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Summary 
Solar energy prediction poses a challenging task that requires 
robust models and precise data to accurately forecast solar energy 
yield, especially in grid areas with a large share of photovoltaics. 
Existing methods often rely on statistical or physical models, 
which have limitations in capturing the complex and non-linear 
relationships between weather variables and solar power 
generation. In this paper, we address this issue by comparing and 
evaluating different learning models, ranging from artificial neural 
networks (ANNs) and random forest models to long- and short-
term memory (LSTM) networks, to predict the PV energy yield 
based on weather forecast data. A methodology has been 
developed to evaluate various models using real-world datasets 
from a large-scale industrial solar project, incorporating historical 
photovoltaic data, meteorological data, and solar irradiation data. 
The experimental results showed that the Random Forest 
Algorithm (RFR) consistently outperforms other algorithms, 
providing a mean absolute error (MAE) of 0.06 and a root mean 
square error (RMSE) of 0.15 when applied to historical 
meteorological datasets. The accuracy of the learning model was 
improved by combining meteorological data with a solar 
irradiation dataset to obtain an MAE of 0.03 and an RMSE of 0.09. 
Validation analysis has shown that the proposed model is highly 
effective in terms of both forecast accuracy and stability. The 
proposed methodology has the potential to provide valuable 
information to PV system operators, grid managers, and energy 
planners, facilitating the optimization of the use of solar energy 
resources. 
Keywords: 
Machine learning, neural networks, optimization, photovoltaics.  

1. Introduction 

As the demand for renewable energy continues to 
increase, efficient solar power use plays a crucial role in 
sustainable energy solutions. Integrating a higher 
proportion of renewable sources, such as solar power, is 
advantageous in reducing carbon emissions and meeting 
future power grid requirements. However, this integration 
also poses new challenges related to grid management. 
Variability and uncertainty in photovoltaic (PV) energy 
generation can lead to stability and reliability issues in 
power system operations due to the intermittent nature of 
solar-generated electricity. Consequently, grid operators 
must incorporate these factors into their generation 
planning and dispatch operations [1],[2]]. This has led 

utility grids with numerous distributed photovoltaic systems 
to transition to modern, digitally enhanced technologies. 
These technologies facilitate the monitoring and control of 
distributed energy resources. The ongoing trends of 
electrification, decentralization, and digitalization are 
driving the transformation of the current paradigm of the 
power sector. This transformation aims to fully leverage the 
flexibility of the system to accommodate high levels of 
variable renewable energy. 
 

Saudi Arabia has set ambitious goals of generating 
50% of its energy from renewable sources by 2030[3]]. To 
achieve this goal, the country has actively invested in 
renewable energy initiatives, focusing on solar energy as a 
key component of its renewable energy strategy. However, 
the integration of PV systems into the energy grid presents 
challenges due to the variability of solar power generation, 
which is influenced by weather and environmental 
conditions [[4],[5]]. Accurate forecasting of solar power 
production is crucial to effective energy management and 
grid stability. Several research investigations have explored 
the impact of adverse weather conditions, such as wind 
speed/direction, temperature, relative humidity, and the 
frequency of dust storms, on the losses in photovoltaic cell 
power output. Understanding the dynamics of solar panels 
is crucial to ensure proper installation and achieve optimal 
performance [[5],[6]]. 
 

Numerous studies have explored various prediction 
methodologies, including the use of machine learning 
algorithms such as artificial neural networks and recurrent 
neural networks [[7],[8]]. These approaches take advantage 
of historical weather and environmental data to forecast 
solar power generation, facilitating the seamless integration 
of photovoltaic systems into smart grid frameworks. The 
main objective of this paper is to determine a robust and 
accurate methodology to predict PV output energy by 
evaluating different training methods. To do this, a 
comparative study of widely used machine learning 
methods such as artificial neural networks (ANN), support 
vector regression (SVR), and random forest regression 
(RFR) was performed to evaluate their effectiveness for PV 
power forecasting applications.  
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The proposed methodology includes training different 
machine learning models in different supervised learning 
scenarios and benchmarking of the forecast performance. 
The verification was carried out using actual high-quality 
hourly photovoltaic operational and meteorological 
measurements acquired over two years from a large-scale 
industrial photovoltaic plant in Saudi Arabia. The settings 
of the test bench photovoltaic system provide a perfect 
opportunity to study the effect of the supervised training 
regimes on the accuracy of the forecasts based on 
commonly used metrics. Furthermore, the results obtained 
provide useful information for the establishment of a robust 
forecasting methodology that combines historical data and 
weather forecasts with an optimal supervised learning 
approach. 
 
