
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

213

Manuscript received December 5, 2024
Manuscript revised December 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.12.25

Parallel and distributed Data Mining Techniques: GPU
Approach

Tagreed Alsulimani

Management Information System Department
College of Business, University of Jeddah
Jeddah, Kingdom of Saudi Arabia (KSA)

Abstract
Recent advancements in information technology have led to
significant transformations in new processors such as Graphical
Processing Units (GPUs) and multicore processors. These
innovations are characterized by high-performance capabilities,
marked by extensive parallelism and the integration of nonvolatile
memory with hybrid storage hierarchies. Today, the task of
uncovering relationships among various sets of items within vast
and diverse datasets stands as a crucial challenge in information
systems. Consequently, leveraging parallel architectures, including
emerging processors, has emerged as a promising avenue for
enhancing the performance of information systems. In this paper,
we present a comprehensive survey of diverse techniques and
solutions employed in the parallel and distributed data mining
solutions. We delve into the rationale behind and the hurdles
associated with the utilization of parallel processors such as
multicore CPUs and GPUs, as well as distributed technologies.

Keywords

Information system; distributed; parallel ; GPU; data mining;

I. INTRODUCTION

Parallel data mining, and more generally data mining and
knowledge discovery in large databases (KDD), is an active
field which has received considerable attention in the
research and development communities. Data mining has
been recognized to be an important and challenging research
area, governing the processes essential to scientific
discoveries, predictive modeling, and decision-making for
business applications, particularly when it comes to large
data sets. These data sets may be in a variety of forms and
tuples, and inherently distributed in nature, stretching from
hundreds of gigabytes of data to many terabytes or more, and
they are being collected primarily from computational and
communications systems like the Web, large-scale scientific
experiments, automated medical records, and electronic
commerce. Such data sets present distinct technical
challenges arising from their volume and distributed nature,
but are of ever-increasing business, scientific and social
importance [34].

The main part of the distributed association rule mining
algorithms is based on Apriori algorithm but these algorithms
suffer from the drawbacks of the Apriori algorithm. A
detailed study shows that, even with the best implementation,
these algorithms still under-utilize a multicore system due to
poor data locality and insufficient parallelism expression.

Finding frequent itemset is one of the most investigated
fields in data mining. The Apriori algorithm is the most
established algorithm for frequent itemset mining [1]. One of
the most important problems in data mining is association
rule mining. It requires very large computation and I/O traffic
capacity. Let I = {i1, i2, ..., im} be a set of items, and D be a
transaction database, where each transaction T is a set of
items with T ⊆ I and it has a unique identifier (TID). An
itemset with k items is called a k−itemset. The support of an
itemset A, denoted as sup(A), is the number of transactions
in a database D which contain A. An association rule is an
expression A ⇒ B, where itemset A, B ⊂ I, and A ∩ B = Ø.
the confidence of the association rule, which is the fraction
sup(A ∪ B)/sup(A), and the support of the association rule,
which is equal to sup(A ∪ B). Several sequential and parallel
algorithms for discovering frequent itemset have been
proposed in the literature. The most popular algorithm among
them is the Apriori algorithm of Agrawal and Srikant [3].
Eclat [15] and Partition [10] consists in representing the
dataset vertically by giving to each item its tidset, i.e. the set
of transactions containing this item.

In this paper, we analyze the state-of-the-art data mining
and knowledge discovery techniques that utilize parallel
computing resources to solve data-intensive and
computationally complex problems. Popular parallel
computing paradigms like message passing, data parallelism,
shared memory multiprocessing, and hybrid models are
surveyed in the context of data mining techniques like
parallel association rule mining, parallel classification, fast
parallel clustering techniques and their hybrid models. We
also analyze the limitations of parallelism in the context of
data mining and discuss future and important research
directions. We provide guidelines and suggestions on how to
implement the applicable data mining techniques.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

214

II. DATA MINING : GENERAL NOTIONS

With massive amounts of data continuously being
collected and stored, many industries are becoming interested
in the extraction of useful information from large databases.
Association mining is one of the most important data mining
tasks. Association rule mining (ARM) finds interesting
correlation relationships among a large set of data items. A
typical example of association rules mining is market basket
analysis. This process analyses customer buying habits by
finding associations between the different items that
customers place in their ”shopping baskets”. Such
information may be used to plan marketing or advertising
strategies, as well as catalogue design. Each basket represents
a different transaction in the transactional database, as-
sociated to this transaction the items bought by a specific
customer. An example of an association rule over such a
database could be that ”80% of the customers that bought
bread and milk, also bought eggs”.

