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Abstract 
Large Language Models (LLMs) have significantly advanced 
Automatic Speech Recognition (ASR) by improving transcription 
accuracy, handling diverse linguistic contexts, and enabling cross-
lingual and low-resource applications. This paper reviews the 
integration of LLMs into ASR systems, analyzing 19 research 
papers and 24 datasets. The aim is to examine key methodologies, 
including fine-tuning, transfer learning, and prompt engineering, 
and highlight their impact on phoneme recognition and contextual 
understanding. The datasets reviewed span diverse languages, 
tasks, and domains, reflecting the growing emphasis on creating 
inclusive ASR systems. This review also provides an overview of 
the main ASR architecture with its main 4 modules, to provide a 
concise synthesis of current advancements, identify existing 
limitations, and suggest future research directions to enhance the 
robustness, efficiency, and accessibility of ASR systems powered 
by LLMs.  
Keywords 
Spam review detection, CNN-LSTM, CNN-RNN, CNN-GRU, Big 
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I. INTRODUCTION  
     The Turing test, introduced in 1950, challenged 
programmers to create computers capable of 
human-like conversation. Despite numerous 
attempts over the years, this goal remained elusive 
until the recent development of chatbots powered 
by large language models (LLMs), such as 
ChatGPT. The desire to enable computers to 
converse with humans extends beyond text-based 
interactions, encompassing voice communication 
through the integration of automatic speech 
recognition (ASR) technology with LLMs. LLMs 
represented a significant advancement in artificial 
intelligence, following the developments in 
machine learning and deep learning. The 
convergence of LLMs and ASR technology has 
facilitated substantial progress in the field of 
artificial intelligence, augmenting capabilities in 
diverse applications such as voice assistants, 
automated transcription services, and real-time 
translation tools. 

This review aims to explore the progress in the 
field of ASR systems based on LLMs, 
highlighting key algorithms, and datasets, in 
different tasks. The next section presents the 
review of the different studies, following it is the 
ASR archetechterue overview, finally, a review on 
the datasets used in the studies with a brief 
description on each. 
 

II. LITERATURE REVIEW  
 

This review investigates 19 study for the 
automatic speech recognition (ASR) task using 
LLMs. Those studies focus on different tasks like 
automatic speech translation (AST), 
transliteration, Speech emotion recognition 
(SER), and serval models to enhance ASR and 
text-to-speech TTS, and Speech-to-text tasks. The 
studies highlight a notable shift towards end-to-
end architectures as opposed to cascading 
schemes, and the adoption of multimodal datasets, 
alongside challenges related to computational 
costs, resource requirements, and scalability. As 
depicted in Figure 1, research in this domain is 
predominantly conducted by leading technology 
companies rather than academic institutions. This 
inclination can be partially attributed to the 
extensive in-house datasets and significant 
computational resources available within these 
organizations. Table I, present a summarization of 
the different studies reviewed in this paper. 

Yu et al. [1] presents a comparative study of 
three commonly used structures as ASR 
connectors, fully connected layers, multi-head 
cross-attention, and Q-Former. Experiments were 
conducted utilizing the LibriSpeech, Common 
Voice, and GigaSpeech datasets. LLMs based on 
Q-Former demonstrated substantial generalization 
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capabilities when applied to out-of-domain 
datasets, achieving a 12% relative reduction in 
word error rate (WER) compared to the Whisper 
baseline ASR model on the Eval2000 test set, all 
without incorporating any in-domain training data 
from the Switchboard dataset. Furthermore, a 
novel segment-level Q-Former has been 
introduced, allowing LLMs to effectively 
recognize speech segments that exceed the  
encoder's duration limitations.  

 
 

Fig.  I. Studies affiliation  
 

This led to a 17% relative improvement in 
WER over other connector architectures for 90-
second speech samples. 
 