The primary contributions of the paper encompass the 
following key points: 
 
(i) Establish a resilient PV power forecasting system 

through a comprehensive evaluation of various 
machine learning algorithms, thereby identifying the 
most precise model.  

(ii) Elevating the precision of the prediction of the PV 
power output by incorporating weather-related features 
alongside historical data. 

(iii) Enhancing the efficiency and accuracy of the 
performance and forecasting of the network connection. 

 
The remainder of this paper is structured as follows. In 

Section 2, we provide a review of the literature and discuss 
related work. Section 3 delves into the case study, including 
its datasets and the process of feature engineering. Section 
4 describes the methodology used to evaluate and compare 
various learning algorithms. Section 5 presents the 
experimental setup and presents the results of our work. 
Finally, in Section 6, we conclude and highlight key 
perspectives from this study. 
  
2. Related Works 
 

In recent years, there has been a significant increase in 
attention and advancement in research related to solar 
energy prediction. Numerous studies have focused 
specifically on developing accurate prediction models using 
machine learning techniques. An approach commonly 
adopted in solar power forecasting is the use of artificial 
neural networks (ANN) [9]. ANNs have been shown to be 
effective in capturing the nonlinear relationships between 
weather variables and solar power generation 
[[10],[11],[12],[13]]. In [[10]], Saberian et al. utilized 
artificial neural networks to forecast the output power of 
solar panels based on meteorological conditions, including 
temperature and humidity. In a similar vein, Lee et al. [[11]] 
explored three methods, namely, ANNs, deep neural 

networks (DNN), and long- and short-term memory 
(LSTM) models, to predict PV power output by capturing 
hidden relationships within meteorological data. In [[12]], 
the authors highlight the effectiveness of artificial neural 
networks in forecasting solar radiation. They emphasize the 
importance of incorporating time-series data and month-
specific patterns, which contribute to improving the 
accuracy of solar energy predictions. However, the 
weakness in the works cited lies in the relatively high errors 
in the learning models, indicating room for improvement in 
prediction accuracy. In [[13]], the authors use artificial 
neural networks (ANN) and long-short-term memory 
(LSTM) to predict solar radiation. The objective of this 
paper is to help harness solar energy more efficiently, 
especially in regions with intermittent electrical power. The 
authors evaluated the experimental results by comparing 
their obtained results using metrics such as the coefficient 
of determination (R2), mean square error (MSE), root mean 
square error (RMSE), mean absolute error (MAE) and mean 
biased error (MBE), 
 

Another popular machine learning technique for solar 
power forecasting is support vector regression (SVR), 
which has been applied in various studies to predict solar 
power production based on weather data [[14],[11],[15]]. In 
[14], Nageem et al. introduced a multi-input support vector 
regression (SVR) model to forecast the performance of 
solar panels connected to the grid. In their model, humidity, 
temperature, pressure, and wind speed are incorporated as 
input variables. In [[11]], the authors used the HIMVO-
SVM model to predict PV output power in different weather 
scenarios using historical data provided by a solar center in 
Australia. The results demonstrated the effectiveness of the 
SVR model in accurately predicting solar power output, 
particularly in capturing the nonlinear relationships 
between input features and output predictions. In [[15]], the 
authors employ various machine learning algorithms, 
including support vector regression, to predict the power 
output from building integrated photovoltaic systems. The 
study aims to determine the most accurate and reliable 
algorithm for short-term power prediction. 
 

