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Abstract 
Arabic text is cursive unlike many of most common languages, also, 
letters have different shapes depending on position of the letter, the 
shape of the first letter depends on what is after it, the shape of middle 
letters depend on what is before it and after it, and the shape of the last 
letter depends on what is before it. Moreover, different letters have 
very similar shapes. These properties make Arabic text recognition a 
difficult computer vision task. In this paper we try to solve the Arabic 
text recognition task without being constrained by a dictionary or a 
language model. We propose a new neural network architecture that 
achieves state of the art results in the unconstrained recogni-tion task. 
Our architecture is convolutional neural network with residual 
connections, followed by Bi-directional Long Short-Term Memory 
(BLSTM) layer, then finally a fully connected layer.  
Keywords 
deep learning; text recognition; convolutional neu-ral network; 
recurrent neural network; computer vision 
 

 
1. Introduction 
 

Most of the text that we use in our daily lives is digital. 
However, handwritten text is present in notes, documents, 
letters, and historical scripts to name a few, which are still 
an important part of our society. The Digitalization of hand-
written text is very important to allow us to use it with our 
technologies.  

Handwritten text recognition is an open research problem 
in the field of Computer Vision, there is much research on the 
topic. Moreover, Arabic handwritten text could be considered 
a more difficult task than Latin languages, due to the nature of 
the cursive text, similar characters, and the different ways of 
writing characters see Fig.1. Also, Arabic handwritten text has 
much less available datasets.  

The emergence of Deep Learning techniques in the field of 
Computer Vision after the amazing breakthrough on ImageNet by 
[1]. Since then Deep Learning-based models dominated Computer 
Vision tasks [2] achieving a higher result than any other state of 
the art methods. As for text recognition, the trend continued 
Recurrent Neural Networks and Convolutional Neural Networks 

based models achieved state-of-the-art re-sults surpassing all other 
methods.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Difficulties of the Arabic Language Different letters have 
very similar shapes, and the same letter could have very different 

shapes. 
 

However, most of the current state-of-the-art results, in the 
arabic handwritten text recognition are constrained by a limited 
number of words, and their accuracies are supported by decoders 
that use the available dictionary of words [3] [4]. This encourages 

us to try to approach the problem in an unconstrained way, where 
our model does not require a decoder that limits its output to 
the available dictionary.  
Our method considers images as a sequence of width pixels. We 
extract the features of the image, this output feature map would be 
the number of filters in the final convolution layer by the width of 
the input image downsampled by 4. This sequence is then 
processed to the BLSTM layer, then finally the output of the 
BLSTM is decoded using a fully connected layer that outputs the 
probability of all classes for each point in the sequence. We use 
the Connectionist temporal classification (CTC) [5] loss function 
which allows us to calculate a loss for the predicted probabilities 
of our model based on the ground-truth target, which might be of 
different length than the predicted sequence. This approach allows 
us to handle input images of arbitrary sizes. However, the 
limitation of our method is that the downsampled width length 
must be equal to or greater than the target sequence length.  
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This paper proposes a convolutional recurrent neural net-work 
architecture, that achieves state-of-the-art results in the 
unconstrained Arabic handwritten text recognition task. Section  
II gives an overview of the related work in the text 
recognition task. Section III describes the dataset, 
preprocessing and augmentation. Section IV describes the 
proposed architecture. Finally, section V describes the 
system that is used for training, the experiments with the 
hyperparameter choices, and the results. 
 
 
2. Related Work 

 
As for text recognition recently an architecture of BLSTM 

followed by CTC loss function and used Token Passing and Word 
Beam Search (WBS) decoder [4]. They also proposed a novel 
algorithm for adaptive data augmentation (ADA). They Explore 
different architectural choices, the best performing is BLSTM, 
CTC loss, WBS, and ADA algorithm. They achieve 95.19% CAR 
and 96.19% WAR using characters as models, WBS decoder, and 
ADA algorithm. Moreover, they achieve 86.70% CAR and 83.90% 
WAR using characters as models and the WBS decoder, without 
the ADA algorithm. However, these high results come with the 
help of search decoders which depends on a dictionary of 
vocabulary.  