The association rule mining is a two-step process:

1. the first step consists of finding all frequent
itemset that occur at least as frequently as the
fixed minimum support. The search space for
enumerating all frequent itemset is extremely
large. For example, with m attributes there are,
in the worst case, O(mk) potential sequences of
length at most k;

2. the second step consists of generating strong
implication rules (which satisfy the minimum
confidence constraints) from these frequent
item- sets.

The second step is the easiest of the two. The overall
performance of mining association rules is determined by the
first step. Because of that, we concentrate our attention in this
paper on the frequent sets counting problem (FSC), which is
the most time-consuming phase of the association mining
process.

Nevertheless, given the search complexity, sequential
algorithms cannot provide scalability, in terms of the data
size and the performance for large databases, we must rely on
parallel multiprocessor systems to fill this role.

Several parallel algorithms have been developed for
association mining for both distributed memory, shared
memory and recently hierarchical systems. In this paper, we
examine the issue of mining association rules among items in
large databases transactions using the algorithm Apriori [2].

III. PARALLEL AND DISTRIBUTED DATA

MINING : A REVIEW

Data mining, which in recent years has emerged as one of
the central problems in large databases, has the following
desirable goals: finding patterns, associations, and
relationships in databases, often interpreted as "knowledge".
The volume of data in real-world applications is often so high
that it cannot be handled with traditional data management
technology. Furthermore, data processing needs are very
diverse, ranging from simple queries to report generation and
decision support. For example, answering complex queries or
complex analyses are essential components of many database
applications used at that time. With the advances in modern
database technology, such applications are common.
However, sacrificing system performance in exchange for
ease of use can have significant implications for the
timeliness of the results. Given the above motivation, it is
easy to appreciate the significance of parallel data mining. In
this section, we briefly touch upon the parallel computing
models and identify the issues in parallelizing data mining
algorithms. We will assume familiarity with the general
classes of data mining algorithms; the interested reader is
referred to the appropriate survey.

Parallel computing has been attracting significant
research interest for various application problems, and for
good reasons. It is a natural way of solving spatially
distributed, inherently parallelizable problems. Algorithms in
areas like fluid dynamics and nuclear physics have
successfully exploited the underlying parallelism in these
applications. As the computer hardware field moves towards
a system architecture made of multiple processors (called
multiple instruction multiple data or MIMD), it is becoming
increasingly necessary to appreciate the issues involved in
developing parallel algorithms for application areas not
traditionally considered "scientific computing". In fact, high-
performance workstations and large-scale parallel machines
are now being used to address many nontraditional
applications. These areas are as diverse as medicine, finance,
business and commerce, computer-aided design, image
processing, and computer graphics [35].

Most of the existing algorithms, use local heuristics to handle
the computational complexity. The computational
complexity of these algorithms are fast enough for
application domains where N is relatively small. However, in
the data mining domain where millions of records and a large
number of attributes are involved, the execution time of these
algorithms can become prohibitive, particularly in interactive
applications. Parallel algorithms have been suggested by
many groups developing data mining algorithms.

In general, there are two main categories of approaches
that offer scalability to data mining algorithms. The first
category comprises techniques that find algorithms or
problem instance representations which allow parallel

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

215 | P a g e

215

execution of independent units of computation [32]. These
techniques tend to be more generally applicable to a wide
range of computational problems, as they offer only limited
forms of non-independent communication or
synchronization. The second category of techniques, which
prove to be more powerful in terms of yielding greater
scalability and efficiency, decompose the instance
representation of the data mining problem itself.
Decomposition-based approaches allow non-independent
communication and synchronization, and hence, when
applied to data mining problems, tend to have the potential to
surpass the performance that can be achieved with techniques
based on executions with independent units of computation
[33].