Ma et al.[2] investigates the enhancement of 
speech emotion recognition (SER) through speech 
pre-trained model (PTM) data2vec, the text 
generation model GPT-4, and the Azure text-to-
speech (TTS) system. They used Azure Emotional 
TTS for synthesized data and multiple data 
augmentation strategies, such as random mixing, 
adversarial training, transfer learning, and 
curriculum learning, to enhance SER performance 
using synthetic speech. For evaluation, they used 
weighted accuracy (WA) and unweighted 
accuracy (UA), WA corresponds to the overall 
accuracy while UA corresponds to the average 
class-wise accuracy. Experiments confirmed the 
method's effectiveness compared to alternative 
data augmentation approaches and synthetic 
datasets, with slight improvements on both. 
 

Park et al. [3] presented the multi-modal 
decoding process probabilistically and performed 

joint acoustic and lexical beam searches to 
incorporate cues from both modalities: audio and 
text. Experiments demonstrate that infusing 
lexical knowledge from the LLM into an 
acoustics-only diarization system improves the 
overall speaker-attributed word error rate (SA-
WER). Showing up to 39.8% relative delta-SA-
WER improvement from the baseline system.  
 
 

 
Fathullah et al. [4] extend the capabilities of 

LLMs by prepending a sequence of audio 
embeddings to the text token embeddings. Where 
the LLM can be converted to an ASR system and 
used in the exact same manner as its textual 
counterpart. Experiments on Multilingual 
LibriSpeech (MLS) with 8 languages, show that 
incorporating a conformer encoder into the open-
sourced LLaMA-7B allows it to outperform 
monolingual baselines by 18% relatively in WER 
and perform multilingual speech recognition, 
despite LLaMA being trained on English text. 
 

Wu et al. [5] introduced Speech-LLaMA, 
incorporating acoustic information into text-based 
large language models. The method leverages 
Connectionist Temporal Classification and a 
simple audio encoder to map the compressed 
acoustic features to the continuous semantic space 
of the LLM. Experiments done on 13 language 
speech-to-text translation tasks demonstrated a 
significant improvement over strong baselines, 
highlighting the potential advantages of decoder-
only models for speech-to-text conversion. It is 
worth noting that the languages translated include 
the Arabic language. 
 

Li et al. [6] proposed two zero-shot ASR 
domain adaptation methods using LLaMA-7B. 
That is, prompting LLMs for domain adaptation 
without the need to re-train. Experiments show 
that, with only one domain prompt, both methods 
can effectively reduce word error rates on out-of-
domain TedLium-2 and SPGISpeech datasets.  

Chen et al. [7] studied the ASR of YouTube 
videos using LLMs. They demonstrate up to 8% 
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relative reduction in Word Error Rate on US 
English (en-us) and code-switched Indian English 
(en-in) long-form ASR test sets and a reduction of 
up to 30% relative on Salient Term Error Rate 
(STER) over a strong first-pass baseline that uses 
a maximum-entropy based language model. 

Hu et al. [8] proposed to train a single 
multilingual language model for shallow fusion in 
multiple languages. With 84 languages and a 
generalist language model (GLaM). When the 
number of experts increases, GLaM dynamically 
selects only two at each decoding step to keep the 
inference computation roughly constant. They 
then apply GLaM to a multilingual shallow fusion 
task based on a state-of-the-art end-to-end model. 
Compared to a dense language model of similar 
computation during inference, GLaM reduces the 
WER of an English long-tail test set by 4.4% 
relative. Compared to the baseline model, GLaM 
achieves an average WER reduction of 5.53% 
over 43 languages. 

Santoso et al. [9] proposed utilizing LLM to 
annotate emotional speeches, investigating the use 
of conversation sequence transcription, and 
incorporating the textual acoustic feature 
descriptors into the prompt. Experiments using the 
IEMOCAP dataset show that emotional speech 
annotation using LLMs can outperform human 
annotation with possibly lower annotation costs. 

Ling et al. [10] explored ASR transcription 
tasks using 6 different datasets across multiple 
domains. Experiments  demonstrate that the 
proposed approach can effectively leverage the 
strengths of pretrained LLMs to produce more 
readable ASR transcriptions. In specific, GPT2 
XL and ZPP achieve slightly better performance 
in terms of Token Error Rate (TER) on 7 and 9 out 
of 11 datasets, respectively, improving the average 
TER from 13.00% to 12.56% and 12.62%. 