Ensemble methods, such as random forest regression 
(RFR), have also been extensively explored in solar power 
forecasting. RFR combines multiple decision trees to make 
predictions and has been shown to achieve high accuracy 
and robustness [[16]]. In [[17]], the authors present a 
methodology for forecasting solar power output using a 
random forest algorithm. The methodology is based on a 
dataset of historical solar power output and weather data, 
including solar radiation, temperature, and wind speed. The 
authors applied their methodology to a solar power 
production dataset in China and compared the results with 
those obtained using other forecasting methods. The results 
showed that the RFR algorithm outperforms the other 



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024 
 

 

123

 

methods, achieving a mean absolute error (MAE) of 3.58 
and a mean absolute percentage error (MAPE) of 18.56%. 
 

Furthermore, from sequential and time-series data, 
recurrent neural networks (RNNs) can learn features and 
long-term dependencies [[18]]. An example of RNN is 
Long Short-Term Memory (LSTM) networks, which have 
gained popularity in solar power forecasting due to their 
ability to capture temporal dependencies in time series data 
[[19],[20]]. In [[19]], an LSTM-based model was proposed 
to predict solar power generation based on historical 
weather data. The results showed that the LSTM model 
achieved superior performance compared to traditional 
machine learning models, highlighting the importance of 
considering temporal dynamics in solar power forecasting. 
In [[20]],  a hybrid model that combined LSTM with a 
particle swarm optimization algorithm achieved enhanced 
accuracy in solar power forecasting. Deep learning models, 
including LSTM and CNN, are often considered black-box 
models, which means that it can be challenging to interpret 
the inner workings and understand the reasons behind their 
predictions. Providing insights into the interpretability of 
the proposed model could improve its practical utility and 
acceptance in real-world applications. 
 

Additionally, hybrid models that combine multiple 
forecasting techniques have also been investigated. These 
models aim to leverage the strengths of different algorithms 
to improve the prediction accuracy [[8],[21],[22],[23]]. In 
[[8]], Di Su et al. adopted a hybrid approach that combined 
multiple noncorrelated forecasting techniques to improve 
the accuracy of their predictions. Note that none of the 
recent studies in the literature have specifically addressed 
the challenges of long-term projections for such large-scale 
solar plants. In [[21]], Jatin et al. tested three optimizers and 
found that the Nadam optimiser outperformed ARIMA and 
SARIMA, suggesting its potential applicability even to 
smaller plants with reduced parameter measurements while 
maintaining high accuracy. 
 

In [[22]], the authors address the complex nature of PV 
power forecasting by integrating machine learning and 
statistical post-processing techniques. This hybrid approach 
takes advantage of the strengths of both methods, allowing 
for more accurate and reliable predictions. 
 
Table 1: Summary of Related Works 

Algorithm Variables Metrics Referenc
es 

ANN Weather and 
air pollution, 
including 
temperature, 
humidity, 
wind speed, 
and solar 

MAE: 0.35 
RMSE: 0.85 

[4] 

RMSE: 0.055 
MAE: 0.038 

[8] 

MAE: 0.051 
RMSE: 0.063 

[11] 

MAE: 0.044 [22] 

radiation MAPE: 5.71% 
MAE: 0.17 
RMSE: 0.089 

[13] 

MAE: 0.042 
MAPE: 4.65% 

[23] 

RFR Solar 
radiation, 
temperature, 
and wind 
speed 

MAE: 0.035 
MAPE: 18.56% 

[26] 

MAE: 0.055 
RMSE: 0.066 

[11] 

SVR Month, hour, 
horizontal 
diffuse 
irradiance, 
temperature, 
humidity. 

MAPE: 36 [14] 
MAE: 0.062 
RMSE: 0.073 

[11] 

MAE: 0.084 [15] 

HIMVO-
SVM 

Intensity, 
humidity, and 
atmospheric 
temperature of 
solar 
radiation. 

MAE: 0.026 
MAPE: 1.81% 

[27] 

LSTM PV power 
output data. 
Meteorologica
l parameters 
include 
temperature, 
humidity, 
solar 
radiation, 
wind speed, 
etc. 