Many parallel algorithms for solving the FSC problem
have been proposed to provide scalability for association rule
mining algorithms. Most of them use Apriori algorithm as
fundamental algorithm, because of its success on the
sequential setting [1]. The reader could refer to the survey of
Zaki on ARM algorithms and relative parallelization
schemas [11][10]. Agrawal et al. proposed a broad taxonomy
of the parallelization strategies that can be adopted for
Apriori [1]. Two different parallelization of Apriori on
distributed memory machine where presented in Agrawal et
Al 1996.

Several strategies for parallel frequent itemset
computation were proposed by Agrawal and Shafer [2],
including the Count Distribution algorithm. This algorithm is
a parallelization of Apriori. Each processor generates the
partial support of all candidate itemset from its local database
partition. At the end of each iteration, the global supports are
generated by exchanging the partial supports among all the
processors. Zaki et al. proposed the Common Candidate
Partitioned Database (CCPD) and the Partition Candidate
Common Database (PCCD) algorithms, which both are
Apriori-like algorithms [14]. Souliou et al. proposed the PPS
algorithm based on CD algorithm. The difference consists on
that PPS makes use of partial support trees [13]. Another
algorithm called Data-VP was presented by Coenen et al. [8].
PC clusters have become popular in parallel processing. They
do not involve specialized interprocessor networks, so the
latency of data communications is rather long.

Other advantage of the distributed approach is that it can
make significant data processing during the data distribution
phase.

● Count distribution CD In CD, the database is
partitioned and distributed across n processors.

● Data distribution DD In DD The candidates are
partitioned over all the processor in a round-robin
fashion. The communication overhead of
broadcasting the database partitions can be reduced
by asynchronous communication. Experiments

shows that algorithms based on count distribution
outperforms the other algorithms. Data distribution
is the worst approach, while candidate distribution
obtained good performances but paid a high
overhead due to the need of redistributing the
dataset. In shared memory many algorithms are
proposed by Zaki et Al [12].

● Common Candidate Partition Data CCPD
algorithm, it is essentially the same as count
distribution, but uses some optimization techniques
to balance the candidate hash tree and to short-
circuit the candidate search for fast support counting.

● Eclat algorithm was designed to overcome the
shortcomings of the CD and CND algorithms. It
utilizes the aggregate memory of the system by
partitioning the candidates into disjoint sets using
the equivalence class partitioning. Eclat uses the
vertical database layout which clusters all relevant
information in an itemset’s tid-list. Each processor
computes all the frequent itemset from one
equivalence class before proceeding to the next.

The most parallel approaches work as following. The
different steps to generate frequent itemset are presented on
the following figure (see Fig 1) [37].

Fig 1. The different tasks to extract frequent Itemset

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

216

The figure (see Fig 2) presents a different step to execute
candidate generation in parallel. The database transactions is
partitioned during the initial iteration among processors
participating in the execution, and each processor calculates
partial supports of its items from its local database partition.
Each processor calculates partial supports of its 1-itemset
candidates from its local database partition. At the end, the
task does a sum reduction to obtain the global counts by
exchanging local counts with all other processors. Once the
global Fk has been determined, each processor builds the
entire candidate Ck+1 in parallel, and the previous process is
repeated until all frequent itemset are found. The goal of this
approach is minimizing communication, because only the
counts are exchanged between processors. To minimize the
communications phase, each processor Pi can maintain an n
support array where n is the number of items and each case
contains the corresponding support. This structure doesn’t
suffer from any of the overheads because the support array is
sorted in increasing order, then the global count support of a
kth candidate by simply adding the corresponding columns
in each processor. This is a vectors of bits accessed with high
locality, and without using expensive comparisons and
conditional branch instructions. A column summation can be
done to calculate the global support.