Tang et al. [11] present the first study that 
achieves both ASR and Automatic audio 
captioning (AAC) by connecting an LLM with 
auditory encoders. Integrating the Whisper 

encoder for speech and the BEATs encoder for 
audio events. With 5 datasets used, LibriSpeech, 
GigaSpeech, WavCaps, AudioCaps, and Clotho. 
LibriSpeech , and GigaSpeech, achieved a 6% 
lower WER.  

Wang et al. [12] preseted a joint Speech and 
Language Model (SLM), that combines a 
pretrained LLM, a pretrained speech encoder, and 
an adapter. SLM freezes the pretrained foundation 
models to maximally preserve their capabilities, 
and only trains a simple adapter with just 1% 
(156M) of the foundation models’ parameters. 
This adaptation not only leads SLM to achieve 
strong performance on conventional tasks such as 
ASR and AST, but also unlocks the novel 
capability of zero-shot instruction-following for 
more diverse tasks. This approach proved the 
superiority of the end-to-end model proposed as 
opposed to the cascading pipeline, where the 
speech is fed to an ASR system and the transcripts 
are sent to LLMs, as BLEU degraded from 38 to 
32 due to ASR errors. 

Wang et al. [13] applied the SLM [12], 
presented earlier, to dialog applications. Task-
oriented dialogs often contain domain-specific 
entities, i.e., restaurants, hotels, train stations, and 
city names, which are difficult to recognize, but, 
critical for the downstream applications. Inspired 
by the RAG (retrieval-augmented generation) 
models, they propose a retrieval-augmented SLM 
(ReSLM) that overcomes this weakness. They 
evaluated ReSLM on speech MultiWoz task 
(DSTC-11 Challenge), and found that the retrieval 
augmentation boosts model performance, 
achieving joint goal accuracy (JGA) (38.6% vs 
32.7%), slot error rate (SER) (20.6% vs 24.8%) 
and ASR WER (5.5% vs 6.7%).  

Everson at al. [14] introduced a method that 
utilizes the ASR system's lattice output, aiming to 
encapsulate speech ambiguities and enhance 
spoken language understanding (SLU) outcomes. 
Lattice output is the first-pass ASR system 
product. They study varying ASR performance 
conditions and scrutinize the aspects of in-context 
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learning which prove the most influential. GPT-
3.5 achieved the best performance with 30% and 
20% enhancement over other LLMs in F1 and 
exact match (EM) metrics respectively. 

Qu et al. [15] presented a personalized voice-
based system with Speech emotion recognition 
(SER) powered by LLMs. It analyzes emotional 
status from vocal user inputs, with an accuracy 
exceeding baseline models by 20%. 

Lakomkin et al. [16] proposed contextual 
speech recognition using audio features, along 
with optional text tokens, to train the system to 
complete transcriptions in a decoder-only way. As 
a result, the system implicitly learns how to 
leverage unstructured contextual information 
during training. Results prove a 6% WER 
reduction when additional textual context is 
provided. Moreover, the proposed method 
improves WER by 7.5% overall and 17% WER on 
rare words, compared to a baseline contextualized 
RNN-T system that has been trained on a speech 
dataset more than twenty-five times larger.  

Wang et al. [17] introduced VALL-E,  the 
first TTS framework with strong in-context 
learning capabilities as GPT-3. It enables prompt-
based approaches for zero-shot TTS, which does 
not require additional structure engineering, pre-
designed acoustic features, and fine-tuning. 
VALL-E can be used to synthesize high-quality 

personalized speech with only a 3-second enrolled 
recording of an unseen speaker as an acoustic 
prompt. Results show that VALL-E outperforms 
the state-of-the-art zero-shot TTS systems in terms 
of speech naturalness and speaker similarity tested 
on LibriSpeech and VCTK corpus. 

Chen et al. [18] present a Speech Augmented 
Language Model (SALM) with multitasking and 
in-context learning capabilities. SALM comprises 
a frozen text LLM, an audio encoder, a modality 
adapter module, and LoRA layers to 
accommodate speech input and associated task 
instructions. SALM achieves performance on par 
with task-specific conformer baselines for ASR 
and AST, and also shows zero-shot in-context 
learning capabilities, demonstrated through 
keyword-boosting tasks for ASR and AST.  