Another approach for text recognition et al Poznansk [6] 
developed a CNN architecture, it uses the VGG [7] style which 
consists of 9 convolution layers, 3 fully-connected layers, and the 
max-out for the activation layers. Batch normalization used after 
each convolution, and before each max-out activation. The novelty 
of the approach was the use of multiple separate and parallel fully 
connected layers, where each layer leads to a separate group of 
predictions. Tested on IFN/ENIT they scored a word accuracy rate 
of 99.29% for the abc-d configuration and 97.07% for the abcd-e 
configuration.  

For the unconstrained text recognition [8] proposed a simple 
neural network architecture. The architecture contains mostly 
depthwise convolutions instead of regular convolutions, as well as 
gate blocks which is the use of attention gates to control the 
interlayer Information flow, and filter out the insignificant signals. 
They experimented with many datasets from different languages 
dataset. they achieved remarkable results of 8.7% CER on the 
KHATT dataset.  

In the task of holistic word classification, [10] proposed a 
CNN architecture for holistic Arabic handwritten name 
classifications, they used SUST-ARG which is a dataset of 
Arabic handwritten names. Their proposed architecture is a 
CNN consisting of convolutional layers, RuLE activation 
function, batch normalization, and max-pooling layers. They 
achieved an accuracy of 99% on 20 classes (names).  

For the task of Arabic characters classification a CNN 
architecture was proposed by [11], also they introduced a 
new Arabic Character dataset named Hijja. They used a 
CNN architecture consisting of convolution layers, max-

pooling layers, and finally, a fully connected layers. They 
achieved an accuracy of 88%, precision of 87.88%, recall 
of 87.81%, and an F1 score of 87.8%. 
 

We used the IFN/ENIT dataset [12], which is considered a 
benchmark in the field of Arabic handwritten text recognition. It 
is composed of 946 Tunisian town/village names, written by more 
than 400 people. The dataset is split into 5 subsets: a, b, c, d, and 
e, and there are 3 train/test configurations which are: abc/d, bcd/a, 
and abcd/e.  
 
 
 
 
 
 
 
 
 
Fig. 2. The difference between the original provided ground-truth 

and our new ground-truth 
 

 
 
 
 
 

 
Fig. 3. An example of a batch of images, with different widths. 
All the images are padded with white space on the right to have 

the same width as the widest image. 
 
B. Preprocessing  
The ground-truth preprocessing [13] is done to reformat the 
ground-truth files. In the case of the IFN/ENIT dataset, the ground 
truth is provided in terms of character shapes as modeling units 
and not in terms of character as modeling units, also in their 
labeling they do not consider space between two words as a 
character or a modeling unit. For instance, in an image of a town 
name that has more than one word, there is no indication that a 
word ended and another has started. Moreover, there is an addition 
of ‘llL’ on any ground truth character shape that has a ‘shadda’ see 
Fig.2. We change this format into character as a modeling unit, 
add a space between words, and remove the ’shadda’ indicators.  

As for input images preprocessing, we normalize (Normal-
ization of images is making their pixel values between 1 and 
0) images by dividing their pixel values by 255, this helps the 
model learn faster and better; because, neural networks process 
inputs using small weight values, and inputs with large values 
can disrupt or slow down the learning process [14]. Also, we 
resize the images to a fixed height and dynamic width to 
preserve their aspect ratio. When we feed a batch of images to 
the word recognition model we change the width of all the 
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images in the batch to have the same width as the widest image 
by adding white padding to the smaller images see Fig.3. 
 
C. Augmentation  

As for input augmentation, we use a general geometric 
augmentation for text images that was proposed by [15], this 
augmentation helps create more images that realistically appear as 
written by a different writer see Fig.4. Furthermore, we use 
arithmetic image augmentations [16], by adding a random value to 
each pixel, inverting the pixel values, or multiplying each pixel 
with a random value, these arithmetic operations result in changing 
the background color, text color, or both of them see Fig.5. Also, 
we use standard image 

 
 
 
 

 
Fig. 4. Real image vs augmented images by general geometric 

augmentation for text images. 
 