Fig. 2 A parallel candidate generation

The figure below (see Fig 3) presents the parallel steps to
extract frequent itemset. This step consists to partition the 1-
itemset candidates, so that each processor can prune the non-
frequent 1-itemset. After that, each processor can locally sort
his support array according to the frequency. A step of global
sort is necessary. To do that, we adopted a master-slave
approach, where we have one master and the rest of available
processors are slaves. At the end of this step, the master
processor sends the global support array to the others
processors.

Fig. 3 A parallel frequent itemset generation

The Fig 4. presents the pruning step to eliminate non
frequent itemset. In this task, we reduce the size of
transactions database by pruning out the non-frequent 1-
itemset. Hence, to do this step rapidly, we partition this
database equitably between all processors and each one scans
its local portion to skipped the non-frequent.

Fig. 4 A parallel non frequent itemset pruning

To achieve an equal distribution of the candidate itemset,
we use a partitioning algorithm that is based on bin-packing
[6] such that the sum of numbers of candidate itemset are
roughly equal. This gives about the same size hash tree in all
the processors and thus provides a correct load balancing
among processors.

For example, suppose that our tree is composed by four
itemset {A, B, C, D} and we have two processors {P1,P2},
the result of this distribution is :

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

217 | P a g e

217

• P1 is charged to do generate 2-itemset by simply
joining all pairs of items A et D with her successors,
hence, we obtain {{AB },{AC },{AD }}.

• P2 generate all combinations based on the items B et
C and we obtain {{BC},{BD},{CD}}.

Note that the equal assignment of candidates to the
processors does not guarantee the perfect load balance among
processors. This is because the cost of traversal of the hash
tree are determined not only by the size of the tree, but also
by the presence of items in the transactions.

For more improving the cache performance multi-core
CPUs and GPUs processors are used. Ghoting and al. [17]
proposed a cache conscious FP-tree (CC-tree), a
reorganization of the original FP-tree by allocating the nodes
in sequential memory space and a tiling strategy for temporal
locality. This structure yields a better cache performance than
FP-growth, but it still experiences cache misses when
traversing the CC-tree due to his tree structure. Razs
presented nonordfp [18] which implements FP-growth
without rebuilding the projected FP-tree recursively to
improve the cache performance. Li et al. proposed an FP-
growth implementation [14] based on two techniques: a
cache conscious FP-array and a lock free parallelism
enhancement to improve data locality performance and
makes use of the benefits from hardware and software pre-
fetching.

For a performance improvement of this algorithm, most
researchers [20, 28, 29, 14, 30, 31] have been made for
parallelizing FP-growth. Pramudiono and Kitsuregawa [20]
reported results for parallel FP-growth algorithm on shared
nothing cluster environment. In [20], Li et al. proposed a
Parallel FP-growth that shard a large-scale mining task into
independent parallel tasks. Osmar et al. presented a MLFPT
(Multiple Local FP-tree) approach [22] that consists of two
main stages: the first stage is the construction of a parallel
FP-tree for each processor and the second stage for mining
these data structures much like the FP-growth algorithm.

In [20], Manaskasemsak et al. presented a parallel version
of FI-growth algorithm [25] that parallelizes the association
rule mining process by employing a data parallelism
technique on a PC cluster.

Researchers have also studied FIM algorithms on new-
generation graphics processing units (GPUs), regarded as
massively multi-threaded many-core processors. Different
from multi-core CPUs, the cores on the GPU are virtualized,
and GPU threads are executed in SIMD (Single Instruction,
Multitple Data) and are managed by the hardware. Such a
design simplifies GPU programming and improves program
scalability and portability. Nevertheless, it makes the
implementation of algorithms with complex control flows a
challenging task on the GPU, even though the GPU has an
order of magnitude higher computation capability as well as
memory bandwidth than a multi-core CPU. Taking

advantage of the massive computation power and the high
memory bandwidth of the GPU, there have been some studies
that focus on studying the GPU acceleration for FIM
algorithms.

