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Abstract 
Recent advancements in information technology have led to 
significant transformations in new processors such as Graphical 
Processing Units (GPUs) and multicore processors. These 
innovations are characterized by high-performance capabilities, 
marked by extensive parallelism and the integration of nonvolatile 
memory with hybrid storage hierarchies. Today, the task of 
uncovering relationships among various sets of items within vast 
and diverse datasets stands as a crucial challenge in information 
systems. Consequently, leveraging parallel architectures, including 
emerging processors, has emerged as a promising avenue for 
enhancing the performance of information systems. In this paper, 
we present a comprehensive survey of diverse techniques and 
solutions employed in the parallel and distributed data mining 
solutions. We delve into the rationale behind and the hurdles 
associated with the utilization of parallel processors such as 
multicore CPUs and GPUs, as well as distributed technologies. 
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I. INTRODUCTION  
 

Parallel data mining, and more generally data mining and 
knowledge discovery in large databases (KDD), is an active 
field which has received considerable attention in the 
research and development communities. Data mining has 
been recognized to be an important and challenging research 
area, governing the processes essential to scientific 
discoveries, predictive modeling, and decision-making for 
business applications, particularly when it comes to large 
data sets. These data sets may be in a variety of forms and 
tuples, and inherently distributed in nature, stretching from 
hundreds of gigabytes of data to many terabytes or more, and 
they are being collected primarily from computational and 
communications systems like the Web, large-scale scientific 
experiments, automated medical records, and electronic 
commerce. Such data sets present distinct technical 
challenges arising from their volume and distributed nature, 
but are of ever-increasing business, scientific and social 
importance [34]. 

The main part of the distributed association rule mining 
algorithms is based on Apriori algorithm but these algorithms 
suffer from the drawbacks of the Apriori algorithm. A 
detailed study shows that, even with the best implementation, 
these algorithms still under-utilize a multicore system due to 
poor data locality and insufficient parallelism expression. 

Finding frequent itemset is one of the most investigated 
fields in data mining. The Apriori algorithm is the most 
established algorithm for frequent itemset mining [1]. One of 
the most important problems in data mining is association 
rule mining. It requires very large computation and I/O traffic 
capacity. Let I = {i1, i2, ..., im} be a set of items, and D be a 
transaction database, where each transaction T is a set of 
items with T ⊆ I and it has a unique identifier (TID). An 
itemset with k items is called a k−itemset. The support of an 
itemset A, denoted as sup(A), is the number of transactions 
in a database D which contain A. An association rule is an 
expression A ⇒ B, where itemset A, B ⊂ I, and A ∩ B = Ø. 
the confidence of the association rule, which is the fraction 
sup(A ∪ B)/sup(A), and the support of the association rule, 
which is equal to sup(A ∪ B). Several sequential and parallel 
algorithms for discovering frequent itemset have been 
proposed in the literature. The most popular algorithm among 
them is the Apriori algorithm of Agrawal and Srikant [3]. 
Eclat [15] and Partition [10] consists in representing the 
dataset vertically by giving to each item its tidset, i.e. the set 
of transactions containing this item. 

In this paper, we analyze the state-of-the-art data mining 
and knowledge discovery techniques that utilize parallel 
computing resources to solve data-intensive and 
computationally complex problems. Popular parallel 
computing paradigms like message passing, data parallelism, 
shared memory multiprocessing, and hybrid models are 
surveyed in the context of data mining techniques like 
parallel association rule mining, parallel classification, fast 
parallel clustering techniques and their hybrid models. We 
also analyze the limitations of parallelism in the context of 
data mining and discuss future and important research 
directions. We provide guidelines and suggestions on how to 
implement the applicable data mining techniques. 
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II.  DATA MINING : GENERAL NOTIONS 
 

With massive amounts of data continuously being 
collected and stored, many industries are becoming interested 
in the extraction of useful information from large databases. 
Association mining is one of the most important data mining 
tasks. Association rule mining (ARM) finds interesting 
correlation relationships among a large set of data items. A 
typical example of association rules mining is market basket 
analysis. This process analyses customer buying habits by 
finding associations between the different items that 
customers place in their ”shopping baskets”. Such 
information may be used to plan marketing or advertising 
strategies, as well as catalogue design. Each basket represents 
a different transaction in the transactional database, as- 
sociated to this transaction the items bought by a specific 
customer. An example of an association rule over such a 
database could be that ”80% of the customers that bought 
bread and milk, also bought eggs”. 

