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Summary 

IoT proliferation has caused a revolutionary change in 
many industries today, through the connection of billions 
of devices. On the dark side, this exponential growth in 
the number of devices has brought along significant 
challenges for cybersecurity. The greatest challenges are 
driven by sophisticated malware leveraging weak 
vulnerabilities in IoT devices. Traditional malware 
detection, which has been largely signature-based, is 
increasingly inadequate to counter modern, adaptive 
malware, which is also polymorphic. Accordingly, we 
develop a new hybrid deep learning model with 
convolutional neural networks (CNN) for robust feature 
extraction and recurrent neural networks-long short-term 
memory (RNN-LSTM) for further extracting sequential 
dependencies of the network traffic data. Our hybrid 
approach captures the importance of both spatial features 
in malicious traffic patterns, as well as temporal dynamics 
associated with evolving attack behaviors. The 
architecture utilizes an end-to-end model, with minimum 
feature engineering on the raw traffic data. Extensive 
experiments are conducted on NSL-KDD and IoT-23 
datasets to test their effectiveness, which are widely 
regarded benchmarks for intrusion detection and IoT 
malware analysis, respectively. Compared to classic 
machine learning and classic deep learning approaches, 
our hybrid model reached extremely high accuracy of 
99.2% on NSL-KDD and 99.7% on IoT-23. The model 
further outperformed others in terms of robustness 
regarding zero-day attack case detection and handling of 
imbalanced datasets-a typical problem in cybersecurity 
research. It also focused on the computational efficiency 
and scalability issues of the model, together with its 
adaptability to various IoT environments. Results show 
that there is a good possibility of its application in real-
time malware detection in IoT ecosystems with limited 
resources, such as smart homes, healthcare devices, and 
industrial IoT. The integration of CNN and RNN-LSTM 
paradigms in our hybrid model marks a leap toward the 
mitigation not only of current but also emerging threats 
against IoT security. This will be followed by extending 

the model with federated learning for preserving privacy 
during data analysis and integrating explain ability 
methods to foster more trust and adoption in operational 
environments 
Keywords: 
IoT, Malware Detection, Deep Learning, Hybrid Models, CNN, 
RNN-LSTM, NSL-KDD, IoT-23, Cybersecurity. 

I. Introduction 

The IoT is a disruptive technological paradigm that 
connects billions of devices, enabling seamless and 
autonomous data exchange. IoT applications span across 
many sectors, including but not limited to smart homes, 
healthcare, industrial automation, agriculture, and smart 
cities, while transforming the way humans interact with 
technology and plan their day-to-day activities. It has been 
estimated that by the year 2025, the total number of IoT 
devices worldwide will be more than 27.1 billion, 
underlining a scale and impact of this hyper-connected 
ecosystem that is without precedent. 

However, the exponential growth of IoT deployments 
also introduced unprecedented cyber security challenges. IoT 
devices were typically designed to be very computationally 
constrained and deployed in environments where security 
concerns were an afterthought. It is these very constraints, 
coupled with the diversity and heterogeneity of IoT devices, 
that make them very attractive targets for cyber attackers. 
Correspondingly, malware exploiting these vulnerabilities 
has also grown in sophistication and frequency, resulting in 
devastating consequences. For instance, botnets such as 
Mirai have been proven to compromise millions of IoT 
devices through enabling the conduct of massive attacks like 
Distributed Denial of Service and IRC-based intrusions. 

A. Challenges of Traditional Malware Detection 

Malware detection methodologies have usually relied on 
signature-based approaches. Generally, these systems make 
use of predefined databases so as to identify known malicious 
patterns or behaviors within the network traffic. These 
methods are subject to significant limitations; while this 
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method is considered very effective for well-documented 
threats:
 Zero-Day Attack Detection: That attempts to attack 

through previously unencountered vulnerabilities. 
 Frequent Updates: Signature-based systems are 

dependent upon constant updating to remain effective; 
they cannot mitigate the threats in real time. 

 Limited Ability to Adapt to Advanced Malware: The 
sophistication in evasion techniques, such as 
polymorphism, encryption, and obfuscation, used in 
modern malware makes traditional methods incapable of 
dealing with them. 

B. Emergence of Deep Learning within 
Cybersecurity 

Deep learning emerged as a robust blueprint or 
alternative in general to the traditional methods of 
detection. Unlike rule-based or signature-based systems, 
deep learning models tide over by finding complex 
patterns and anomalies on large datasets with the aid of 
advanced architectures such as CNNs and RNNs. Since 
CNNs are particularly effective for spatial data analysis, 
hence they are suitable to extract high-level features from 
the network traffic. RNNs, and especially long short-term 
memory networks are designed for the purpose of 
analyzing sequences with the capability of finding 
temporal dependencies in the behavior of the network. 
While different literatures have demonstrated these 
architectures individually, their integration into a hybrid 
model for IoT malware detection remains largely 
unexplored. 

C. Proposed Solution: Hybrid Deep Learning 
Model 

The proposed paper represents a new hybrid deep 
learning model by combining the strengths of CNNs with 
LSTM networks to meet some challenging issues in IoT 
malware detection. It leverages: 
 Feature Extraction through CNN: The CNNs would 

extract the spatial characteristics out of the network 
traffic data to find high-level patterns indicative of 
malicious activities. 

 LSTM for Temporal Analysis: LSTM networks in 
sequence analyze traffic flows, and it can identify 
temporal relationships along with the development of 
attack behaviors in that process. 

This is accomplished by integrating both paradigms into 
one hybrid model that captures intrinsically the spatial and 
temporal complexities of IoT network traffic, hence 
capturing a comprehensive solution to malware detection. 

D. Benchmark Datasets for Validation 

To validate the efficiency of the proposed 
methodology, we consider two public datasets: 
NSL-KDD: This dataset is an enhanced version of KDD 
Cup 1999 and was tailored for intrusion detection. It 
eliminates the redundant and imbalance problems present 
in its predecessor, hence a closer reflection of reality 
within the network attacks. 
IoT-23: It is the IoT-specific malware dataset, which 
consists of a broad range of malicious and benign traffic 
samples from real-world IoT devices. 

E. Key Contributions 

Enhanced Detection Accuracy: It augments the 
detection accuracy by giving an excellent rate of 99.2% on 
NSL-KDD and 99.7% on IoT-23, beating previous state-
of-the-art standalone CNN and RNN models. Robustness 
to Zero-Day Attacks: The model shows considerable 
ability in detecting previously unseen attacks, hence 
addressing the key limitation of traditional systems. 
Efficiency and Scalability: Although the model was 
constructed to be lightweight, this hybrid model can easily 
scale up to device deployment in resource-constrained IoT 
settings. 

F. IoT Security Implications 

The research findings have brought out the 
transformative potential of hybrid deep learning models 
that help in enhancing IoT security. The anticipated model 
resolves mutually spatial and temporal dynamics of 
malware behavior, hence providing a robust proactive 
threat mitigation framework. Its adaptability to diverse 
apply cases in IoT makes it a viable solution toward 
securing the emerging technologies that are forthcoming 
in these critical sectors. 

G. Future Directions 

While the present study has focused on the success of 
the anticipated model, much of the future work is related 
to: 
 Federated Learning: Integrating the frameworks of 

distributed learning that can be achieved in a private 
manner across decentralized IoT networks. 

 Explainable AI: Enhanced interpretability of the 
intended model supports trust and adoption in 
operational scenarios. 
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 Real-Time Deployment: This is the optimization for 
deployment in real-world IoT ecosystems, including 
both edge and fog. 
 
This paper represents another milestone in IoT 

cybersecurity advancement, as it provides, with scalability, 
efficiency, and precision, the solution so desperately 
needed in this ever-evolving threat landscape. 

II. Related Work 

The malware detection in IoT environments has 
garnered significant attention from researchers, leading to 
the development of various methodologies extending 
from machine learning methods to advanced deep learning 
using hybrid models. This section provides an outline of 
these methods, highlighting their methodologies and key 
findings. 

A. Traditional Machine Learning Methods 

The main conventional machine learning methods 
are Decision Trees, Support Vector Machine (SVMs), and 
Random Forests, conventionally constituting the 
backbone of early intrusion detection techniques. Most 
methods involve manual feature extraction that rely on 
predefined signatures. Thus, their efficiency against 
sophisticated malware threats that are constantly evolving 
is limited. Some recently published studies explored the 
application of these techniques within IoT contexts with 
the aim of enhancing the detection capabilities. 

Er et al. (2024) presented a proportional analysis of 
machine learning techniques for IoT intrusion detection. 
The algorithms like SVM and k-Nearest Neighbors were 
assessed on the IoT-23 dataset and feature selection 
methods were identifying the key attributes for 
classification. Random Forest algorithms outperformed 
others by an accuracy rate of 95.3%. However, challenges 
in identifying zero-day attacks persist due to its 
independence on historical data. 

Chen et al. (2023) proposed a machine learning-
based IoT malware detection system with statistical 
features. The authors focused on lightweight feature 
extraction since IoT machines are resource-constrained 
and utilized SVM as the classifier. It achieved 92.7% 
accuracy on the NSL-KDD dataset, showcasing potential 
for real-time malware detection with minimal 
computational requirements. 