GPGPU for FIM algorithms was for the first time
addressed in [26], where Luo et al. presented two GPU-based
implementations of the well-known Apriori algorithm, that
take advantages of the GPU’s massively multi-threaded
SIMD (Single instruction, multiple data) architecture. Both
implementations employ a bitmap data structure to exploit
the GPU’s SIMD parallelism. One implementation runs
entirely on the GPU, since the other employs both the CPU
and the GPU for processing. Another Apriori based FIM
algorithm for GPU is presented in [27], GPApriori, which
includes a set of fine-grained parallel data structures and
algorithms design to achieve promising degree of speed up
on modern GPU.

Different approaches are proposed in [28] by Teodoro
and al. based on the Tree Projection algorithm described in
[27]. Nonetheless, Tree Projection is not a state-of-the-art
algorithm for FIM, as it is outperformed by FP-growth
[15,31]. In [30], Orlando and Silvestri proposed gpuDCI, a
parallel algorithm inspired by DCI [16] that exploits GPUs to
efficiently mine frequent itemset.

Fig. 5 shows an example of multi-threading execution
under 4 cores.

Fig. 5 A multi-threading core execution

IV. SYNTHESIS

The performance of the parallel data mining algorithms is
based on two principles factors such the data communication
cost and performance of time. The data communication cost
can be reduced by using a good partitioning solution like
intelligent partitioning Algorithm (K-means for example) to
avoid a large overhead. The processing time is based on the
size of database, the number of scanned database and the size
of used memory.

Many parallel data mining systems use partitioning
methods to distribute the data among the processors in a
parallel computer. Some methods work better with cube-type

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

218

operations, while some methods are more appropriate for
workload-intensive applications. The choice of method
depends on the data characteristic, the application
characteristics, and the architecture of the parallel system.
The overall performance of a parallel system depends on
scheduling methods within the parallel algorithm that aim at
balancing workloads and minimizing communication
between processes. In addition, the performance of a system
can also be influenced by the data representation and data
transfer costs between the disks, memory, and processors.
The remaining of the chapter discusses important research in
parallel data mining architectures, partitioning methods, and
data placement methods, and discussions are concluded with
a summary of research problems, future research directions,
and general conclusions to the work in this direction.

Parallel data mining methods focus on partitioning the
data and employing multiple processors to finish the
partitioning process. This allows parallel data mining
methods to perform some level of in-memory computations
with ease by working on data subsets in parallel across
different processors. The number of records in each processor
needs to be carefully chosen to minimize the cost of
distributing data to every processor and to minimize the cost
of reducing the problem results. The compression and
distribution of data often balance the task allocation and data
input process in parallel data mining systems. Scalability,
speedup, and efficiency are metrics in parallel computing that
need to be investigated carefully. They provide information
on how a parallel system performs as its size and data volume
are increased, and they serve as indicators of the partitioning
methods that depend on system and data characteristics [36].

V. CONCLUSION

This paper provides a comprehensive survey of parallel
data mining approaches, categorizing them based on the
machine architecture, data splitting methods, processing
roles, and algorithms employed. By presenting various
strategies and methodologies, this survey aims to shed light
on the state of the art in parallel data mining and provide
valuable insights for researchers and practitioners in the field.

The One way to anticipate future needs is to look at
emerging technologies and trends in technology usage in
general. Several researchers have studied technology and tool
usage, when searching for patterns in technology adoption.
Some of the new exciting places in data mining include:
Microsoft’s new eScience Studio toolset, useful for
researchers in many areas, Hudmonja (at the University of
Modena and Reggio Emilia), which is useful for easy parallel
data mining web-site clustering, Gandalf, running on the
Gage heterogeneous/monocore/MIMD machine, which
offers superior performance for parallel decision tree learning,
the excellent cloud tools by the Apache Hadoop project,
SKMT-Master by the University of Karlsruhe, which
provides a great tool for testing clustering algorithms on

countless sets of clustering partitions, the R and SAGA
interface to create workflows, the grid middleware in general
and especially the graphics specification in OpenMP.

References

[1] R. Agrawal and J. Shafer, Parallel mining of association rules, IEEE
Transaction On Knowledge and Data Engineering 8 (1996) 962–969.