The association rule mining is a two-step process: 

 

1. the first step consists of finding all frequent 
itemset that occur at least as frequently as the 
fixed minimum support. The search space for 
enumerating all frequent itemset is extremely 
large. For example, with m attributes there are, 
in the worst case, O(mk) potential sequences of 
length at most k; 

2. the second step consists of generating strong 
implication rules (which satisfy the minimum 
confidence constraints) from these frequent 
item- sets. 

The second step is the easiest of the two. The overall 
performance of mining association rules is determined by the 
first step. Because of that, we concentrate our attention in this 
paper on the frequent sets counting problem (FSC), which is 
the most time-consuming phase of the association mining 
process. 

Nevertheless, given the search complexity, sequential 
algorithms cannot provide scalability, in terms of the data 
size and the performance for large databases, we must rely on 
parallel multiprocessor systems to fill this role. 

Several parallel algorithms have been developed for 
association mining for both distributed memory, shared 
memory and recently hierarchical systems. In this paper, we 
examine the issue of mining association rules among items in 
large databases transactions using the algorithm Apriori [2]. 

 
 

III. PARALLEL AND DISTRIBUTED DATA 

MINING : A REVIEW 
 

Data mining, which in recent years has emerged as one of 
the central problems in large databases, has the following 
desirable goals: finding patterns, associations, and 
relationships in databases, often interpreted as "knowledge". 
The volume of data in real-world applications is often so high 
that it cannot be handled with traditional data management 
technology. Furthermore, data processing needs are very 
diverse, ranging from simple queries to report generation and 
decision support. For example, answering complex queries or 
complex analyses are essential components of many database 
applications used at that time. With the advances in modern 
database technology, such applications are common. 
However, sacrificing system performance in exchange for 
ease of use can have significant implications for the 
timeliness of the results. Given the above motivation, it is 
easy to appreciate the significance of parallel data mining. In 
this section, we briefly touch upon the parallel computing 
models and identify the issues in parallelizing data mining 
algorithms. We will assume familiarity with the general 
classes of data mining algorithms; the interested reader is 
referred to the appropriate survey. 

Parallel computing has been attracting significant 
research interest for various application problems, and for 
good reasons. It is a natural way of solving spatially 
distributed, inherently parallelizable problems. Algorithms in 
areas like fluid dynamics and nuclear physics have 
successfully exploited the underlying parallelism in these 
applications. As the computer hardware field moves towards 
a system architecture made of multiple processors (called 
multiple instruction multiple data or MIMD), it is becoming 
increasingly necessary to appreciate the issues involved in 
developing parallel algorithms for application areas not 
traditionally considered "scientific computing". In fact, high-
performance workstations and large-scale parallel machines 
are now being used to address many nontraditional 
applications. These areas are as diverse as medicine, finance, 
business and commerce, computer-aided design, image 
processing, and computer graphics [35].  

  

Most of the existing algorithms, use local heuristics to handle 
the computational complexity. The computational 
complexity of these algorithms are fast enough for 
application domains where N is relatively small. However, in 
the data mining domain where millions of records and a large 
number of attributes are involved, the execution time of these 
algorithms can become prohibitive, particularly in interactive 
applications. Parallel algorithms have been suggested by 
many groups developing data mining algorithms.  

In general, there are two main categories of approaches 
that offer scalability to data mining algorithms. The first 
category comprises techniques that find algorithms or 
problem instance representations which allow parallel 
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execution of independent units of computation [32]. These 
techniques tend to be more generally applicable to a wide 
range of computational problems, as they offer only limited 
forms of non-independent communication or 
synchronization. The second category of techniques, which 
prove to be more powerful in terms of yielding greater 
scalability and efficiency, decompose the instance 
representation of the data mining problem itself. 
Decomposition-based approaches allow non-independent 
communication and synchronization, and hence, when 
applied to data mining problems, tend to have the potential to 
surpass the performance that can be achieved with techniques 
based on executions with independent units of computation 
[33].  