Malkiel et al. [19] proposed SegLLM, for 
efficient and accurate call segmentation and topic 
extraction. SegLLM is composed of offline and 
online phases. The offline phase is applied once to 
a given list of topics and involves generating a 
distribution of synthetic sentences for each topic 
using a GPT3 LLM. The online phase is applied 
to every call separately and scores the similarity 
between the transcripted conversation and the 
topic anchors found in the offline phase. Results 
show a proven improvement reaching 80% and 44% 
in Pk score and WindowDiff respectively.  
 

                 
Table I. ASR with LLM  

 
Affiliation Training corpus Task 

Encoder, 
decoder, and 

LLM 
Settings Results 

[1] 
 

Tsinghua 
university 

LibriSpeech [20], 
Common Voice 
[21], and 
GigaSpeech [22] 

ASR  Whisper, Vicuna NVidia A100 80GB 
GPUs, 
90k steps, 
batch size of 24 

17% WER reductions 

[2] Alibaba IEMOCAP [23] 
 

Speech emotion 
recognition 

GPT-4 Nvidia RTX 3090 
GPU with a batch size 
of 
128 for 50 epochs 

2% Improvements in 
WA and UA 

[3] Nvidia AMI-MH (Mixed 
Headset) [24]  
Call Home 
American English 

Speaker 
diarization (SD) 

GPT NVIDIA TESLA 
V100 GPU 

9.8% relative delta-
SA-WER improvement 
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Speech (CHAES, 
LDC97S42) [25] 

[4] Meta AI Multilingual  
LibriSpeech [26] 

ASR Conformer [27] 
LLaMA-7B 

16 NVIDIA A100 
40GBs, with a batch 
size of up to 500 
seconds of audio per 
GPU 

18% reductions in 
WER 

[5] Microsoft CoVoST 2 [28] Translation  seq2seq, Whisper, 
and LLaMA-7B 

16 Nvidia V100 GPUs 
 

4.6 absolute BLEU 
score improvement 

[6] 
 

Microsoft LibriSpeech, 
TedLium-2 [29], 
and SPGISpeech 
[30] 

Zero-shot 
adaptation 

HuBERT [31], 
and LLaMA-7B 

8 NVIDIA 
Tesla V100 32GB 
GPUs, with a batch 
size of 1 per GPU 

7% and 3% WER 
reductions on 
TedLium-2 and 
SPGISpeech 
respectively  

[7] Google Youtube Videos 
[32], 
Google’s Voice 
Search traffic [33] 

Long-form ASR T5 [34], PaLM, 
and HAT 
factorization [35] 

 8% WER and 30% 
STER reductions  

[8] Google Google 
Voice Search traffic 

Transliterating Conf-140M, 
Conf-640M, and 
GLaM-64E 

Google Cloud V4 
TPUs 

GLaM achieves an 
average WER 
reduction of 5.53% 
over 43 languages 

[9] RevComm IEMOCAP Speech emotion 
recognition 

GPT-3.5-turbo  LLM annotation 
outperform human 
annotation 

[10] Microsoft LibriSpeech, 
Common Voice, 
GigaSpeech, 
TedLium-2, 
SPGISpeech, and 
VoxPopuli [36] 

ASR 
transcriptions 

GPT2-XL, ZPP, 
and Whisper 

 GPT2 XL and ZPP 
achieved slightly  better 
TER 

[11] Tsinghua LibriSpeech, 
GigaSpeech, 
WavCaps[37], 
AudioCaps[38], and 
Clotho [37] 

Automatic 
audio captioning 
(AAC) 

Whisper-L-v2  
BEATs [39], and 
Vicuna 13B3 [40] 

 LibriSpeech and 
GigaSpeech reduced 
WER by 6% on average  

[12] Google 
DeepMind 

SpeechStew ASR 
[41], VoxPopuli 
ASR, FLEURS ASR 
[42], CoVoST2[43], 
and Universal 
Speech Model 
(USM) [44] 

Translation, and 
ASR with 
Contextual 
Biasing 

T5, and MC4 [44] 
Whisper, 
mSLAM-CTC, 
MAESTRO, 
USM-M, 
Mu2SLAM, 
AudioPaLM-2  

  