RMSE: 0.8619 
MAE: 0.05 

[19][25] 

MAE: 2.86 
MAPE: 9.65%  

[20] 

MAE: 0.273 
MSE: 0.2877 
R2: 92.7 % 

[21] 

Hybrid 
Model 

Temperature, 
humidity, 
pressure, wind 
speed, 
direction, 
rainfall, 
snowfall, and 
snow depth 

nRMSE: 6.74 [8] 
MAE: 0.032 
MAPE: 13.1% 

[22] 

MAE: 0.029 
MAPE: 3.13% 

[23] 

 
In [[23]], the authors of the article propose a hybrid 

model that combines artificial neural networks and support 
vector regression for the forecasting of solar power. The 
hybrid model is designed to take advantage of both 
techniques to improve the accuracy of forecasting for solar 
power generation. Their article lacks a detailed analysis of 
the model's performance compared to existing methods or 
benchmarks. The study evaluates machine learning models 
to improve day-ahead forecasting for PV power generation, 
with BNN proving to be highly effective with an nRMSE of 
4.53% [[24]]. A study by Richard et al. compares deep 
learning models for accurately forecasting photovoltaic 
power generation in Ecuador's Galapagos Islands. In 
particular, the LSTM model achieved a low RMSE of 0.05, 
highlighting its effectiveness in short-term prediction for 
sustainable energy planning [[25]].  
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3. Case Study and Datasets 
 
3.1 Plant specification 
 

Data for this study were obtained from a commercial 
solar photovoltaic plant in Sakaka operated by SAKAKA 
Solar Energy Company (Figure Fig. 1). Sakaka is a city in 
northwest Saudi Arabia that is the capital of the Al Jawf 
province. The climate in Sakaka is a tropical and subtropical 
desert climate. The average temperature for the year is 22 ° 
C. The hottest month is July with an average temperature of 
32 ° C. January is the most humid, with an average relative 
humidity of 57%. 
 

 
 

Fig. 1 IPP photovoltaic plant, Sakaka, Saudi Arabia. 

 
The plant has a capacity of 300 MW, the first utility-

scale renewable energy project in Saudi Arabia under the 
country's National Renewable Energy Program. With a 
budget of 302 million USD, this project is the first in a series 
of projects under the Saudi Arabian National Renewable 
Energy Program, which aims to achieve 50% renewable 
energy generation in Saudi Arabia by 2030 [3]]. The Sakaka 
PV IPP plant started commercial operation at the end of 
2019. We used two years of data from July 2020 to June 
2022.   
 
3.2 Datasets 
 

Solar irradiation data play a crucial role in the analysis 
and optimization of solar energy systems. In this study, 
comprehensive solar irradiation data were collected for the 
entire plant and stored in the data file ‘Sakaka_WMS.csv’. 
The dataset consists of three variables: global horizontal 
pyranometer irradiance, solar irradiance from the POA 
(Plane of Array) solar irradiance, and module temperature. 
 

To ensure accurate measurements, ten pyranometers 
were strategically placed to cover the entire surface area of 
the solar plant. These pyranometers measure the total 
amount of solar radiation that reaches the Earth's surface 
horizontally. Furthermore, five POA modules (POA1 to 
POA5) were used to measure the solar radiation that falls 
directly on the solar panels. These measurements consider 
various factors, such as the angle of the sun, atmospheric 
effects on sunlight, and shading caused by surrounding 
objects. POA solar irradiance is a critical factor in 

determining the efficiency and power output of a solar panel 
system. 
 

The solar irradiation data collected span a two-year 
period, from July 2020 to June 2022. Table Table 2 provides 
a summary of the characteristics of the data and their 
descriptions that were recorded during this period. The 
dataset serves as a valuable resource for analyzing the 
performance and optimization of the energy output of the 
solar plant. 
 

The second data file 'Sakaka_Energy_Data.csv' 
contains the cumulative solar power data per hour exported 
by two modules (PT1 and PT2), for the period from July 
2020 to June 2022 as depicted in Table Table 1. 
 