 

Many parallel algorithms for solving the FSC problem 
have been proposed to provide scalability for association rule 
mining algorithms. Most of them use Apriori algorithm as 
fundamental algorithm, because of its success on the 
sequential setting [1]. The reader could refer to the survey of 
Zaki on ARM algorithms and relative parallelization 
schemas [11][10]. Agrawal et al. proposed a broad taxonomy 
of the parallelization strategies that can be adopted for 
Apriori [1]. Two different parallelization of Apriori on 
distributed memory machine where presented in Agrawal et 
Al 1996. 

Several strategies for parallel frequent itemset 
computation were proposed by Agrawal and Shafer [2], 
including the Count Distribution algorithm. This algorithm is 
a parallelization of Apriori. Each processor generates the 
partial support of all candidate itemset from its local database 
partition. At the end of each iteration, the global supports are 
generated by exchanging the partial supports among all the 
processors. Zaki et al. proposed the Common Candidate 
Partitioned Database (CCPD) and the Partition Candidate 
Common Database (PCCD) algorithms, which both are 
Apriori-like algorithms [14]. Souliou et al. proposed the PPS 
algorithm based on CD algorithm. The difference consists on 
that PPS makes use of partial support trees [13]. Another 
algorithm called Data-VP was presented by Coenen et al. [8]. 
PC clusters have become popular in parallel processing. They 
do not involve specialized interprocessor networks, so the 
latency of data communications is rather long. 

Other advantage of the  distributed approach is that it can 
make significant data processing during the data distribution 
phase.  

 

● Count distribution CD In CD, the database is 
partitioned and distributed across n processors. 

● Data distribution DD In DD The candidates are 
partitioned over all the processor in a round-robin 
fashion. The communication overhead of 
broadcasting the database partitions can be reduced 
by asynchronous communication. Experiments 

shows that algorithms based on count distribution 
outperforms the other algorithms. Data distribution 
is the worst approach, while candidate distribution 
obtained good performances but paid a high 
overhead due to the need of redistributing the 
dataset. In shared memory many algorithms are 
proposed by Zaki et Al [12]. 

 

● Common Candidate Partition Data CCPD 
algorithm, it is essentially the same as count 
distribution, but uses some optimization techniques 
to balance the candidate hash tree and to short-
circuit the candidate search for fast support counting. 

● Eclat algorithm was designed to overcome the 
shortcomings of the CD and CND algorithms. It 
utilizes the aggregate memory of the system by 
partitioning the candidates into disjoint sets using 
the equivalence class partitioning. Eclat uses the 
vertical database layout which clusters all relevant 
information in an itemset’s tid-list. Each processor 
computes all the frequent itemset from one 
equivalence class before proceeding to the next. 

 

The most parallel approaches work as following. The 
different steps to generate frequent itemset are presented on 
the following figure (see Fig 1) [37]. 

 

 

Fig 1. The different tasks to extract frequent Itemset 
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The figure (see Fig 2) presents a different step to execute 
candidate generation in parallel. The database transactions is 
partitioned during the initial iteration among processors 
participating in the execution, and each processor calculates 
partial supports of its items from its local database partition. 
Each processor calculates partial supports of its 1-itemset 
candidates from its local database partition. At the end, the 
task does a sum reduction to obtain the global counts by 
exchanging local counts with all other processors. Once the 
global Fk has been determined, each processor builds the 
entire candidate Ck+1 in parallel, and the previous process is 
repeated until all frequent itemset are found. The goal of this 
approach is minimizing communication, because only the 
counts are exchanged between processors. To minimize the 
communications phase, each processor Pi can maintain an n 
support array where n is the number of items and each case 
contains the corresponding support. This structure doesn’t 
suffer from any of the overheads because the support array is 
sorted in increasing order, then the global count support of a 
kth candidate by simply adding the corresponding columns 
in each processor. This is a vectors of bits accessed with high 
locality, and without using expensive comparisons and 
conditional branch instructions. A column summation can be 
done to calculate the global support. 