[13] Google 
DeepMind 

Universal Speech 
Model (USM)  

Dialogue state 
tracking (DST) 

T5 XXL  Improvements in JGA 
5%, SER 4%, and WER 
2% 

 [14] Amazon 
Alexa AI 

LibriSpeech, Natural 
Multi-speaker 
Spoken Question 
Answering 
(NMSQA) [45], and 
The Airline Travel 
Information Systems 
(ATIS) 
[45]1/24/2025 
10:55:00 AM 

ASR BLOOMZ-560M, 
BLOOMZ-3B, 
and GPT-3.5-
turbo 

 GPT-3.5 scored 30% 
and 20% enhancement 
over other LLMs in 
terms of F1 and EM 
metrics respectively 

[15] University 
of 
California 

Ryerson Audio-
Visual Database of 
Emotional Speech 
and Song 
(RAVDESS) [46] 

Speech emotion 
recognition (SER) 

Whisper 

 

 SER-Whisper scored 
20% more accuracy 
compared to baseline 
models.  

[16] Meta AI Public inhouse 
Facebook and 
Instagram videos 

Contextualized 
ASR 

LLaMA-7B 128 A100 GPUs Speech LLaMA 
achieved a 5.2% 
reduction in WER 
compared to the RNN-
T system. 
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[17] Microsoft LibriLight [47], and 
VCTK [47] 

 

Contextualized 
TTS 

SOTA zero-shot 
TTS model 
YourTTS [48] 

16 NVIDIA TESLA 
V100 32GB GPUs, 
with a batch size of 6k 
acoustic tokens per 
GPU for 800k steps. 

VALL-E outperforms 
the zero-shot TTS 
system in terms of 
speech naturalness and 
speaker similarity 

[18]  Nvidia NGC ASR 
pretrained Fast 
Conformer-large, 
and or the 
Conformer self-
supervised learning 
(SSL) checkpoint 
from Nvidia  

Translation  NeMo,  Fast 
Conformer [49], 
and GPT-style 
Megatro [50] 

A100 GPUs SALM performs better 
on shorter words, 
compound words, and 
text normalization than 
baseline 

[19] Microsoft Dynamics 365 sales 
tenants segmented 
labeled with topics: 
greetings, closing, 
pricing, 
identification, and 
scheduling 

Call segmentation 
and tagging 

GPT-3 (the 
“davinci-003” 
model) 

 SegLLM outperforms 
other methods by 12% 
and 8% in Pk and 
WindowDiff scores 

 
Table II. Datasets used in the studies  

 Year Name Description 

[45] 1990 The Airline Travel 
Information Systems 
(ATIS) 

41 sessions each of 40 minutes 

[25] 1997 Call Home American 
English Speech 

120 unscripted 30-minute telephone conversations between native English speakers  

[24] 2005 AMI-MH (Mixed 
Headset) 

100-hour corpus of meetings. Capturing voice, video, electronic pen writings, presentation 
slides, and white-board contents 

[23] 2008 IEMOCAP 12 hours of audiovisual data, including video, speech, motion capture of face, text transcriptions 

[29] 2012 TedLium-2 Derived from TED Talks and composed of 216 hours of audio among 698 unique speakers 

[32] 2013 YouTube Videos  Two datasets, Ytn08 for YouTube News videos with 11.1 hours  
and YtiDev11 for YouTube view-count weighted videos with 6.6 hours 

[20] 2015 LibriSpeech Derived from LibriVox audiobooks, and contains 1000 hours of speech sampled at 16 kHz 

[46] 2018 Ryerson Audio-Visual 
Database of Emotional 
Speech and Song 
(RAVDESS) 

24 professional actors, vocalizing lexically matched statements in a neutral North American 
accent and a range of emotions, including calm, happiness, sadness, anger, fear, surprise, and 
disgust, each articulated in two levels of emotional intensity: normal and strong, along with a 
neutral expression. Resulting in 7,356 recordings and a total size of 24.8 GB. 

[47] 2019 VCTK  110 English speakers with various accents. Each speaker reads out about 400 sentences. 