Table 2: Solar Irradiance Data 

 
Name Description Unit Type 

Datetime Timestamp Time Datetime 
WMS_i/POA1 
(i=1...5) 

Irradiation 
module 2 

Watt/
m2 

float64 

WMS_i/POA2 
(i=1...5) 

Irradiation 
module 2 

Watt/
m2 

float64 

WMS_i/Module
1 Temp (i=1...5) 

Module 1 
Temperatures 

Watt/
m2 

float64 

WMS_i/Module
2 Temp (i=1...5) 

Module 2 
Temperatures 

Watt/
m2 

float64 

Pyranometer_i 
(i=1...10) 

Solar 
radiation 

Watt/
m2 

float64 

 
 
Table 3: Cumulative solar power output per hour for the PT1 and PT2 

modules 
Name Description Unit Type 

Datetime Hourly 
timestamp 

Time Datetime 

PT1 Cumulative 
photovoltaic 
energy for 
module 1 

KW 
(kilowatt) 

float64 

PT2 Cumulative 
photovoltaic 
energy for 
module 2 

KW 
(kilowatt) 

float64 

 
The third data file ‘Sakaka_Weather_Energy_Data.csv’ 

combines the power of the photovoltaic system and the type 
of weather for the period from November 2020 to July 2022 
as described in Table Table 4. 
 

The file does not include the night data as the PV 
system does not produce any power at night. The times 
when the system starts and stops are given to show its 
operation. 
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Table 4: PV system power and weather type 

 
Name Description Unit Type 

Datetime Hourly 
timestamp 

Time Datetime 

Startup 
time 

System startup Time Datetime 

Shutdown 
time 

System 
shutdown 

Time Datetime 

Energy PV system 
power per hour 

KW 
(kilowatt) 

float64 

Weather Weather type: 
Sunny, cloudy, 

etc. 

Text Categoric
al 

 
3.3 Features Engineering 
 

To reduce the feature space and select the most 
relevant variables, we used Pearson's correlation to identify 
the dependencies and independencies between variables. 
For the first dataset of solar irradiation, we identified a very 
high correlation of 99% among the five values of module 
temperature, pyranometer, and POA modules, and this is for 
both modules. Therefore, we computed an average value for 
each of these three physical parameters and added it to the 
dataset, while dropping the original columns to simplify the 
dataset. We also set the date and time columns as the index 
of the dataset. The resulting dataset has the following 
description (Table Table 5): 
 
Table 5: Solar data frame after feature selection 
 

Name Description Unit Type 
Datetime Hourly timestamp Time Datetime 
POAAvg Mean value of 

plane of array 
(POA) modules 

Watt/
m2 

float64 

TempAvg Mean Value of 
Temperature 

Modules 

° C float64 

IrradiationAvg Mean Value of 
Pyranometers 

Watt/
m2 

float64 

 
In general, very little maintenance was required on the 

instruments during the campaign. The pyranometers 
partially malfunctioned for two periods between 10 June 
2020 and 13 June 2020 and between 14 July and 18 July 
2021, and the corresponding data are omitted. 
 

Regarding the second dataset that comprises the power 
of the photovoltaic system (PV), it should be noted that 
there exists a flawless correlation between PT1 and PT2, as 
shown in Figure Fig. 2. Consequently, only the PT1 column 
is retained for the subsequent phases. 
 

 
Fig. 2 Correlation between PT1 and PT2. 

 

The hourly output energy of the photovoltaic system 
can be deduced from the cumulative value of PT1. 
Furthermore, due to an error in the system timestamping, 
the datetime has been shifted by 12 hours. All negative 
values in the dataset have been eliminated, and outliers have 
been filtered using the z-score method.  

To improve the accuracy in predicting solar panel 
power output, the date, time, day of the year, and hour 
columns are generated from DateTime and are appended to 
the dataset. After collecting, cleaning, and merging the data, 
the attributes needed to forecast the PV power output are 
determined. To determine the importance of each feature in 
predicting PV power output, a principal component analysis 
(PCA) is performed. The analysis revealed that the three 
most significant characteristics are irradiation, temperature, 
and type of weather. Furthermore, the time of day, such as 
midday or dawn, and other factors have an impact on the 
output of photovoltaic power. All selected characteristics 
are dependent dominant variables. Numerical features 
include things such as temperature, day, month, and hour of 
the day. The type of weather is a categorical variable with 
the following values: cloudy, hazy, sunny, and mostly sunny. 
Figure Fig. 3 describes the correlation between the different 
features used and selected for the learning algorithms. 
 

 
Fig. 3 Correlation between features. 
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3.3 Performance Metrics 
 

This section defines the evaluation metrics to compare 
the learning models developed in this study. 