Singh et al. (2023) discussed IoT security 
enhancement using ensemble learning techniques. The 
research combined Decision Trees, SVM, and Logistic 
Regression for IoT malware detection and evaluated the 
approach on the BoT-IoT dataset. The ensemble model 
reached an accuracy rate of 94.5%, outperforming the 

standalone classifiers and showing the advantages of 
algorithmic combinations. 

Li et al. (2023) investigated the influence of feature 
selection on the functioning of a classifier in IoT malware 
detection. Using recursive feature elimination with Naïve 
Bayes and Decision Trees, the study showed that the 
Decision Tree classifier with optimized features achieved 
91.8% accuracy, highlighting how feature selection is 
crucial to improve the results. 

Ahmed et al. suggested in 2023 an anomaly-based 
intrusion detection method that utilizes the k-Nearest 
Neighbors for IoT. It detected deviation from normal 
traffic and is evaluated by the UNSW-NB15 dataset, 
achieving an excellent detection rate of 89.6% to be 
efficient in identifying anomalous behaviors within IoT 
networks. 

Zhang et al. (2023) introduced a method combining 
Decision Tree classifiers with Genetic Algorithms for IoT 
malware detection. This hybrid approach optimized 
feature selection, reducing dimensionality while 
enhancing classification performance. The model 
achieved 93.2% accuracy, showcasing the benefits of 
optimization algorithms. 

Patel et al. (2023) focused on intrusion detection 
methods in IoT devices using Support Vector Machines. 
The study concentrated on kernel selection and parameter 
tuning, tested on the CICIDS2017 dataset. The optimized 
SVM model achieved 90.4% accuracy, highlighting its 
potential effectiveness for IoT intrusion detection. 

Wang et al. (2023) applied Random Forest classifiers 
for botnet attack detection in IoT networks. This work 
investigated important features of the RF classifier to 
determine which features indicated malicious activity. It 
achieved an accuracy rate of 94.1% on the N-BaIoT 
dataset, showing the success of Random Forest for this 
application. 

Kumar et al. (2023) investigated the employ of the 
Naïve Bayes classifier for IoT malware detection. The 
study employed probabilistic modeling of IoT network 
traffic features and evaluated its performance on the BoT-
IoT dataset. While the model achieved 88.7% accuracy, 
its applicability was limited for complex attack patterns. 

Rahman et al. (2023) studied intrusion detection 
approaches in IoT network using Logistic Regression. The 
study focused on simplicity and interpretability of IoT-23 
dataset. The Logistic Regression model achieved 87.5% 
accuracy, which is promising for intrusion detection but 
suggests further enhancements. 

B. Deep Learning Approaches 

Nguyen et al. (2023) proposed an LSTM-based 
anomaly detection system with the processing of 
sequential network traffic data to identify deviations that 
may show malware. The model attained 96.8% on the 
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NSL-KDD dataset by leveraging time-series features, 
further demonstrating the capability of LSTM models in 
capturing IoT malware behaviors. 

The proposal by Haq et al. (2023) adopted an 
unsupervised deep learning method with auto-encoding 
for IoT malware classification. Its approach followed the 
training on normal data only to detect anomalies based on 
higher reconstruction errors. The model gained as high as 
94.2% accuracy rate on BoT-IoT datasets and reported 
overall efficient behavior in detecting unknown malware 
varieties. 

Ali et al. (2023) implemented a deep CNN 
architecture for IoT intrusion detection, focusing on 
extracting spatial features out of packet headers and 
payloads. The model accomplished an accuracy rate of 
97.5% on the UNSW-NB datasets, highlighting the 
success of convolutional layers in identifying malicious 
patterns in network traffics. 

Rahman et al. (2023) proposed a Bidirectional LSTM 
to analyze bidirectional dependencies in sequence 
network data. Using an IoT-23 dataset, temporal dynamics 
captured by the model accomplished an accuracy rate of 
98.3%, outperforming standard LSTM and CNN model in 
performing sequential analysis. 

Chen et al.  (2024) proposed a hybrid model with 
CNN-RNN-based architectures for IoT malware traffic 
detection by combining CNN and RNN layers to examine 
network spatial features of malicious network traffic. 
They resulted in achieving the best accuracies-99.1% over 
NSL-KDD. 

Smith et al., in the year 2023, proposed a deep RNN 
model for identifying IoT network attacks using botnets. 
A model trained with the N-BaIoT dataset has been 
directed to time-series traffic patterns, thereby yielding 
96.7% accuracy and thus showing its adequacy in 
modeling sequential behavior of botnets. 

Wang et al. (2023) proposed the GAN-based 
framework to detect IoT malware. The GAN 
automatically generated realistic traffic samples and 
augmented the training set to help improve the strength of 
their model. This achieved a detection accuracy rate of 
95.8% on the BoT IoT dataset and proved its value in data-
scarce scenarios. 

Attention mechanisms were introduced to a DNN by 
Zhao et al. (2023) to give prominence to the important 
figures in network traffics analysis. The model attained 
96.9% accuracy, showing that feature prioritization 
improves intrusion detection system results. 

C. Hybrid Approaches 

Hybrid models that combine the powers of deep 
learning designs have recently been researched as robust 
solutions for IoT malware detection. Most of these 
approaches integrate CNNs for feature removal and RNNs, 

offering comprehensive spatial besides temporal 
modeling capabilities. Several recent studies have shown 
hybrid architectures outperforming their standalone 
counterparts in addressing IoT-specific challenges. 

Er et al. (2024) proposed a hybrid CNN-LSTM 
model for IoT malware detection, combining CNNs for 
spatial characteristic removal and LSTMs for temporal 
assessment of IoT network traffic. Trained sets and tested 
set on the NSL-KDD and IoT-23 datasets, respectively, 
the model achieved 99.2% and 99.7% accuracy, 
respectively, significantly outperforming standalone CNN 
and LSTM designs. 

Chen et al.  (2023) presented a CNN-GRU hybrid 
model for IoT malware detection using CNN for 
characteristic removal with GRU for temporal 
dependencies modeling in 2023. The obtained results with 
the IoT23 datasets are promising, which showed the 
accuracy rate of 98.9%, reflecting the robustness for 
complex malware patterns identification. 

Smith et al. (2023) proposed a multi-layer hybrid 
neural network architecture that combined CNN, GRU, 
and LSTM layer for IoT botnet detection. The presented 
model was designed to handle high-dimensional network 
traffic and yielded an accuracy rate of 98.8% on the N-
BaIoT dataset, proving its efficiency in detecting botnet 
activities in IoT networks. 

Chen et al. (2024) proposed a hybrid CNN-GRU 
model optimized for edge computing environments to 
report the computational limitations of IoT devices. The 
presented model accomplished an accuracy rate of 97.9% 
on the CICIDS2016 datasets, representing its correctness 
for real-time malware detection in resource-constrained 
scenarios. 

Wang et al. (2023) proposed a hybrid CNN-LSTM 
model incorporated with federated knowledge for the 
recognition of IoT malware in a distributed fashion. 
Evaluated on various datasets, with IoT-23, the federated 
model achieved accuracies over 98.5%, hence proving 
scalable and effective for the protection of data privacy in 
collaborative IoT environments. 

Table 1: Traditional Machine Learning Approaches for IoT 
Malware Detection 

Author(s) and 
Year 

Used Approach and 
Algorithm 

Accuracy (%) 

Er et al. (2024) SVM, Random Forest, k-NN 95.3 
Chen et al. (2023) Statistical Features + SVM 92.7 

Singh et al. (2023) 
Ensemble (SVM, Decision 
Tree, Logistic Regression) 

94.5 

Li et al. (2023) 
Feature Selection + Decision 

Tree 
91.8 

Ahmed et al. (2023) Anomaly Detection + k-NN 89.6 

Zhang et al. (2023) 
Decision Tree + Genetic 

Algorithm 
93.2 

Patel et al. (2023) SVM with Kernel Tuning 90.4 

Wang et al. (2023) 
Random Forest with Feature 

Importance 
94.1 

Kumar et al. (2023) NaÃ¯ve Bayes Classifier 88.7 
Rahman et al. (2023) Logistic Regression 87.5 
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Table 2: Deep Learning Techniques for IoT Malware Detection 
Author(s) and 

Year 
Used Approach and 

Algorithm 
Accuracy (%) 

Er et al. (2024) 
Deep Learning Survey 

(CNN, LSTM, 
Autoencoders) 

95-98 (Survey) 

Chen et al. (2023) 
CNN on Network Traffic 

Data 
97.2 

Nguyen et al. (2023) LSTM on Sequential Data 96.8 

Haq et al. (2023) 
Autoencoders for Anomaly 

Detection 
94.2 

Ali et al. (2023) 
Deep CNN for Spatial 

Features 
97.5 

Rahman et al. (2023) Bidirectional LSTM 98.3 
Chen et al. (2024) Hybrid CNN-RNN 99.1 
Smith et al. (2023) Recurrent Neural Network 96.7 

Wang et al. (2023) 
GAN for Traffic 
Augmentation 

95.8 

Zhao et al. (2023) 
DNN + Attention 

Mechanisms 
96.9 

 

Table 3: Hybrid Architectures for IoT Malware Detection 
Author(s) and 

Year 
Used Approach and 

Algorithm 
Accuracy 

(%) 

Er et al. (2024) Hybrid CNN-LSTM 99.2 

Chen et al. (2023) Hybrid CNN-GRU 98.9 

Nguyen et al. 
(2023) 

Hybrid CNN-BiLSTM 99.3 

Haq et al. (2023) Hybrid CNN-Attention-LSTM 99.1 

Smith et al. (2023) Multi-layer CNN-GRU-LSTM 98.8 

Rahman et al. 
(2023) 

Hybrid Feature Engineering + 
CNN-LSTM 

98.6 

Chen et al. (2024) 
CNN-GRU for Edge 

Computing 
97.9 

Patel et al. (2023) 
CNN-LSTM + Data 

Augmentation 
99 

Wang et al. (2023) Federated CNN-LSTM 98.5 

Zhao et al. (2023) Attention-based CNN-LSTM 99.4 

III. Proposed Methodology 

Such a hybrid architecture would help in 
addressing challenges found in IoT malware detection 
with complementary strengths of neural networks aimed 
at feature extractions and LSTMs for temporal pattern 
recognitions. This methodology thereby enables the 
finding of emerging known and other new kinds of threats 
arising through both spatial and sequential complexities of 
IoT network traffic with an effective framework. 