 

 

Fig. 2 A parallel candidate generation 

 

The figure below (see Fig 3) presents the parallel steps to 
extract frequent itemset. This step consists to partition the 1-
itemset candidates, so that each processor can prune the non-
frequent 1-itemset. After that, each processor can locally sort 
his support array according to the frequency. A step of global 
sort is necessary. To do that, we adopted a master-slave 
approach, where we have one master and the rest of available 
processors are slaves. At the end of this step, the master 
processor sends the global support array to the others 
processors. 

 

Fig. 3 A parallel frequent itemset generation 

 

 

The Fig 4. presents the pruning step to eliminate non 
frequent itemset. In this task, we reduce the size of 
transactions database by pruning out the non-frequent 1-
itemset. Hence, to do this step rapidly, we partition this 
database equitably between all processors and each one scans 
its local portion to skipped the non-frequent. 

 

 

Fig. 4 A parallel non frequent itemset pruning 

 

To achieve an equal distribution of the candidate itemset, 
we use a partitioning algorithm that is based on bin-packing 
[6] such that the sum of numbers of candidate itemset are 
roughly equal. This gives about the same size hash tree in all 
the processors and thus provides a correct load balancing 
among processors. 

For example, suppose that our tree is composed by four 
itemset {A, B, C, D} and we have two processors {P1,P2}, 
the result of this distribution is : 
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• P1 is charged to do generate 2-itemset by simply 
joining all pairs of items A et D with her successors, 
hence, we obtain {{AB },{AC },{AD }}. 

• P2 generate all combinations based on the items B et 
C and we obtain {{BC},{BD},{CD}}. 

Note that the equal assignment of candidates to the 
processors does not guarantee the perfect load balance among 
processors. This is because the cost of traversal of the hash 
tree are determined not only by the size of the tree, but also 
by the presence of items in the transactions. 

 

For more improving the cache performance multi-core 
CPUs and GPUs processors are used. Ghoting and al. [17] 
proposed a cache conscious FP-tree (CC-tree), a 
reorganization of the original FP-tree by allocating the nodes 
in sequential memory space and a tiling strategy for temporal 
locality. This structure yields a better cache performance than 
FP-growth, but it still experiences cache misses when 
traversing the CC-tree due to his tree structure. Razs 
presented nonordfp [18] which implements FP-growth 
without rebuilding the projected FP-tree recursively to 
improve the cache performance. Li et al. proposed an FP-
growth implementation [14] based on two techniques: a 
cache conscious FP-array and a lock free parallelism 
enhancement to improve data locality performance and 
makes use of the benefits from hardware and software pre-
fetching. 

For a performance improvement of this algorithm, most 
researchers [20, 28, 29, 14, 30, 31] have been made for 
parallelizing FP-growth. Pramudiono and Kitsuregawa [20] 
reported results for parallel FP-growth algorithm on shared 
nothing cluster environment. In [20], Li et al. proposed a 
Parallel FP-growth that shard a large-scale mining task into 
independent parallel tasks. Osmar et al. presented a MLFPT 
(Multiple Local FP-tree) approach [22] that consists of two 
main stages: the first stage is the construction of a parallel 
FP-tree for each processor and the second stage for mining 
these data structures much like the FP-growth algorithm. 

In [20], Manaskasemsak et al. presented a parallel version 
of FI-growth algorithm [25] that parallelizes the association 
rule mining process by employing a data parallelism 
technique on a PC cluster. 

Researchers have also studied FIM algorithms on new- 
generation graphics processing units (GPUs), regarded as 
massively multi-threaded many-core processors. Different 
from multi-core CPUs, the cores on the GPU are virtualized, 
and GPU threads are executed in SIMD (Single Instruction, 
Multitple Data) and are managed by the hardware. Such a 
design simplifies GPU programming and improves program 
scalability and portability. Nevertheless, it makes the 
implementation of algorithms with complex control flows a 
challenging task on the GPU, even though the GPU has an 
order of magnitude higher computation capability as well as 
memory bandwidth than a multi-core CPU. Taking 

advantage of the massive computation power and the high 
memory bandwidth of the GPU, there have been some studies 
that focus on studying the GPU acceleration for FIM 
algorithms. 