Mean Absolute Error (MAE): MAE measures the 
average absolute difference between the predicted values, 
𝑦పෝ  , and the actual values, 𝑦௜ , without considering the 
direction of the error. It provides an indication of the 
average magnitude of the errors. The formula for 
calculating MAE is as follows: 

𝑀𝐴𝐸 ൌ
1
𝑛

 ෍|𝑦పෝ െ  𝑦௜| 

௡

௜ୀଵ

 ሺ1ሻ 

where n is the number of samples. Lower values indicate 
better performance. 

RMSE (Root Mean Square Error): RMSE calculates the 
square root of the average of the squared differences 
between the predicted values 𝑦పෝ , and the actual values 𝑦௜. 
It considers both the magnitude and direction of the errors. 
The formula to calculate RMSE is as follows: 

𝑅𝑀𝑆𝐸 ൌ ඩ
1
𝑛

 ෍ሺ𝑦పෝ െ  𝑦௜ሻଶ
௡

௜ୀଵ

 ሺ2ሻ 

 
R2 score (Coefficient of Determination): The R2 score 
represents the proportion of variance in the dependent 
variable that can be explained by the independent 
variable(s). It ranges from 0 to 1, where a value closer to 1 
indicates a better fit. The formula to calculate the R2 score 
is as follows: 
 

𝑅ଶ ൌ  
∑ ሺ𝑦పෝ െ  𝑦௜ሻଶ
௡
௜ୀଵ

∑ ሺ𝑦పෝ െ  𝑦పഥሻଶ௡
௜ୀଵ

ሺ3ሻ 

 
Where 𝑦ത is the mean of the actual values. An R2 score of 
N/A suggests that the model did not learn from the data. 
 
 
4. Proposed Methodology 
 

This section describes the proposed methodology used 
to evaluate and compare the different learning algorithms, 
as described in Figure Fig. 4. 
 
The methodology involves several steps as follows: 
(i)  Data collection: Data are collected from various 

sources, such as Sakaka WMS (Weather Monitoring 
System), Sakaka Energy Data, and Sakaka Weather 

Data. These datasets provide the information necessary 
to train and test machine learning models. 

  

 
 

Fig. 4 Overview of the methodology. 
 

(ii) Data Wrangling: The collected data undergoes several 
pre-processing steps, including cleaning, normalization, 
resampling, and aggregation. These steps ensure that 
the data are in a suitable format and ready for further 
analysis. 

 
(iii) Scenario definition: Three different scenarios are 

defined according to the variables used for the 
prediction, as detailed in Table Table 6. These scenarios 
involve different combinations of features such as 
POAAvg (Plane of Array Average), IrradiationAvg 
(Irradiation Average), TempAvg (Temperature 
Average), WeatherType, HourlyEnergy, Hour, Day of 
Year, and Time. These scenarios provide flexibility in 
exploring different combinations of features to obtain a 
more accurate prediction. 

  
(iv) Model Optimization, Building, and Training: The study 

employs several machine learning algorithms for solar 
prediction, including linear regression, random forest 
regression (RFR), artificial neural networks (ANN), 
closest neighbors, KNN, and long-short-term memory 
(LSTM). Before building the model, PCA (Principal 
Component Analysis) analysis and grid search are 
performed to optimize the model parameters. This 
helps to improve the model's performance and accuracy. 

 
(v) Validation and testing of the model: The trained models 

are validated and tested using key performance 
indicators (KPIs), such as the root mean square error 
(RMSE), mean absolute error (MAE), and score (R2). 
These metrics evaluate the accuracy and performance 
of the models for predicting solar energy. The models 
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are evaluated against a separate test dataset to ensure a 
valid comparison. 

 
Table 6: Different scenarios for merging data sources 
 

Datasets Scenarios 
 1: Solar data 2: Meteo 3: Hybrid 

Energy.csv ✓  ✓  ✓  
WMS.csv  ✓  

—  ✓  
Weather.csv — — ✓  
#Samples 18,263 8,679 8,679 

Features 

DateTime DateTime DateTime 

POAAvg WeatherT
ype 

POAAvg 

IrradiationAvg Hourlyene
rgy 

IrradiationAvg 

TempAvg Hour TempAvg 

Hourlyenergy day_of_ye
ar 

WeatherType 

Hour Time Hourlyenergy 

day_of_year Hour 

Time day_of_year 

Time 

 
5. Experimental Results 
 

In this section, the experimental results are presented 
and analyzed to evaluate the different learning models. 
Models considered for evaluation are linear regression, 
random forest regression (RFR), K-nearest neighbors 
(KNN), artificial neural networks (ANN), and long-short-
term memory (LSTM). The evaluation metrics used in the 
evaluation were the mean absolute error (MAE), the mean 
square error (RMSE), and the R2 score. 
 