Hybrid CNN-RNN Model Architecture 

An important step is data preprocessing in the 
anticipated methodology, which will ensure that raw IoT 
network traffic is preprocessed to a form suitable for deep 

learning model. Two benchmark datasets-NSL-KDD and 
IoT-23 were picked for their widespread use and 
comprehensive representation of different network attacks. 
In fact, the preprocessing pipeline will cover some very 
important stages that efficiently prepare the dataset for 
model training set and testing set. 

The first step is Data cleaning in the pipeline, which 
removes inconsistencies such as noise, duplicate records, 
and unrelated entries. Most raw datasets contain some of 
these problems that can degrade a model's performance. 
For example, there could be unnecessary log entries or 
some sort of missing values that might just introduce 
errors during training. Therefore, filtering out these 
inconsistencies significantly improves dataset quality and 
ensures that only valid and complete records are 
considered. 

After data cleaning, normalization is done to rescale 
features that have different magnitudes. These include 
features like byte counts, connection durations, and 
protocol types. For example, packet sizes may range from 
a few bytes to several megabytes. These obtained features 
are converted into the same range, normally [0,1], by min-
max normalization for faster convergence of the used 
model and to prevent the model from getting biased 
toward those features with big magnitudes. Segmentation 
is used to preserve the temporal context of IoT malware. 
Malware activities usually show temporal patterns, like an 
increase in malicious traffic over time. Data is segmented 
into fixed-length time windows, such as 10-second 
intervals, to capture both the static and the dynamic 
aspects of network behavior. Each segment acts as an 
independent data instance for model input, retaining 
valuable temporal information. 

Feature engineering is done as a final step to improve 
the model's initial identification of the data, even though 
CNNs are qualified of learning features automatically. 
Features like protocol types, source and destination ports, 
average packet inter-arrival times, and flow durations 
provide structured inputs. These programmatically 
extracted features using tools such as Wireshark or Python 
libraries specialized for traffic analysis give the model a 
robust foundation for learning. 

A. Feature Extraction with CNN 

The CNNs module forms the initial phase of the 
hybrid architecture, which is responsible for taking in 
preprocessed network traffic and extracting high-level 
spatial features. CNNs are able to recognize patterns in 
ordered data with a high efficiency rate; hence, in IoT 
network traffic, that would be an ideal analyzer for 
features like byte distribution and protocol interactions. 

The convolutional layers are the backbone of the 
CNNs, acting as the major feature extractors. These layers 
apply filters on the enter feature maps to acquire spatial 
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patterns, such as abnormal packet sizes or frequent use of 
certain ports. By stacking multiple convolutional layers, 
the model learns increasingly complex patterns that enable 
it to capture subtle spatial characteristics indicative of 
malicious behavior. The CNN uses ReLU to enhance 
pattern recognition. By introducing non-linearity, the 
model also can identify complex patterns that linear 
functions cannot learn. For instance, using ReLU, the 
CNN should be capable of differentiate between benign 
network behaviors and those subtle signs of malware, 
perhaps in the shape of a slight deviation in packet timing 
or irregular usage of certain protocols. 

Pooling layers, such as max pooling, decrease the 
dimensionality of the features map. It selects the most 
active values in a given window; for example, a 2x2 
pooling operation lowers the size of the selected feature 
maps while maintaining only the most significant 
information. This not only accelerates computation but 
also mitigates overfitting by emphasizing dominant 
features over noise. The result from the CNN module is a 
high-dimensional feature representation that captures the 
spatial properties of the recorded data. These features feed 
into the next stages of the hybrid architecture for further 
handling and categorization of network activities. 

B. Temporal Pattern Recognition with RNN-
LSTM 

These spatial features are passed, after obtained by 
the CNN module, to the LSTM component, which is 
specialized in recognizing sequential dependencies inside 
network traffic. Temporal modeling is a critical aspect on 
IoT malware discovery since many attacks, such as multi-
stage intrusions or DDoS attacks, will unfold over time 
and exhibit sequentially evolving patterns. LSTM units 
overcome the weaknesses of conventional RNNs, which 
include the vanishing gradient issues, and offer memory 
cells storing long-term dependencies. For example, an 
LSTM might follow how a connection's behavior changes 
over time in search of patterns that indicate malware-for 
instance, a gradual increase in data packet sizes or 
irregular intervals between connections. This memory 
mechanism enables the pattern to capture significant 
information from past inputs and thus effectively link 
anomalous behaviors observed at different time steps. 

Temporal relationships, such as the connection 
between an initial port scan and subsequent malicious 
payload delivery, are modeled effectively by the LSTM. 
By processing the output of the CNN sequentially, the 
LSTM captures these dependencies, which become 
critical to identify stealthy and persistent threats that 
cannot be found if only spatial analysis is performed. To 
avoid overfitting, dropout regularization is exploited in 
the LSTM component. In every iteration of training, a 
random portion of neurons is shut down. This forces the 

selected model to generalize its predictions by learning 
robust patterns of the data rather than memorizing specific 
examples, hence improving its performance for unseen 
traffic patterns. The LSTM component make sure that the 
hybrid architecture captures both the spatial and the 
temporal aspects of network traffic, making it vastly 
effective in detecting complex and evolving IoT malware 
behaviors. 

C. Classification Layer 

The last layer of this hybrid architecture is the 
classification layer, which transforms the high-level 
features obtained from both the CNNs and LSTMs 
modules into the absolute prediction of whether the 
network traffics is malicious or benign. The fully 
connected layer acts as the dense layer, which merges the 
temporal result of the LSTM into one single and unified 
feature vector. This vector can be considered to be a 
compact form of the spatial and temporal feature that the 
previous modules learned. The dense layer converts this 
vector into scores corresponding for each class, using 
learnable weights, like normal traffic, DoS attacks, and 
malware. 

These scores are normalized into probabilities using 
the softmax creation function, which confirms that the 
output probabilities for all classes sum to 1, thus making 
the results interpretable and suitable for multi-class 
classifications. For example, if the model identifies high 
probabilities for both DoS and malware traffic, softmax 
will normalize those probabilities so a clear decision can 
be made based on relative likelihood. 

Finally, the final class label is assigned by using a 
decision threshold. For instance, if the guessed probability 
of malware exceeds a predefined threshold, say 0.7, the 
traffic is categorized as malicious. This step is to make 
sure that the categorization process meets the desired 
sensitivity and specificity, thus enabling adaptable 
performance according to application requirements. The 
classification layer, therefore, consolidates the insights 
developed from spatial feature and temporal feature 
analysis to obtain accurate and actionable predictions 
regarding IoT network traffic. 

D. Key Advantages of the Proposed 
Methodology 

Some key advantages that give the proposed hybrid 
architecture very good efficiency performance of IoT 
malware detection relate to: it is a method with strong 
points regarding spatial and temporal integration; while 
combining CNNs and LSTMs captures static anomalies-
such as an unusual size or protocol anomaly-and dynamic 
pattern evolution-such as stages during an attack or 
sequential dependency in the traffic behavior-capability 
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for wide detection. It also exhibits very good scalability. 
Its modular architecture is constructed to process large-
scale network traffic efficiently, making it appropriate for 
real-time IoT deployments. These features are remarkably 
valuable given the high data volumes generated by IoT 
devices in practical applications. Another important 
advantage of the methodology is robustness. The model 
generalizes well across distinct datasets and unseen 
malware variants, enhanced by regularization techniques 
like dropout and max pooling. This ensures reliable 
performance even in scenarios involving new or 
previously unidentified threats. 

This results in very high accuracy rate of the 
proposed methodology, while the early outcomes of the 
NSL-KDD and IoT-23 datasets results showed a detection 
rate higher than 99%, thus significantly outperforming 
classic machine learning model and promising actual 
realistic performance in detecting IoT malware using this 
hybrid design. The proposed approach presents a 
broadened hybrid IoT malware detection approach, 
covering most of the pitfalls of earlier works and 
advancing the IoT ecosystem security mechanism towards 
scalability. 

Datasets 

The anticipated model of CNN-RNN has been put to 
test with two very well-acknowledged datasets: NSL-
KDD for networks intrusion detections and IoT-23 for IoT 
malware detection. Both the datasets provide complete 
benchmarks for solid assessment of the anticipated model 
regarding the recognition of several attack patterns and 
malicious behaviors. 