[2] R. Agrawal and R. Skirant, Fast algorithms for mining association
rules in large databases, Proceedings of the 20th Int ́l Conference of
Very Large Databases (VLDB’94), (June 1994), pp. 478–499.

[3] A. J. Bernstein, Program analysis for parallel processing, Proceedings
of IEEE Trans. on Electronic Computers, (October 1966), pp. 757–
762.

[4] C. Borgelt, Efficient Implementations of Apriori and Eclat. Workshop
of Frequent ItemSet Mining Implementations., 2003).

[5] T. Fosdick and al., An Introduction to High Performance Scientific
Computing (MIT Press, 1996).

[6] E. Han, G. Karypis and V. Kumar, Scalable parallel data mining for
association rules, Proceedings ACM Conference of Management of
Data, (ACM Press, New York, 1997), pp. 277–288.

[7] T. M. S. http://www.mhpcc.edu/training/workshop/mpi/main.html [8]
G. of DataBases: Site http://www.almaden.ibm.com/cs/quest [9] G. of
dense DataBases: Site http://fimi.cs.helsinki.fi/data.

[8] Y. Slimani, K. Arour and M. Jemni, Informatique répartie : Chapter
Découverte parallèle de régles associatives (Hermes, Lavoisier,
March 2005).

[9] M. Zaki., Parallel and distributed association mining: a survey., IEEE
Concurrency 7 (4) (1999) 14–25.

[10] M. Zaki, M. Ogihara, S. Parthasarathy and W. Li, Parallel data mining
for association rules, IEEE Transactions Knowledge and Data
Engineering (August 1996) 962–969.

[11] M. Zaki., Parallel and distributed association mining: a survey., IEEE
Concurrency 7 (4) (1999) 14–25.

[12] M. Zaki, M. Ogihara, S. Parthasarathy and W. Li, Parallel data mining
for association rules, IEEE Transactions Knowledge and Data
Engineering (August 1996) 962–969.

[13] Coenen F., Leng P., and Ahmed S. T-trees, vertical partitioning and
distributed association rule mining. Proceedings of the 3rd IEEE
International Conference on Data Mining (ICDM’03), pages 513–516,
2003.

[14] E. Li and L. Liu, “Optimization of frequent itemset mining on
multiple-core processor,” in Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna, Austria,
September 23-27, 2007, 2007, pp. 1275–1285.

[15] P. J. Han Jiawei and Y. Yiwen, “Mining frequent patterns without
candidate generation,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, New York, NY,
USA, 2000, pp. 1–12.

[16] S. Brin, R. Motwani, and C. Silverstein, “Beyond market baskets:
Generalizing association rules to correlations,” SIGMOD Rec., vol.
26, no. 2, pp. 265–276, Jun. 1997. [Online]. Available:
http://doi.acm.org/10.1145/253262. 253327

[17] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. D. Nguyen, Y.-
K. Chen, and P. Dubey, “Cache-conscious frequent pattern mining on
a modern processor.” in VLDB, K. Böhm, C. S. Jensen, L. M. Haas,
M. L. Kersten, P.-A. Larson, and B. C. Ooi, Eds. ACM, 2005, pp.
577–588.

[18] B. Rácz, “nonordfp: An fp-growth variation without rebuilding the fp-
tree.” in FIMI, ser. CEUR Workshop Proceedings, R. J. B. Jr., B.
Goethals, and M. J. Zaki, Eds., vol. 126. CEUR-WS.org,
2004.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

219 | P a g e

219

[19] I. Pramudiono and M. Kitsuregawa, “Parallel fp-growth on pc cluster,”
in Proceedings of the 7th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, ser. PAKDD’03. Berlin,
Heidelberg: Springer-Verlag, 2003, pp. 467–473. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1760894.1760956

[20] null Bundit Manaskasemsak, null Nunnapus Benja-

[21] mas, A. Rungsawang, null Athasit Surarerks, and null Putchong
Uthayopas, “Parallel association rule mining based on fi-growth
algorithm,” vol. 1. Los Alamitos, CA, USA: IEEE
Computer Society, 2007, pp. 1–8.