GPGPU for FIM algorithms was for the first time 
addressed in [26], where Luo et al. presented two GPU-based 
implementations of the well-known Apriori algorithm, that 
take advantages of the GPU’s massively multi-threaded 
SIMD (Single instruction, multiple data) architecture. Both 
implementations employ a bitmap data structure to exploit 
the GPU’s SIMD parallelism. One implementation runs 
entirely on the GPU, since the other employs both the CPU 
and the GPU for processing. Another Apriori based FIM 
algorithm for GPU is presented in [27], GPApriori, which 
includes a set of fine-grained parallel data structures and 
algorithms design to achieve promising degree of speed up 
on modern GPU. 

Different approaches are proposed in [28] by Teodoro 
and al. based on the Tree Projection algorithm described in 
[27]. Nonetheless, Tree Projection is not a state-of-the-art 
algorithm for FIM, as it is outperformed by FP-growth 
[15,31]. In [30], Orlando and Silvestri proposed gpuDCI, a 
parallel algorithm inspired by DCI [16] that exploits GPUs to 
efficiently mine frequent itemset. 

 

Fig. 5 shows an example of multi-threading execution 
under 4 cores. 

 

 

Fig. 5  A multi-threading core execution  

 

IV.  SYNTHESIS 

 

The performance of the parallel data mining algorithms is 
based on two principles factors such the data communication 
cost and performance of time. The data communication cost 
can be reduced by using a good partitioning solution like 
intelligent partitioning Algorithm (K-means for example) to 
avoid a large overhead. The processing time is based on the 
size of database, the number of scanned database and the size 
of used memory. 

Many parallel data mining systems use partitioning 
methods to distribute the data among the processors in a 
parallel computer. Some methods work better with cube-type 
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operations, while some methods are more appropriate for 
workload-intensive applications. The choice of method 
depends on the data characteristic, the application 
characteristics, and the architecture of the parallel system. 
The overall performance of a parallel system depends on 
scheduling methods within the parallel algorithm that aim at 
balancing workloads and minimizing communication 
between processes. In addition, the performance of a system 
can also be influenced by the data representation and data 
transfer costs between the disks, memory, and processors. 
The remaining of the chapter discusses important research in 
parallel data mining architectures, partitioning methods, and 
data placement methods, and discussions are concluded with 
a summary of research problems, future research directions, 
and general conclusions to the work in this direction. 

Parallel data mining methods focus on partitioning the 
data and employing multiple processors to finish the 
partitioning process. This allows parallel data mining 
methods to perform some level of in-memory computations 
with ease by working on data subsets in parallel across 
different processors. The number of records in each processor 
needs to be carefully chosen to minimize the cost of 
distributing data to every processor and to minimize the cost 
of reducing the problem results. The compression and 
distribution of data often balance the task allocation and data 
input process in parallel data mining systems. Scalability, 
speedup, and efficiency are metrics in parallel computing that 
need to be investigated carefully. They provide information 
on how a parallel system performs as its size and data volume 
are increased, and they serve as indicators of the partitioning 
methods that depend on system and data characteristics [36]. 

 

V. CONCLUSION 
 

This paper provides a comprehensive survey of parallel 
data mining approaches, categorizing them based on the 
machine architecture, data splitting methods, processing 
roles, and algorithms employed. By presenting various 
strategies and methodologies, this survey aims to shed light 
on the state of the art in parallel data mining and provide 
valuable insights for researchers and practitioners in the field. 

The One way to anticipate future needs is to look at 
emerging technologies and trends in technology usage in 
general. Several researchers have studied technology and tool 
usage, when searching for patterns in technology adoption. 
Some of the new exciting places in data mining include: 
Microsoft’s new eScience Studio toolset, useful for 
researchers in many areas, Hudmonja (at the University of 
Modena and Reggio Emilia), which is useful for easy parallel 
data mining web-site clustering, Gandalf, running on the 
Gage heterogeneous/monocore/MIMD machine, which 
offers superior performance for parallel decision tree learning, 
the excellent cloud tools by the Apache Hadoop project, 
SKMT-Master by the University of Karlsruhe, which 
provides a great tool for testing clustering algorithms on 

countless sets of clustering partitions, the R and SAGA 
interface to create workflows, the grid middleware in general 
and especially the graphics specification in OpenMP. 
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