available:
https://github. com/F8LEFT/DecLLVM

[13] (2012). Proguard. [Online]. Available:
https://www.guardsquare.com/en/ products/proguard

 [14] (2017). Dexguard. [Online]. Available:
http://www.saikoa.com/dexguard

 [15] Fang, H., Wu, Y., Wang, S., & Huang, Y. (2011,
October). Multi-stage binary code obfuscation using
improved virtual machine. In International
Conference on Information Security (pp. 168-181).
Springer, Berlin, Heidelberg.

[16] Cohen, R., & Wang, T. (2014). Android Application
Development for the Intel Platform (p. 520). Springer
Nature.

[17] Kim, N. Y., Shim, J., Cho, S. J., Park, M., & Han, S.
(2016). Android Application Protection against Static
Reverse Engineering based on Multidexing. J.
Internet Serv. Inf. Secur., 6(4), 54-64.

[18]. Lim, K., Kim, N. Y., Jeong, Y., Cho, S. J., Han, S.,
& Park, M. (2019). Protecting Android Applications
with Multiple DEX Files Against Static Reverse
Engineering tacks. INTELLIGENT AUTOMATION
AND SOFT COMPUTING, 25(1), 143-154.

 [19] He, Z., Ye, G., Yuan, L., Tang, Z., Wang, X., Ren,
J., ... & Wang, Z. (2019). Exploiting Binary-Level
Code Virtualization to Protect Android Applications
Against App Repackaging. IEEE Access, 7, 115062-
115074.

[20] Hex-Rays. (2015). IDA Protect. [Online]. Available:
https://www.hexrays.com/index.shtml

[21] Kuang, K., Tang, Z., Gong, X., Fang, D., Chen, X., &
Wang, Z. (2018). Enhance virtual-machine-based
code obfuscation security through dynamic bytecode
scheduling. Computers & Security, 74, 202-220

[22] J. Seward. (2013). Valgrind. [Online]. Available:
http://valgrind.org/

[23] Google Play. (2018). 2048.apk. [Online]. Available:
https://play.google. com/store/apps/
details?id=com.androbaby.game2048

[24] PNF Software. (2015). JEB. [Online]. Available:
https://www. pnfsoftware.com/

[25] R. Wisniewski. (2010). Apktool. [Online]. Available:
https://ibotpeaches. github.io/Apktool/

[26] Duan, Y., Zhang, M., Bhaskar, A. V., Yin, H., Pan, X.,
Li, T., ... & Wang, X. (2018, February). Things You
May Not Know About Android (Un) Packers: A
Systematic Study based on Whole-System Emulation.
In NDSS.

[27] Kuang, K., Tang, Z., Gong, X., Fang, D., Chen, X., &
Wang, Z. (2018). Enhance virtual-machine-based
code obfuscation security through dynamic bytecode
scheduling. Computers & Security, 74, 202-220.

[28] Tencent. (2017). Hikari. [Online]. Available:
https://github. com/HikariObfuscator/Hikari

M A Rahim Khan received the
M.Tech. Degrees in Information
Technology from GGIP University
New Delhi in 2008, he worked as a
lecturer at Majmaah University, Saudi
Arabia. Currently Ph.D. Scholar in
Lingayas Vidyapeeth Faridabad
India. His research area in Cyber
Security, Computer Network Security,

Information Security.

Dr. Manoj Kumar Jain (Associate
Professor CSE & In-charge
Academics) Lingayas Vidyapeeth
Faridabad India. His research area is
Neural Network, Information Security,
Wireless Sensor Network. He has
published several research papers in
Nation and international journals and
organized and participated in various

national and international conferences.