[38] 2019 AudioCaps 46K audio clips with human-written text pairs collected via crowdsourcing on the AudioSet 
dataset 

[51] 2019 LibriLight  Derived from open-source audio books from the LibriVox project. It contains over 60K hours 
of audio. 

[33] 2019 Google’s Voice Search 
Traffic  

Four datasets, Search 56k hours, Farfield 38k hours, Telephony 4k hours, YouTube 190k hours. 

[37] 2020 Clotho 4981 audio samples and each audio sample has five captions (a total of 24 905 captions). Audio 
samples are of 15 to 30 seconds duration and captions are eight to 20 words long.  

[26] 2020 Multilingual LibriSpeech Derived from LibriVox audiobooks and consists if 8 languages, including about 44.5K hours 
of English and a total of about 6K hours for other languages 

[28] 2020 CoVoST 2  Large-scale multilingual speech-to-text corpus covering translations from 21 languages into 
English and from English into 15 languages. 

[21] 2020 Common Voice 50,000 individuals with 2,500 hours of collected audio in 38 languages 

[22] 2021 GigaSpeech 10,000 hours of labeled audio, and 40,000 unlabeled 
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[30] 2021 SPGISpeech Derived from company earnings calls by S&P Global, Inc. including 5,000 hours of 
professionally transcribed earnings calls, with 50,000 speakers 

[36] 2021 VoxPopuli 400K hours of unlabeled speech data in 23 languages 

[41] 2021 SpeechStew ASR  A collection of 7 datasets: AMI, common voice, English Broadcast News (LDC97S44, 
LDC97T22, LDC98S71, LDC98T28), LibriSpeech, Switchboard, TED-LIUM v3, Wall Street 
Journal 

[52] 2022 Natural Multi-speaker 
Spoken Question 
Answering (NMSQA)  

They are the spoken version of the SQuAD v1.1 dataset with 297.18 / 37.61 hours of audio for 
the train/dev sets 

[53] 2023 Universal Speech Model 
(USM) 

pre-trained (unsupervised) on 12 million hours of YouTube audio recordings with BEST-RQ 
[54] 

[55] 2024 WavCaps 
 

400k audio clips with paired captions sourced from audio clips and their raw descriptions from 
the web and a sound event detection dataset. 

[42] 2023 FLEURS ASR  Speech dataset in 102 languages built on top of the machine translation FLoRes-101 
benchmark, with approximately 12 hours of speech supervision. 

 
 
 
 

 

 

 

 

 

 

 

Fig. II: General Architecture of LLM-Based ASR system 
 
 

III. ARCHITECTURE 
 The architecture of the speech-based models 
using LLMs involves several components that 
work together to handle audio input, process it into 
textual data, and then use the LLM for natural 
language understanding and generation. Fig II 
illustrates the general architecture of LLM-based 
ASR systems, a reflection of the literature 
covered. Also, in the following a high-level 
overview of the architecture’s modules: 

A. Speech-to-text module 
It gets the audio as input and converts it into 

text for further processing. This module comprises 

two main components: Feature Extraction: 
Extracts features from raw audio, such as Mel-
frequency cepstrum coefficients (MFCCs), using 
libraries to extract acoustic features such as 
Librosa [9], [56]. Phonem recognizer: Maps 
audio features to phonemes or graphemes using 
deep learning models like RNNs, CNNs, or 
transformers, while previously it was done using 
classical models like Hidden Markov Models 
(HMMs) paired with Gaussian Mixture Models 
(GMMs). 
B. Text Processing and Tokenization 

Prepares the transcribed text for the LLM by 
tokenizing it into units (e.g., words, subwords, or 

Feature Extraction 
(MFCC) 

Phonem Recognizer 

Speech-to-text (STT) 
Text Processing and 

Tokenization 
 

Encoders: HuBERT, 
w2v-BERT,and USM 

Large Language Model: 
LLaMA-7B, GPT, and T5 

 

Input: Create  
embeddings from tokens 

Transformer: Processes 
embeddings through self-
attention and feedforward 

Output: Generates 
probabilities for the next 

token 

Text Normalization 

Speech Synthesis: with 
models like Png BERT, 
Tacotron, and WaveNet 

Vocoder: with models 
like HiFi-GAN 

Input Voice Output Voice  

Text-to-speech (TTS) 
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characters) that the model can process. Some of 
the tokenization encoders include: HuBERT [6], 
[31], w2v-BERT [57], and Universal Speech 
Model (USM) [12], [13], [58].  