A. NSL-KDD Dataset  

NSL-KDD is a refined and improved of the most 
popular KDD Cup 1999 dataset specifically constructed 
for apply in networks intrusion detection research. It 
addressed some limitations that existed in the predecessor, 
which contained redundant and duplicate records, most of 
the time skewing performance metrics. By removing these 
inconsistencies, NSL-KDD balances a more realistic view 
in conditions of network traffic; this makes it a benchmark 
reliably treated for examining intrusion detection systems. 
The advantages of the NSL-KDD datasets include that its 
labeled data in the network traffics categorize it as either 
normal traffic or into four types of attack: Probe. Such 
reconnaissance activities, aiming at intelligence gathering 
on accessible points such as open ports and IP addresses, 
represent Probe-type attacks. Various means used for 
scanning attack and probing attack are facilitated through 
such utilities as Nmap and Satan to present an attacker 
with a view toward finding exploitable weaknesses. 

DoS is well-knowing attack whose main intention is 
to disable network services through overwhelming 
resources, making the system or service unavailable for 
use by its legitimate users. Examples include Smurf, types 
of attack that may flood a network with spoofed traffic, 
and Teardrop, which takes advantage of weaknesses in 
fragmented packet handling to make systems crash. U2R 
attack refers to the different privilege escalation attempts 
by an attacker to take unauthorized, root-level control of 
the system. The attacks, such as Buffer Overflow, 
capitalize on the vulnerabilities of software to elevate user 
permissions and compromise critical system 
functionalities. R2L attacks are those where an intruder 
gains illegal access to a machine, usually from a remote 
location, through some weakness in network protocols or 
services. Guess Password is one variety of R2L attack, 
where an attacker attempts to penetrate a system by 
guessing or brute-forcing login credentials. 

The NSL-KDD datasets, because of its balanced 
design and taxonomy of attack types, is very valuable for 
improving and accessing intrusion detection system. It 
enables researchers to address diverse and evolving 
network threats effectively, ensuring that detection 
models can perform well in both experimental and real-
world environments. 

a. Dataset Features and Preprocessing 

The NLS-KDD dataset contains 41 features 
describing each network connection, providing a complete 
basis to develop intrusion detection studies. These 
features are divided into three main categories: basic, 
content, and traffic features, each contributing unique 
insight into network behavior. Basic features include 
duration, protocol type—can be either TCP or UDP—and 
the status flag, showing the circumstances of the 
connection or session. These features are necessary to 
attain the overall structure and network traffic type. 

Content features: These are analyses of the data 
carried in the payload of any given connection. This 
includes the discovery of possible keywords found within 
the payload that point to malware and the counting of 
occurrences associated with failed login attempts, which 
usually give proof of brute-force attacks or unauthorized 
access attempts in general. These features provide context 
in detecting patterns associated with specific kinds of 
network threats. 

Traffic features carry measurements for the flow of 
data back and forth between sources and destinations, like 
the size of bytes sent out and received in, packet rates, and 
other connection-level statistics. Especially, these are 
useful in helping one define anomalies in data transfer 
behaviors, such as very high packet rates or large data 
transfers, indicative of possible attacks. 
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In this research, those kinds of features are prepared 
for the machine learning models by taking the dataset 
through a broad and deep preprocessing pipe. 
Normalization has been carried out on numerical features 
of packet size and byte count to fit them into the space [0, 
1]. Therefore, features with a larger magnitude will not 
impact the model's learning process unfairly. Categorical 
encoding of non-numerical features, like protocol types 
(e.g., TCP, UDP), is performed using one-hot encoding. 
One-hot encoding transforms these categories into a form 
which can be simply accepted by machine learning 
method using binary representation. Balancing is 
performed to avoid class imbalance problems by making 
sure that the representation of common traffic is done 
equally to that of attacks. This step becomes an important 
task in improving the capability of the anticipated model 
in discovering rare attack types effectively. 

b. Relevance to the Hybrid Model: 

The diverse attack categories and labeled structure of 
NSL-KDD allow the models to learn distinct patterns 
associated with various kinds of threats. It allows the 
anticipated model to generalize across different attack 
vectors, such as identifying reconnaissance attempts and 
distinguishing them from DoS traffic. 

B. IoT-23 Dataset 

The IoT-23 datasets, prepared exclusively for the 
recognition of IoT malwares, is an extensive collection of 
labeled network traffic generated from real IoT systems 
operating under normal and attack conditions. It contains 
nearly all known IoT-specific threats, including botnets, 
malware campaigns, and denial-of-service attacks, thus 
practically making it the most suitable dataset to evaluate 
the applicability of the proposed model in IoT natures. 

a. Key Characteristics 

IoT-23 is representative, with a realistic portrayal of 
IoT network environments, one that possesses a very vital 
dataset in malware classification and intrusion analysis. 
This data set has a number of important features; 
especially notable is the realism that lies in the IoT devices 
over which the networks traffic eases—smart devices, 
such as cameras and thermostats, associated with smart 
plugs commonly found in any smart environment. It 
contains both normal and compromised states of each 
device to give a simulated real IoT network. 

Another defining feature is the presence of diverse 
attacks scenarios. IoT-23 includes traffic generated by 
well-known IoT malware families, like Mirai, Gafgyt, and 
Tsunami, which together cover a range of malicious 
techniques like credential brute-forcing, command 
injection attacks, and distributed denial-of-service 

(DDoS) attacks. Such breadth in attack scenarios allows 
for complete evaluation of detection systems against real-
world threats. This dataset, besides malicious traffic, also 
contains a huge amount of normal traffic representative of 
legitimate usage scenarios, like video streaming, file 
transfers, and normal device management operations. The 
IoT-23 datasets are intended to present a balanced and 
realistic corpus for designing and testing effective IoT 
security solutions with both attack and normal traffic. 

b. Dataset Features 

The IoT-23 datasets contain detailed packet-level 
information, which makes it a rich resource for analyzing 
IoT networks traffic and detecting anomalies in network 
communications. It contains detailed information at the 
transports layer, including source IP addresses, 
destination IP addresses, ports, and protocols. The details 
are of utmost importance in the classification of network 
communication patterns and possible signs of malicious 
activity. Also, the knowledge in the transport layer data, 
features of the timing—such as inter-packet arrival time 
and connection durations—were included. Those features 
capture temporal dynamics in the networks traffic, which 
are indispensable when detecting time-dependent attack 
patterns like DDoS or credential brute-forcing. It also 
contains application layer features, which provide insight 
into payload size and content characteristics, useful for 
identifying anomalies in data transmission and potential 
payload-based threats. 

A robust preprocessing phase is used to prepare the 
datasets for analysis. Traffic segmentation divides 
network flows into fixed time windows while preserving 
temporal dependencies in the data. This would allow 
models to capture sequential patterns of traffic behaviors, 
which are commonly associated with IoT malware. 
Feature engineering then follows to create custom 
attributes of flow entropy, byte rate, and session duration 
in a way that enhances the potential of the dataset to 
support the accurate detection of complex attacks scenario. 
The normalization and encoding steps are finally executed 
to keep consistency in the preprocessing of the NSL-KDD 
datasets. Numerical characteristics are normalized to a 
standard range, while categorical variables like protocol 
types and service identifiers are encoded into machine-
readable formats. The dataset is now prepared to be used 
machine learning demonstrates that are operating to be 
trained and evaluated in the most efficient way for the 
solutions in IoT security. 

c. Relevance to the Hybrid Model: 

Focused on IoT-specific malware, IoTh-23 allows the 
hybrid models to adjust to the sole features of IoT network 
traffic, which have lower bandwidth usage and periodical 
communication patterns; if trained on this dataset, it is 
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pretty good at discriminating benign IoT activities from 
malicious behaviors. 

Evaluation Metrics 

Model performance was assessed using several 
metrics. These kinds of metrics can give much broader 
insight obsessed by model performance regarding the 
problems of IoT malware detection and attacks 
classification. 

A. Accuracy  

Accuracy describes the proportion of the quantity of 
correct classifications to the total quantity of samples. It 
gives an overall indication of how right the anticipated 
model is. Accuracy is good but not very helpful in an 
imbalanced dataset, where one class dominates. 

B. Precision 

Precision focuses on the model's ability to avoid 
false positives by calculating the ratio of correctly 
predicted positive samples over all predicted positives. 
The higher the precision, the more of the positive 
predictions (e.g., malware) are correct, hence fewer false 
alarms. 

C. Recall 

Recall measures the model's ability to identify all 
actual positives, like malware instances. High recall is 
important in making sure that the model flags all possible 
threats, even at the harm of a few false positives. 

D. F1-Score 

The F1-score is the vocal meaning of the precision 
and the recall, so it's a balanced evaluation metric. It is 
very useful for imbalanced classes, as it weights the trade-
off between false positives instance and false negatives 
instance. 

E. Area Under the Curve (AUC-ROC) 

The AUC-ROC metric will then assess the 
performing model at different classification thresholds by 
plotting the True-Positive rate against the False-Positive 
rate. High AUC values imply that the anticipated model is 
able to distinguish classes with great accuracy for a wide 
selection of decision thresholds. 

Significance of Evaluation Metrics 

Using multiple metrics allows for comprehensive 
assessment of the model's performance: while accuracy 
gives a bird's-eye view, precision metric and recall metric 
help understand more specific strengths and limitations of 
the selected model.  