[22] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “Parallel fp-
growth for query recommendation,” in Proceedings of the 2008 ACM
Conference on Recommender Systems, ser. RecSys ’08. New
York, NY, USA: ACM, 2008, pp. 107–114.

[23] M. E.-H. P. L. Osmar R. Zaiane, “Fast parallel association rules
mining without candidate generation,” in Proceedings of the 2001
IEEE International Conference on Data Mining, 2001.

[24] A. K. Asif Javed, “Frequent pattern mining on message passing
multiprocessor systems,” in Distributed and Parallel Databases, vol.
16, no. 3, 2004, pp. 321–334.

[25] K. Amphawan and A. Surarerks, “An approach of frequent item tree
for association generation,” Proceeding of Artificial Intelligence and
Soft Computing, 2005.

[26] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo, “Frequent itemset
mining on graphics processors,” in Proceedings of the Fifth
International Workshop on Data Management on New Hardware,
DaMoN 2009, Providence, Rhode Island, USA, June 28, 2009, 2009,
pp. 34–42.

[27] F. Zhang, Y. Zhang, and J. D. Bakos, “Gpapriori: Gpu- accelerated
frequent itemset mining,” in Proceedings of the 2011 IEEE
International Conference on Cluster Computing (CLUSTER), Austin,
TX, USA, September 26- 30, 2011.

[28] G. Teodoro, N. Mariano, W. M. Jr., and R. Ferreira, “Tree projection-
based frequent itemset mining on multicore cpus and gpus,” in 22st
International Symposium on Computer Architecture and High
Performance Computing, SBAC-PAD 2010, Petropolis, Brazil,
October 27-30, 2010.

[29] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, “A tree
projection algorithm for generation of frequent item sets,” J. Parallel
Distrib. Comput., vol. 61, no. 3, pp. 350–371, 2001.

[30] C. Silvestri and S. Orlando, “gpudci: Exploiting gpus in frequent
itemset mining,” in Proceedings of the 20th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing,
PDP 2012, Munich, Germany, February 15-17, 2012.

[31] Khedija Arour, Amani Belkahla: Frequent Pattern-growth Algorithm
on Multi-core CPU and GPU Processors. CIT 22(3): 159-169 (2014)

[32] Agapito, G., Guzzi, P. H., & Cannataro, M. (2021). Parallel and
distributed association rule mining in life science: A novel parallel
algorithm to mine genomics data. Information Sciences.Plotnikova,
V., Dumas, M., & Milani, F. (2020). Adaptations of data mining
methodologies: a systematic literature review. Plotnikova V, Dumas
M, Milani F. Adaptations of data mining methodologies: a systematic
literature review. PeerJ Comput Sci. 2020 May 25;6.

[33] Bisong, E., Tran, E., & Baysal, O.. Built to Last or Built Too Fast?
Evaluating Prediction Models for Build Times. IEEE/ACM 14th
International Conference on Mining Software Repositories, Bisong,
Ekaba and Tran, Eric and Baysal, Olga, 2017.

[34] Kholod, I., Shorov, A., & Gorlatch, S.. Efficient Distribution and
Processing of Data for Parallelizing Data Mining in Mobile Clouds. J.

Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl., 2020,
11(1), 2-17.

[35] Agapito, G., Guzzi, P. H., & Cannataro, M.. Parallel and distributed
association rule mining in life science: A novel parallel algorithm to
mine genomics data. Information Sciences 2021.

[36] Kumar, S., & Mohbey, K. K.. A review on big data based parallel and
distributed approaches of pattern mining. Journal of King Saud
University-Computer and Information Sciences, 2022. 34(5), 1639-
1662.

[37] Khedija AROUR and Amani BELKAHLA. Frequent Pattern-growth
Algorithm on Multi-core CPU and GPU Processors. J. Comput. Inf.
Technol. 22(3): 159-169 2014.

Tagreed Alsulimani is an Associate Professor
And the Supervisor of the Department of
Information System Management at Business
College of University of Jeddah