C. Large Language Model  
Handles understanding, reasoning, and 

generating natural language responses based on 
the text input. According to the literature, 
examples to thoes LLMs are: LLaMA-7B, GPT, 
and T5. The architecture of this level is in three 
parts: Input Layer: Encodes tokenized input into 
embeddings. Transformer Layers: Process 
embeddings through self-attention and 
feedforward layers to capture contextual 
relationships. Output Layer: Generates 
probabilities for the next token or sequence of 
tokens. 
 

D. Text-to-Speech (TTS) Module 
 Converts the LLM-generated text into 
natural-sounding speech. It operates using three 
different essential components: Text 
Normalization: Which handles punctuation and 
special symbols for smoother speech synthesis. 
Speech Synthesis: Generates audio from text 
mainly using neural architectures like Png BERT 
[12], [60], Tacotron [61], [62], WaveNet [63], or 
FastSpeech [64]. Finally, a Vocoder: it converts 
the synthesized spectrogram into a waveform, 
with models like Generative adversarial networks 
for efficient and high-fidelity speech synthesis 
(HiFi-GAN) [65].  

E. Optimizations for Speech-Based LLMs 
End-to-End Models: Some approaches integrate 
STT and LLM tasks for better performance, like 
[5], [6], [8], [10], [11],  [12], [13], [66]. 
Contextualized Learning: this refers to the 
learning enforcement through the injection of 
external context. This proved to aid the learning 
and enhance the ASR and TTS in specific, [16] 
and [17]. 
 

IV. DATASETS 
 
 The datasets covered in this paper leverage a 
diverse collection of 24 corpora spanning 35 
years, from 1990 to 2024. That is said, the studies 
are conducted in 2023 and 2024 only with 6 and 
13 papers in each year respectively. These datasets 
represent a wide range of linguistic, acoustic, and 
contextual variations, making them critical for 
advancing research in ASR systems. The datasets 
depicted in Table II, vary in size, scope, and 
purpose, encompassing multilingual corpora, 
domain-specific recordings, and multimodal 
resources. This breadth reflects the evolution of 
data collection techniques and the growing 
emphasis on inclusivity in language 
representation. The datasets also highlight the 
shift towards multimodal approaches, integrating 
text, audio, and sometimes visual inputs, to 
support the development of robust and versatile 
ASR systems. By analyzing these datasets, this 
paper provides insights into their roles in shaping 
ASR advancements, their alignment with 
emerging trends, and their impact on the 
challenges and opportunities in the field. 

V. CONCLUSION AND FUTURE WORK 
 

This review highlights the transformative 
impact of Large Language Models (LLMs) on 
Automatic Speech Recognition (ASR) systems, 
synthesizing insights from 19 research studies 
conducted in 2023 and 2024 and 24 datasets 
spanning 1999 to 2024. LLMs have revolutionized 
ASR by enhancing transcription accuracy, 

enabling cross-lingual capabilities, and addressing 
challenges in low-resource languages. Key trends 
identified include a shift toward end-to-end 
architectures, the growing use of multimodal 
datasets, and the integration of advanced transfer 
learning and fine-tuning techniques. However, 
significant challenges remain, including the high 
computational costs, scalability issues, and 
availability of datasets. The dominance of 
prominent technology companies in the research 



IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.1, January 2025 
 

9 

in this domain highlights the critical role of 
computational resources and proprietary datasets, 
underscoring a disparity in access between 
industry and academia. Future directions may 
include breakthroughs in processing and 
developing energy-efficient models. Additionally, 
fostering collaboration between industry and 
academia could bridge gaps and accelerate 
innovation. This review serves as a foundation for 
researchers and practitioners to advance the field 
of ASR by leveraging the capabilities of LLMs 
while addressing existing limitations. 
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