IV. Experimental Results 

In the next section, specified assessment of the 
experimental result is given after evaluating the hybrid 
CNN-RNN models on the NSL-KDD dataset and IoT-23 
dataset. The evaluation substantiates the success of the 
anticipated model in improving its performance over the 
standalone CNNs, RNN-LSTMs models, and traditional 
methods. A comparison analysis is also carried out to 
bring out the advantage of the proposed hybrid model. 

A. Performance on NSL-KDD Dataset 

The proposed hybrid model was trained and then 
tested on NSL-KDD dataset, which contains diversified 
attack scenarios considering Probe, DoS, U2R, and R2L 
attacks. Evaluation showed a considerable boost in 
performance with the hybrid architecture matched to the 
standalone CNN and RNN-LSTM models. 

a. Model Accuracy 

In distinction, the hybrid model demonstrates 
99.2% accuracy, outperforming the standalone CNNs 
(97.8%) and RNN-LSTM (96.5%) models, since the 
mixture of spatial and temporal feature learning helps the 
model to better recognize the static and sequential attack 
patterns. 

b. Precision Metrics and Recall Metrics 

         Precision metric and recall metric are important to 
show the success of the hybrid model in dropping false 
positives rate and identifying malicious traffic accurately. 
The hybrid model demonstrated a precision rate of 98.5%, 
which is higher than that result of the CNN alone (95.5%) 
and the RNN-LSTM (94.0%) models. High precision 
means it reduces false alarms, ensuring most threats 
identified are truly malicious. This outperformed the CNN 
to reach 96.2%, and RNN-LSTM at 93.8% as recall rate. 
Here, the proposed hybrid model reveals a good recall 
score of 98.3%, which is its biggest capability to detect 
true positives—just to identify all instances of malicious 
traffic. Thus, this combination of high precision and recall 
emphasizes how strong and reliable the proposed hybrid 
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model would be to classify IoT network traffic for 
malicious activity detection.  

c. F1-Score 

         The hybrid model accomplished an F1-score rate of 
98.4%, which indicates a balanced performance regarding 
precision rate and recall rate. This results in an 
improvement by a large margin over the CNN (95.8%) 
and RNN-LSTM (93.9%). 

d.  Comparative Analysis on NSL-
KDD 

         The NSL-KDD datasets are one of the important 
benchmarks to compare the hybrid CNN-RNN model with 
standalone CNN and RNN-LSTM architectures. The 
dataset includes various types of attacks, such as Probe, 
DoS, U2R, and R2L, which provide a good test bed to 
assess the generalization of the models across different 
intrusion patterns. The following table 4 summarizes the 
result of the CNN, RNN-LSTM, and hybrid CNN-RNN-
LSTM models. 

Table 4: Hybrid Architectures NSL-KDD Dataset results 

 
Model Accuracy Precision Recall F1-Score 

CNN 97.8% 95.5% 96.2% 95.8% 

RNN-LSTM 96.5% 94.0% 93.8% 93.9% 
Hybrid (CNN-
RNN-LSTM) 

99.2% 98.5% 98.3% 98.4% 

 
The hybrid CNN-RNN model produced an accuracy 

rate of 99.2%, which is substantially higher than the stand-
alone CNN and RNN-LSTM models, at 97.8% and 96.5%, 
respectively. This improvement demonstrates the hybrid 
model's ability to oversimplify well across a variety of 
types of attacks. By using CNN for spatial features 
extraction and RNN-LSTM for learning sequences, the 
model captures both static patterns and evolving patterns 
in networks traffic with extreme efficacy for malware 
detection. 

The hybrid model accomplished an overall precision 
of 98.5%, higher than the CNN models, which had 95.5%, 
and the RNN-LSTM, which had 94.0%. This reflects the 
ability of the model to keep false positives low, which is 
very important in operational environments where 
unnecessary alerts can disrupt workflows and desensitize 
security teams to real threats. The higher precision 
guarantees that flagged events are more probable to be 
genuine threats, reducing the burden on security analysts. 
Its 98.3% recall proves the anticipated model is good at 
catching the true positives, way higher compared to 
CNN's 96.2% and RNN-LSTM's 93.8%. It will be very 
helpful for those kinds of attacks, such as Remote-to-

Local (R2L) and User-to-Root (U2R) intrusions, that 
show a very gentle appearance in nature and hence are 
tough to identify. The high recall assures that these kinds 
of sophisticated threats are identified effectively without 
failing the attacks. 

Finally, the F1-score result for the hybrid model was 
98.4%, showing balanced performance both in precision 
metric and recall metric. This metric highlights the 
strength of the anticipated model in sustaining high 
detection rates while avoiding an imbalance toward either 
too many false positives or false negatives. Such a 
balanced performance is important for practical 
deployment, where over-detection can lead to operational 
inefficiencies just as much as under-detection may lead to 
vulnerabilities. 

Another great capability of the proposed hybrid 
model is spatial learning and temporal learning. The CNN 
does an excellent job by extracting the spatial features 
involving unusual packet sizes or anomalous byte patterns, 
while sequential dependencies, like repetitive behavior or 
multi-stage intrusion, are captured by RNN-LSTM. The 
dual nature of this capability makes this model analyze 
both static indicators and evolving behaviors, making this 
model a powerful design for detecting complex and 
dynamic attack scenarios. 

This is also pretty good at finding complex attack 
detection-R2L and U2R intrusion attacks, for example-
which are mostly subtle and rare in nature, due to defined 
patterns, and cannot be identified by any traditional or 
hybrid model standing out of mutual combination. The 
high recall for a powerful hybrid model shows the aptitude 
of correctly detecting these kinds of sophisticated threats, 
thereby giving intrusion detection systems much-needed 
advantages to safeguard sensitive environments. 
Another key benefit is the ability of the hybrid model to 
lessen false positives, as revealed by its high precision. 
One of the most challenges in malware detection is false 
positives, which simply result in unnecessary alerts that 
may flood the security teams and hamper their response 
efficiency. The hybrid model's precision means that most 
events it flags are real threats, thus highly suitable for real-
world deployments. The hybrid CNN-RNN model has 
high computational complexity for real-time systems, 
which is quite significant in the resource-constrained IoT 
environments. RNN-LSTM requires sequential 
processing, so when improved to the already multi-layer 
convolutional operations in CNN, it makes the 
computation expensive. This can become an obstacle 
when deploying models in scenarios with low latency and 
high throughput. 

Future studies should therefore focus on optimization 
techniques, like model pruning, quantization, and 
knowledge distillation. It can significantly reduce both the 
model size and the computational performance with a 
relatively smaller loss in accuracy—meaning is the model 
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feasible in real-time IoT deployment cases. Another 
dynamic way in which data can be handled is through 
online learning, also recognized as adaptive training; this 
will increase the model's capability to modify its 
parameters according to changed attack patterns and also 
fit real-time traffic flow conditions. 

B. Performance on IoT-23 Dataset 

The IoT-23 datasets involve IoT-related malware 
only, which makes it the perfect benchmark to exam the 
hybrid model in realistic IoT environments. The results 
are showing exceptional performance for further 
validation of the effectiveness of the hybrid approach. 

a. Model Accuracy 

        In that way, the hybrid model showed an 
outperformance over the standalone CNN (98.3%) and 
RNN-LSTM (97.9%) with a 99.7% accuracy on the IoT-
23 dataset. This really shows the effectiveness of the 
hybrid model in the detection of IoT malware, even for 
such complicated scenarios as multi-stage attacks or low-
traffic malicious behavior. 

b. Precision and Recall Metrics 

        The hybrid model achieved 99.2% precision, which 
significantly reduced the false positives compared to CNN 
(97.0%) and RNN-LSTM (96.5%). This is very 
significant in IoT applications because false alarms can 
cause device operation disruption and unnecessary 
resource allocation. What's more, the model showed a 
recall rate of 99.1%, signifying that it can detect nearly all 
malicious instances, which outperformed CNN with a 
recall of 97.2% and RNN-LSTM with a recall of 96.7%. 
This balanced performance ensures the proposed model is 
steadfast in the correct identification of threats, 
minimizing false alarms, thus lending a high degree of 
effectiveness toward IoT malware detection. 

c. F1-Score 

        The F1-score of 99.2% demonstrates the proposed 
hybrid model’s balanced performance, significantly 
higher than CNN (97.1%) and RNN-LSTM (96.6%). 

d. Comparative Analysis on IoT-23 

        The IoT-23 datasets are created specifically for the 
task of IoT malware detection; hence, it presents the 
perfect benchmark for the real-world IoT scenarios 
assessment of the hybrid CNN-RNN model. It includes 
wide varieties of attacks starting from botnets and denial-
of-service attacks to benign traffics. The results showed in 

the next section have exemplified the exceptional ability 
shown by the hybrid model for IoT-specific challenges. 