In Table Table 7, the optimized hyperparameters are 
presented for each learning algorithm used in the 
experiments. The selection of these hyperparameters 
involved performing a grid search with Principal 
Component Analysis (PCA) to identify the best parameters 
for each learning algorithm. 
 

For neural network models, the Nadam optimizer is 
used. It is a computationally efficient optimization solver 
designed for neural network algorithms. It is specifically 
well-suited for handling large-scale problems characterized 
by a substantial amount of data or parameters. Additionally, 
Nadam's memory requirements are minimal, making it an 
ideal choice for optimizing neural networks with limited 
computational resources. It combines the concepts of Root 
Mean Square Propagation (RMSprop) and Stochastic 
Gradient Descent with Momentum (SGDM). By merging 
the strengths of these two optimization methods, Nadam 

aims to provide an efficient and effective approach to 
training neural networks. 
 
Table 7: Hyperparameters of algorithms 
 

Algorithm Parameters 

Random Forest 
Regression (RFR) 

Number of trees: 150 

Min sample split: 2 

Min sample leaf: 1 

Random state: 100 

K Nearest Neighbors 
(KNN) 

Number of neighbors (k): 5 

Artificial Neural Network 
(ANN) 

Number of hidden layers: 2 

Epochs: 50 

Activation function: ’relu’ 

Optimizer: Nadam 

Learning rate = 0.001 

Long-Short-Term 
Memory 

Number of hidden layers: 2 

Batch: 32 

Epochs: 50 

Activation function: ’relu’ 

Optimizer: Nadam 

Learning rate: 0.001 

 
Table Table 8 shows the different results obtained for the 

three scenarios using the different datasets described in 
Section 3. 
 
Table 8: Experimental Results of Different Machine Learning Models 
 

Model Scenario MAE RMSE R2 score 

Linear 
Regression 

Scenario 1 0.46 0.61 37.32% 
Scenario 2 0.86 0.97 N/A 
Scenario 3 0.37 0.26 63.08% 

RFR Scenario 1 0.06 0.15 97.73% 
Scenario 2 0.05 0.11 98.55% 
Scenario 3 0.03 0.09 99.05% 

KNN Scenario 1 0.08 0.20 95.52% 
Scenario 2 0.07 0.15 97.38% 
Scenario 3 0.05 0.15 97.49% 

ANN Scenario 1 0.08 0.19 95.90% 
Scenario 2 0.10 0.16 97.03% 
Scenario 3 0.05 0.11 98.71% 

LSTM Scenario 1 0.16 0.32 88.08% 
Scenario 2 0.15 0.28 90.86% 
Scenario 3 0.09 0.19 95.72% 

 
The linear regression model produced relatively high 

error values (MAE: 0.46, RMSE: 0.61) and a low R2 score 
(37.32%) for Scenario 1 and slightly better for Scenario 3 
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with an MAE of 0.37, an RMSE of 0.26 and an R2 score of 
63.08% . This is expected and is due to the nonlinear nature 
of the problem. The RFR model outperforms all other 
learning models, and this is for all scenarios. An MAE of 
0.03, an RMSE of 0.09, and an R2 score of 99.05% were 
obtained for scenario 3. The model also performed well in 
Scenarios 1 and 2. 
 

 
Fig. 5 Convergence of the ANN model. 

 

 
Fig. 6  LSTM model convergence. 

 
The KNN model demonstrates good performance in 

general with low error values obtained for Scneario 3 (MAE 
= 0.05, RMSE = 0.15, and R2 score =  97. 38%). 
 