Table 5: Hybrid Architectures IoT-23 Dataset results 

 
Model Accuracy Precision Recall F1-

Score 

CNN 98.3% 97.0% 97.2% 97.1% 
RNN-LSTM 97.9% 96.5% 96.7% 96.6% 

Hybrid (CNN-
RNN-LSTM) 

99.7% 99.2% 99.1% 99.2% 

 
The experimental demonstrated on the IoT23 dataset 

highlight the excellent result of the hybrid CNN-RNN 
models with an almost perfect accuracy of 99.7%, 
considerably outperforming the standalone models: CNN 
at 98.3% and RNN-LSTM at 97.9%. The better accuracy 
reveals how well our hybrid model adapted to the specific 
challenges of IoT, like low-bandwidth communication, 
periodic interaction of devices, and mixed traffic. This 
hybrid framework effectively integrates CNN models for 
features extraction and RNN-LSTM for sequential pattern 
learning, permitting it to tackle problems with both static 
anomalies and evolving behaviors in IoT network traffic.  

Most impressively, precision has been improved to 
99.2% in the proposed hybrid model, against 97.0% 
achieved by CNN and 96.5% by RNN-LSTM. This is 
important because the fewer of false positives, the lesser 
the disruption to normal device operations in IoT 
applications due to false flags and attendant waste of 
resources. Moreover, the proposed hybrid model achieves 
the highest recall, 99.1%, compared with CNN, which is 
97.2%, and RNN-LSTM, which is 96.7%, which will 
imply that it detects nearly all malicious instances, 
including stealthy and evolving malware. The balance in 
accuracy and other metrics means that the presented 
model is strong in threat detection while limiting the 
instance number of disruptions on benign operations. 
The hybrid CNN-RNN model proposals several major 
advantages over both individual architectures and 
traditional approaches. With the mixing of spatial learning 
and temporal learning, it presents an all-encompassing 
methodology for IoT network traffic analysis. The CNN 
effectively extracts the static indicators of malicious 
activities in the usage of packet size and port usage 
anomaly detection, while the RNN-LSTM captures 
sequential reliance to be extremely effective against multi-
stage and evolving attacks such as botnets and DDoS. 

Another important benefit is the possibility to reveal 
complex and infrequent attack types, as like as R2L and 
U2R intrusions. The subtle patterns of such sophisticated 
threats usually cannot be disclosed by standalone models. 
With a high recall of this hybrid model, it will provide real 
detection of such kinds of attacks, improving overall 
security. Moreover, the extraordinary precision of the 
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proposed model ensures very insufficient false positives, 
indicating that flagged alerts are actually malicious. This 
competence is of special worth in IoT environments, as 
frequent false alarms can saturate security teams and 
disrupt the normal operation of devices. 
The hybrid model also shows adaptability to IoT-specific 
challenges. IoT networks are categorized by 
heterogeneous traffic, periodic device behaviors, and 
resource constraints. The hybrid architecture is robust 
sufficient to handle these complexities, ensuring reliable 
detection across diverse IoT ecosystems, including smart 
homes, healthcare systems, and industrial IoT networks. 
Its scalability makes it appropriate for protecting 
interconnected devices in real-world applications. 
 

However, the proposed hybrid CNN-RNN has a 
limitation that has to be mitigated so that it be able to 
realistically be implemented in real applications. In form 
of the computational burden, a major challenge will arise: 
it has higher computation complexity when compared 
with standalone models, while the hybrid architecture has 
especially inherent sequential processing in RNN-LSTM 
layers. This increases the processing time, which becomes 
prohibitive for real-time distribution of resource-
constrained IoT settings or, in general, at edge or battery-
operated nodes. 
Another limitation is scalability in large-scale IoT 
network with real-time requirements. High inference 
latency and memory consumption may reduce the model's 
responsiveness for time-critical applications, like 
healthcare or industrial control systems. Moreover, the 
model relies on pre-trained features, which may limit its 
adaptability to novel threats or changing traffic patterns, 
hence requiring periodic retraining for effectiveness. 

In the future, further research should be done by 
optimizing the model for real-time performance. 
Techniques such as pruning, quantization, and knowledge 
distillation can reduce size and computational overhead 
without loss in accuracy. These optimizations would 
enable deployment on end devices and improve real-time 
inference performance. This could be further enhanced 
with dynamic and adaptive learning mechanisms, such as 
online learning or reinforcement learning, to create the 
model adapt to evolving attack patterns and dynamic 
traffic conditions. 
      Testing the proposed model for numerous IoT 
ecosystems, from smart cities to healthcare to industrial 
IoT, would definitely be of great value in providing much-
needed insight into its success in real-world systems. Each 
domain has its different challenges, like very stringent 
latency requirements in healthcare, while smart cities have 
high-volume traffic. Meeting these requirements will 
increase the utility of the model and its impact as well. 
Besides, the combination of adversarial training 
techniques would enhance the model's robustness against 

sophisticated evasion techniques, such as adversarial 
examples or traffic mimicry, making it work in highly 
adversarial settings. 
Finally, explain ability and confidence are key to 
operationalization. Developing interpretable AI 
techniques for the proposed hybrid model would enable 
security teams to understand exactly why something was 
detected, allowing quicker and more informed responses; 
this would foster trust in the system and drive its 
incorporation into existing IoT security mechanisms. 

C. Comparative Analysis 

        CNN-RNN hybrid model performance was 
systematically compared with both machine learning 
methods and standalone deep learning models on both 
NSL-KDD, and IoT-23 datasets. This will bring forward 
the major advantages of this hybrid approach in tackling 
the new challenges facing IoT malware classification. 

a. Advantages of Traditional Methods 

Machine learning approaches that have historically 
been used in malware detection include Decision Trees, 
SVMs, and Random Forests. These traditional methods 
function well in less complex categorization tasks. 
Conversely, they are very reliant on manually crafted 
feature engineering that requires domain expertise and 
leads to typically suboptimal performance of complex 
datasets. In general, classic models cannot generalize well, 
especially in real-world tasks with constantly changing 
and progressive malware. 
          In distinction, the hybrid CNN-RNN model 
automates the process of feature extraction using CNNs, 
which can capture the spatial patterns straight from raw 
networks traffic. For example, CNN layers identify 
important features like abnormal packet size, protocol 
usage, and byte distribution without human intervention. 
Moreover, the combination of LSTM layers within the 
proposed hybrid model enables it to spot temporal 
dependencies seamlessly, which is very crucial in the 
detection of multi-stage or slow-developing attacks like 
DDoS. This combination of spatial learning and temporal 
learning gives the anticipated hybrid model a distinct 
advantage over approaches, permitting it to analyze 
complex traffic behaviors more effectively and adjust to 
new threats. 

b. Advantages of Standalone Deep 
Learning Models 

Standalone deep learning model includes CNNs and 
RNN-LSTMs, which have shown great promise in 
malware detection. CNNs have demonstrated to be very 
useful in identifying spatial patterns, like packet 
anomalies and irregular traffic distributions, thus being 
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very effective in spotting static threats. On the contrary, 
RNN-LSTMs are good at modeling sequential 
dependencies, which are vital for understanding time-
series data and capturing evolving attack behaviors. 

However, all these individual models face their 
limitations when its usages with the mixed characteristics 
of IoT traffic, which usually includes static portion and 
dynamic portion. The proposed hybrid CNN-RNN model 
overcomes such limitations by exploiting strengths from 
both architectures. While the CNN part powerfully 
processes the spatial features, the RNN-LSTM layers 
analyze temporal dependencies between events, resulting 
in: 

 Superior accuracy for different types of attacks, 
including multi-stage intrusions and stealthy 
malware. 

 balanced precision rate and recall rate, ensuring 
less false positives rate and more comprehensive 
threat detection. 

 
As these two approaches are combined in this model, 

it shows excellent robustness to heterogeneous IoT-traffic 
analysis, and also greatly improves the performance in 
difference to independent models. 

c. Key Metrics Across Datasets 

       This hybrid model also outperforms the traditional 
methods and standalone deep learning model in all metrics 
and shows its capability of handling complex IoT traffic. 
The comparative performances of the methods, standalone 
deep learning techniques, and hybrid CNN-RNN model 
on NSL-KDD and IoT-23 datasets are presented in Table 
6. 

Table 6: hybrid CNN-RNN model on the NSL-KDD and IoT-23 
datasets 

 

Model Dataset Accuracy Precision Recall 
F1-

Score 

Traditional 
Methods 

NSL-
KDD 

~85% ~80% ~83% ~81% 

Standalone 
CNN 

NSL-
KDD 

97.8% 95.5% 96.2% 95.8% 

Standalone 
RNN-
LSTM 

NSL-
KDD 

96.5% 94.0% 93.8% 93.9% 

Hybrid 
CNN-
RNN 

NSL-
KDD 

99.2% 98.5% 98.3% 98.4% 

Hybrid 
CNN-
RNN 

IoT-23 99.7% 99.2% 99.1% 99.2% 

d. Key Observations 

These experimental results highlight how the hybrid 
CNN-RNN model is superior in tackling spatial and 
temporal complexities in IoT malware detection. Because 
of the combination of the spatial feature removal 
capability of CNN with the sequential pattern recognition 
of RNN-LSTM, improvements are consistent through all 
metrics and datasets in the anticipated model. It provides 
the hybrid model with a unique dual capability of not only 
detecting static anomalies, like abnormal packet sizes, but 
also evolving attack patterns like multi-stage intrusions or 
botnet behavior. The superior accomplishment on the 
NSL-KDD datasets (99.2% accuracy) and IoT-23 dataset 
(99.7% accuracy) underlines the strong point of this model, 
which is robust and able to adjust to various environments 
of traffic and attack types. 

Another critical strength of the hybrid architecture is 
scalability and flexibility. It works well in traditional 
intrusion classification scenarios and excels in IoT-
specific contexts that generally involve unique traffic 
patterns, low-bandwidth communication, and periodic 
device behavior. This will guarantee that the proposed 
model is not limited to a single domain; thus, it is suitable 
for implementing in varied IoT ecosystems, including 
smart homes, industrial IoT, and healthcare systems. It 
also proves that is best model for any challenge on modern 
IoT malware detection by offering a quite balanced 
performance between precision, and recall for all classes 
in general, for complete threat detection while curtailing 
the rate of false positives of crucial real-world 
applications. These results are in general proving that this 
hybrid model is well suited for both present and evolving 
cyber threats. In the future, real-time application 
optimization, scalability, and deployment in various IoT 
environments will be the next steps for solidifying this 
model as a foundation stone of IoT security. 

V. Discussion 

Experimental results outline the significant benefits 
of a hybrid CNN-RNN model in malware classification 
for IoT environments. This hybrid model will integrate the 
spatial features removal capability of CNN amid the 
temporal dependencies modeling provided by RNN-
LSTM to offer an in-depth network traffic analysis. This 
dual focus allows the classification to spot both static 
anomalies, such as packet sizes that are out of range, and 
sequential behaviors, such as multi-stage attacks, yielding 
stronger performance related to machine learning methods 
and deep learning approaches in isolation. Some of the 
primary significant strengths of the hybrid model is its 
high generalization capability. It achieves 99.2% accuracy 
rate on the NSL KDD datasets and 99.7% on the IoT-23 
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datasets, hence showing its generalization over various 
datasets and different types of attacks. The NSL KDD 
dataset contains traditional intrusion categories like Probe, 
DoS, and U2R, while the IoT 23 dataset focuses on IoT-
specific threats, such as botnet and DDoS attack. The fact 
that the anticipated hybrid model is able to adapt itself to 
both traditional intrusion detection and IoT malware 
detection robustness and its versatility. 

Another critical insight is how it can also detect 
emerging threats. Many IoT-specific attacks, like 
credential brute-force and DDoS, are staged over longer 
time frames and thus may remain undetected by any 
model using purely spatial features. By adding RNN-
LSTM for temporal sequence learning to this hybrid 
model, these subtler, evolving patterns will be learned, 
thereby increasing the excellence of threat detection. This 
could be crucial in recognizing furtive, multi-stage attacks 
that a more straightforward model is unable to recognize.  

The high performance of this hybrid model for the 
IoT-23 dataset pinpoints it for IoT-specific applications. 
IoT environments are typically characterized by periodic 
communication patterns in devices due to limited 
bandwidth and specific scenarios of use. These very 
characteristics make the traditional systems for detection 
a bit tricky. This model effectively incorporates spatial 
and temporal insights into view to allow for efficient 
discrimination of normal and abnormal traffic. This makes 
it remarkably suitable for the protection of IoT network in 
realistic scenarios, such as smart homes, healthcare, and 
industrial IoT. 

Despite the many advantages of the hybrid CNN-
RNN model, challenges and limitations also exist. One 
primary limitation is the computational complexity of the 
proposed model. Combining the multi-layer convolution 
operations of CNN with sequential processing in RNN-
LSTM increases computational overhead differentiating 
to standalone models. While this complexity impacts the 
model's accuracy, it may pose some challenges in real-
time deployment on resource-constrained IoT devices 
such as battery-powered sensors or edge devices with low 
processing capabilities. 

Another challenge is scalability, especially when IoT 
ecosystems are to scale to millions of interconnected 
devices. Applications that require large-scale deployment, 
such as smart cities or industrial IoT networks, have to be 
responsive in real time and thus require low-latency 
processing. This may hamper the capability of the 
intended hybrid model in such scenarios and will require 
further optimization for practical applicability. 
 
Future Directions 

In the forthcoming, efforts should be directed at 
optimizing the hybrid model for practical applications. 
One potential line of research is model compression, 
including pruning and quantization, which reduces both 

the model size and computation involved. These methods 
can enable real-world deployment on resource-
constrained end devices while maintaining high object 
detection accuracy. 

Another area of improvement is real-time inference. 
Research on lightweight neural network designs or edge 
computing frameworks could greatly improve the model's 
responsiveness, making it appropriate for time-sensitive 
IoT applications. Accelerating the inference times would 
ensure the model's effectiveness in dynamic and large-
scale environments. Another critical direction is 
adversarial resilience. IoT malware is continuously 
evolving, and attackers increasingly use methods designed 
to evade detection. By integrating adversarial training 
methods into the design of the hybrid models, it also can 
be further enhanced to be robust against sophisticated 
attack strategies, ensuring its reliability in adversarial 
settings.  

Finally, the testing of the hybrid model in different 
IoT ecosystems is necessary for assessing its flexibility 
and success in various contexts. IoT systems range from 
latency-sensitive operations in healthcare devices to high 
volumes of traffic in smart city infrastructures. The 
application of the model in varied environments will help 
the researchers to identify domain-specific challenges and 
tune the model accordingly, thus enhancing its practical 
applicability. 

VI. Conclusion 

This paper proposes a hybrid deep learning approach 
that fuses CNNs for spatial features removal with LSTMs 
network for temporal sequence modeling. The proposed 
architecture is constructed to address unique challenges in 
IoT malware detection, such as high accuracy for diverse 
attack types, adaptability to heterogeneous IoT 
circumstances, and the capability to detect evolving 
threats. This is reached by a detailed assessment of the 
anticipated model in being an effective solution for 
current IoT cybersecurity challenges. The hybrid CNN-
RNN model outperforms the traditional methods and 
standalone CNN or RNN-LSTM architectures. It achieves 
an accuracy rate of 99.2% on the NSL_KDD dataset and 
99.7% on the IoT_23 dataset, thus showing its 
generalization capability across different types of attack 
scenarios. Complementary measurement metrics that 
further demonstrate its success in spotting both unknown 
and known malware threats. These results reflect the 
model's capability to provide secure and reliable 
protection in the ever-increasingly complex IoT 
ecosystem. 

The anticipated hybrid model detects threats 
comprehensively by leveraging CNNs for spatial features 
analysis and RNN-LSTMs for temporal dependencies. 
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This dual focus allows the detection models of a different 
range of malware behaviors-from instantaneous attacks 
like network scanning to slow-developing threats such as 
DDos attacks. Thus, it is capable of handling such 
scenarios for robust and scalable protection in IoT 
network. 
Moreover, the model has shown pretty strong IoT-specific 
relevance by showing accomplishment on the IoT_23 
datasets. IoT networks normally exhibit a limited 
bandwidth, periodic nature of device communication, and 
various forms of traffic flow-all difficult to handle for 
traditional malware detection models. The hybrid model, 
in such an environment, turns out to be excellent with 
precise threat detection and reduced false alarms, which is 
considered extremely important in real-world IoT 
applications. Despite its impressive performance, the 
computational complexity of the hybrid CNN-RNN 
model points toward a number of future optimizations to 
ensure its practicality for real-time applications and large-
scale deployments. 

One of the focus points is real-time applications 
wherein techniques such as model pruning, quantization, 
and integration with edge computing reduce the 
computational burden and make models deployable on 
resource-constrained IoT devices. Acceleration of 
inference time will be performed to guarantee the model's 
feasibility for time-sensitive IoT scenarios. 

The other very promising direction is wider 
application within a diversity of IoT contexts. Expansion 
to other areas like healthcare and smart cities will 
demonstrate the adaptability and execution of the model. 
As an example, it would secure the medical IoT in 
healthcare; thus, ensuring an integrity of critical patient 
data and systems. It will help run traffic and energy 
infrastructure in smart cities while keeping it safe from 
cyber threats. Another critical area for improvement is 
adversarial robustness. As cyber threats continue to 
evolve, it is expected that attackers will adopt techniques 
that can bypass detection. Research into adversarial 
training methods will strengthen the hybrid model's 
resilience, hence its reliability in operational 
environments. This will address potential vulnerabilities 
and improve the model's applicability in adversarial 
settings. 

Finally, integrating federated learning approaches 
can enable decentralized training, where distributed IoT 
networks collaborate to advance model performance 
while preserving data privacy. This method will increase 
the model’s expandability and adaptability, especially in 
environments with strict privacy regulation. It shows a 
significant advancement in the field of IoT malware 
detection by hybrid CNN-RNN, which offers an end-to-
end, multi-scale, spatial learning and temporal learning for 
comprehensive threat analysis. The strong performance in 

all key metrics, adaptability to diverse IoT environments, 
and complex and emerging threat detection make it the 
cornerstone for modern IoT network security. While 
further optimization is required for real-time applicability 
and flexibility, the proposed research directions provide 
evidence of the model's potential for deployment in 
critical IoT ecosystems. As IoT networks grow larger and 
more complex, this hybrid CNN-RNN model lays a good 
foundation for future advancements in cybersecurity. 
 

References 

[1.] M. El-Hajj, “IoT Growth and Security Concerns,” 
IoT Analytics Journal, 2017. 

[2.] S. Sathyadevan, “AI in IoT Malware Detection,” 
AI and Network Security, 2018. 

[3.] W. O'Sullivan, “IoT Security Challenges and 
Solutions,” Cybersecurity Review, 2020. 

[4.] T. Nguyen and H. Le, “Deep Learning for IoT 
Malware Detection,” Journal of Network 
Security, 2022. 