The ANN model provided low error values (MAE: 
0.08, RMSE: 0.19) and a good R2 score (95.90%) in 
scenario 1 and performed slightly worse in scenario 2, with 
higher errors (MAE: 0.10, RMSE: 0.16) and a slightly lower 
R2 score (97.03%). However, in Scenario 3, the model 
performed better than in the other scenarios, with lower 
errors (MAE: 0.05, RMSE: 0.11) and a high R2 score 
(98.71%). 
 

The LSTM model had moderate error values (MAE: 0.16, 
RMSE: 0.32) and a lower R2 score (88.08%) compared to 
other models, with the best performance in scenario 3 
(MAE: 0.09, RMSE: 0.19, R2 score (95.72%). 
 

In general, the Random Forest Regressor (RFR) 
provides the best performance for all three scenarios, 
consistently producing the lowest error values (MAE and 
RMSE) and the highest R2 scores. The KNN and ANN 
models also showed good performance, while the linear 
regression and LSTM models had higher error values and 
lower R2 scores, making them less suitable for this solar 
energy prediction task. 
 

The ANN and LSTM models were trained for several 
epochs and quickly converged without overfitting the 
training data (Figures Fig. 5 and Fig. 6). The performance of 
the ANN model was shown to be better than that of the 
LSTM model by overfitting the training data and allowing 
for an extensive learning process. 
 

Figure 오류! 참조 원본을 찾을 수 없습니다. 
shows the scatterplots of the observed energy power versus 
the predicted power obtained from all models for Scenario 
3. The comparison reveals that the RFR model has the 
highest variability with an R2 score of 99%. The ANN, 
LSTM, and KNN models had slightly lower variability, 
with R2 scores of 0.98%, 96%, and 97.5% respectively. 
Furthermore, we show how KNN is too sensitive to outliers. 
The RFR model can handle outliers to some extent because 
of their ensemble nature, and thus it is less sensitive to 
individual data points.  The ANN and LSTM models are 
more robust and can handle outliers better than other 
learning models. 

 
Fig. 7  Runtine experimental results. 

  
Figure 오류! 참조 원본을 찾을 수 없습니다. 

shows the performance at run-time of the five algorithms. It 
is clear that LR and KNN have the lowest run times. 
However, the linear models fit the data poorly given the 
nonlinear nature of the problem. RFR has slightly higher 
runtime compared to LR and KNN but remains relatively 
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fast. The ability of RFR to handle complex relationships and 
provide accurate predictions with relatively fast 
computations makes it a promising choice for solar energy 
prediction tasks. On the other hand, ANN and LSTM have 
significantly higher run-times compared to the other 
algorithms. Both ANN and LSTM involve more complex 
computations due to their deep learning architectures, 
which require more time to process and train the models. 
The run-time of ANN ranges from seconds to a few minutes, 
while the run-time of LSTM exceeds minutes in some cases. 
Taking into account the runtime analysis, RFR is the most 
efficient algorithm in terms of both computational speed 
and prediction accuracy. 
 
6. Conclusions 
 

Forecasting the energy yield of photovoltaic systems 
(PV) is an effective and economical way to manage the grid 
and is a key factor in ensuring the dependability of the 
system when photovoltaic systems are widely used. In this 
study, a comparative analysis of machine learning models is 
presented to forecast solar energy generation. The analysis  
 

The study was carried out using three years of 
meteorological and solar data obtained from a large-scale 

industrial project. The proposed methodology evaluates the 
performance of several machine learning models, namely 
linear regression, random forest regression, K nearest 
neighbours, artificial neural networks, and long- and short-
term memory. Common performance metrics are used for 
the evaluation as follows: Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), and Coefficient of 
Determination R2. Different scenarios have been defined to 
measure the effect of training features, training data 
sequence, and data quality on prediction accuracy. 
 

The experimental results revealed that the Random 
Forest Regression model outperformed other learning 
models for all scenarios. It produced an MAE error of 0.06 
when using solar irradiance data and of 0.03 when using the 
hybrid regime that combines solar data with meteorological 
data. Although artificial neural networks exhibit strong 
performance, they require more comprehensive 
hyperparameter adjustments and a greater demand for 
computational resources. 
 

Furthermore, the combination of meteorological data 
with solar irradiance data further improved the prediction 
accuracy of all models and scenarios by at least 0.03. 
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