[5.] I. Ullah, et al., “IoT Malware Detection using 
CNN and GRU,” 2021 IEEE International 
Conference on Computer Science and Network 
Technology (ICCSNT), 2021. 

[6.] M. Alazab, et al., “A Survey on Machine 
Learning for Malware Detection in IoT 
Networks,” Future Generation Computer 
Systems, 2019. 

[7.] I. Haq, et al., “A Multi-Vector Hybrid Deep 
Learning-based Malware Detection System,” 
IEEE Access, 2021. 

[8.] Y. Chen, J. Wang, and L. Li, “A Review of 
Intrusion Detection in the Internet of Things: 
Challenges and Solutions,” IEEE Internet of 
Things Journal, vol. 8, no. 12, pp. 10312-10328, 
2021. 

[9.] F. Zhang, et al., “IoT Security: Current Status 
and Future Directions,” IEEE Internet of Things 
Journal, vol. 7, no. 3, pp. 2405-2422, 2020. 

[10.] D. Zarpelão, et al., “A Survey on Botnet 
Detection,” Computer Networks, vol. 57, no. 2, 
pp. 1186-1198, 2013. 

[11.] H. Alzubaidi, et al., “A Comprehensive 
Survey on Malware Detection Techniques in IoT 
Environments,” IEEE Access, vol. 8, pp. 
186953-186971, 2020. 

[12.] N. D. M. Hoang, et al., “A Survey of 
Machine Learning Techniques for Malware 
Detection in IoT Systems,” IEEE Transactions 



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024 

 

16

on Information Forensics and Security, vol. 16, 
pp. 2740-2759, 2021. 

[13.] J. Li, et al., “Deep Learning for Cyber 
Security: A Survey,” Journal of Information 
Security and Applications, vol. 50, pp. 102-109, 
2020. 

[14.] S. S. R. Ananthanarayanan and R. B. R. 
Sinha, “IoT Malware Detection: A Deep 
Learning Approach,” 2020 IEEE International 
Conference on Cloud Computing, Data Science 
& Engineering (Confluence), pp. 1-6, 2020. 

[15.] H. M. A. Mohsen, et al., “Detection of IoT 
Malware Using Deep Learning Techniques: A 
Comprehensive Review,” IEEE Access, vol. 9, 
pp. 102507-102523, 2021. 

[16.] Z. Yu, et al., “Anomaly Detection in IoT 
Networks Using Deep Learning,” Future 
Generation Computer Systems, vol. 108, pp. 
160-168, 2020. 

[17.] K. Shafique, et al., “A Hybrid Approach for 
Malware Detection in IoT: Combining Machine 
Learning and Deep Learning,” IEEE Internet of 
Things Journal, vol. 7, no. 6, pp. 4919-4927, 
2020. 

[18.] L. Wang, et al., “IoT Security and Privacy: 
A Survey on Attack and Defense Mechanisms,” 
IEEE Internet of Things Journal, vol. 8, no. 1, pp. 
1-14, 2021. 

[19.] J. Zhang, et al., “Malware Detection in IoT 
Devices Based on Deep Learning Techniques,” 
IEEE Access, vol. 9, pp. 106831-106842, 2021. 

[20.] A. Alhassan, et al., “Deep Learning for 
Cybersecurity: A Comprehensive Review,” 
IEEE Access, vol. 9, pp. 182926-182948, 2021. 

[21.] T. S. O. Akinola, et al., “An Efficient Deep 
Learning Model for Malware Detection in IoT 
Networks,” 2021 IEEE International 
Conference on Artificial Intelligence and 
Computer Applications (ICAICA), pp. 234-239, 
2021. 

[22.] H. H. A. El-Maawali, et al., “Deep Learning-
Based Malware Detection in IoT Systems: A 
Systematic Review,” IEEE Access, vol. 9, pp. 
164771-164786, 2021. 

[23.] A. Kumar and A. K. Singh, “Recent 
Advances in IoT Malware Detection: A 
Comprehensive Survey,” ACM Computing 
Surveys, vol. 54, no. 4, pp. 1-36, 2021. 

[24.] M. M. Rehman, et al., “Advanced Deep 
Learning Techniques for IoT Malware Detection: 

A Review,” Sensors, vol. 21, no. 4, pp. 1145, 
2021. 

[25.] C. Liu, et al., “Federated Learning for IoT 
Security: A Review,” IEEE Internet of Things 
Journal, vol. 8, no. 2, pp. 1105-1120, 2021. 

[26.] Er, T., et al. (2024). "A Comparative 
Analysis of Machine Learning Techniques for 
IoT Intrusion Detection." IEEE Transactions on 
Network and Service Management. 

[27.] Chen, L., et al. (2023). "Machine Learning-
Based IoT Malware Detection Using Statistical 
Features." Journal of Network and Computer 
Applications. 

[28.]  Singh, A., et al. (2023). "Enhancing IoT 
Security with Ensemble Learning Techniques." 
Computers & Security. 

[29.] Li, J., et al. (2023). "Feature Selection and 
Machine Learning for IoT Malware Detection." 
Information Sciences. 

[30.] Ahmed, R., et al. (2023). "Anomaly-Based 
Intrusion Detection in IoT Using k-Nearest 
Neighbors." IEEE Access. 

[31.]  Zhang, X., et al. (2023). "IoT Malware 
Detection Using Decision Tree and Genetic 
Algorithm." Future Generation Computer 
Systems. 

[32.] Patel, M., et al. (2023). "Support Vector 
Machine-Based Intrusion Detection for IoT 
Networks." Computers & Electrical Engineering. 

[33.] Wang, F., et al. (2023). "Random Forest-
Based Detection of IoT Botnet Attacks." Journal 
of Cybersecurity and Privacy. 

[34.] Kumar, P., et al. (2023). "Naïve Bayes 
Classifier for IoT Malware Detection." Ad Hoc 
Networks. 

[35.] Rahman, S., et al. (2023). "Intrusion 
Detection in IoT Networks Using Logistic 
Regression." Sensors. 

[36.] Er, T., et al. (2024). "Deep Learning for IoT 
Malware Detection: A Survey." IEEE 
Communications Surveys & Tutorials. 

[37.] Chen, H., et al. (2023). "CNN-Based IoT 
Malware Detection Using Network Traffic 
Analysis." Neurocomputing. 

[38.]  Nguyen, T., et al. (2023). "Anomaly 
Detection in IoT Networks Using LSTM 
Models." IEEE Internet of Things Journal. 

[39.]  Haq, Z., et al. (2023). "IoT Malware 
Classification Using Deep Autoencoders." 
Journal of Parallel and Distributed Computing. 



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024 

 
 

17

[40.]  Ali, F., et al. (2023). "A Deep CNN 
Approach for IoT Intrusion Detection." IEEE 
Transactions on Dependable and Secure 
Computing. 

[41.] Rahman, A., et al. (2023). "IoT Malware 
Detection with Bidirectional LSTM Networks." 
Applied Intelligence. 

[42.] Chen, Z., et al. (2024). "Hybrid CNN-RNN 
Architectures for IoT Malware Detection." 
Journal of Information Security and 
Applications. 

[43.]  Smith, R., et al. (2023). "IoT Botnet 
Detection Using Deep Recurrent Neural 
Networks." IEEE Transactions on Information 
Forensics and Security. 

[44.] Wang, H., et al. (2023). "GAN-Based IoT 
Malware Detection Framework." Pattern 
Recognition Letters. 

[45.] Zhao, X., et al. (2023). "IoT Intrusion 
Detection Using Deep Neural Networks and 
Attention Mechanisms." Expert Systems with 
Applications. 

[46.] Er, T., et al. (2024). "Hybrid CNN-LSTM 
Model for IoT Malware Detection." IEEE 
Transactions on Emerging Topics in 
Computational Intelligence. 

[47.] Chen, Z., et al. (2023). "IoT Malware 
Detection Using CNN-GRU Hybrid Networks." 
Computers & Security. 

[48.] Nguyen, T., et al. (2023). "A Hybrid Deep 
Learning Framework for IoT Intrusion Detection 
Using CNN and Bi-LSTM." IEEE Access. 

[49.] Haq, Z., et al. (2023). "Efficient Hybrid IoT 
Malware Detection Using CNN and Attention-
LSTM." Future Internet. 

[50.]  Smith, R., et al. (2023). "Multi-Layer 
Hybrid Neural Networks for IoT Botnet 
Detection." ACM Transactions on Internet 
Technology. 

[51.] Rahman, A., et al. (2023). "IoT Malware 
Detection with Hybrid Deep Learning and 
Feature Engineering." Sensors. 

[52.] Chen, Z., et al. (2024). "Hybrid Deep 
Learning Models for IoT Malware Detection in 
Edge Environments." IEEE Transactions on 
Cloud Computing. 

[53.] Patel, M., et al. (2023). "IoT Malware 
Detection Using CNN-LSTM with Data 

Augmentation." Journal of Ambient Intelligence 
and Humanized Computing. 

[54.] Wang, H., et al. (2023). "Hybrid CNN-
LSTM Model for IoT Intrusion Detection with 
Federated Learning." Ad Hoc Networks. 

[55.] Zhao, X., et al. (2023). "Attention-Based 
Hybrid Deep Learning for IoT Malware 
Detection." Information Sciences. 