 
 
 
 

 
Fig. 6. Real image vs augmented images by Gaussian noise, 

Poisson noise, rotation, and shear Augmentations. 
 

augmentations Gaussian noise, Poisson noise, rotating, and 
shearing see Fig.6. Overall, we use these augmentations to 
improve the generalization capability of the model and 
reduce overfitting. 
 
 
3.  Methods 

 
Our proposed architecture is Convolutional layers with 

residuals connections [17], [18], followed by a BLSTM [19]– [21], 
then fully connected layer to decode the output of the BLSTM see 
Fig.7, then softmax activation to convert the output into 
probabilities, and the CTC loss function. Most of the current 
methods approach this task directly using a recurrent neural 
network [4]. We think this task is a visual task, thus Convolutional 
Neural Network (CNN) is needed; however, the content of images 
are arabic words, arabic letters unlike other languages, depends on 
what is before and what is after; therefore, using Recurrent Neural 
Network (RNN) is also appropriate. Consequently, we use the two 
architectures to solve this task. First we use the CNN to extract the 
features, downsample the height dimension to 1, and downsample 
the width dimension by 4. The output feature map becomes the 
downsampled width dimension by the number of output channels. 
After that, we treat the width as a sequence and feed it to the 
BLSTM, each element of the output sequence is decoded by the 
fully connected layer followed by softmax activation. Then, the 

final output dimensions will be the downsampled width by the 
number of classes, meaning that for each width we will have 
probabilities for each letter. In the case of training, we send the 
probabilities to the CTC loss function with the ground-truth label, 
to calculate a loss value for training the model. In the other case, 
which is the inference, we use greedy decoder where we take the 
highest probable letter at each width. Because we are using the 
CTC loss function we will have a blank class beside the rest of the 
letters, and we have to apply the CTC decoding which is done by 
two steps, see Fig.8. Firstly, removing all the repetitions of 
the letters. Secondly, removing all the blank letters. Finally, 
by applying the CTC decoding we will end up with our 
predicted sequence of letters. 

To discuss our proposed architecture further, the CNN is 
composed of two building blocks which are the residual blocks 
and the layers. The residual block contains two convolutional 
layers each followed by a batch normalization layer and a ReLU 
activation function, and before the last ReLU activation we apply 
the residual connection y = f (x) + x. Equation 1 requires that the 
dimensions of x and f(x) matches, and in the case that they do not 
match we apply 1x1 convolution to the x, to match their 
dimensions. The layers are 4 stacked residual blocks, with a 
dropout layer after each two residual blocks. The CNN is 3 layers, 
each followed by max-pooling layer, expect the last which is 
followed by adaptive average pooling, which reduce the height of 
the feature map to 1, and keep the width, unless the width is more 
than 256 it will be reduced to 256 by the adaptive average pooling 
layer. As for the BLSTM layer, it is composed of 2 stacked layers, 
input dimensions same as the last layer in the CNN, and the hidden 
dimensions of it is a hyperparameter that we set. Finally we have 
a fully connected layer, which takes an input size of the BLSTM 
hidden dimensions, and output size of the number of characters. 
 

y = f (x) + x (1)
 
4.  Experiment & Results 

 
As for experiments we built a whole system for training, 

testing, and inference. This system helped us conduct many 
experiments. In following two sections we will discuss the 
system, and our results 
 
A. Experiments System  

This system uses PyTorch [22] for the neural networks, 
and PyTorch Lightning [23] to integrate callbacks (which 
allows us to add features like changing the images size 
during training), training loggers [24], and 16 bit precision 
training. Our system has many features that allowed us to 
experiment easily, which are:  

Multiple weight initializers  
Increasing the size of images during training 
Different learning rate schedulers.  

Different optimizers  
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Changing learning rate schedulers during training  
Support multiple datasets, by defining a class for that 
dataset  

Support multiple architectures  
Many hyperparameters choices via CLI  

Logging experiment name, hyperparameters, and 
results in Weights and Biases  

Many other features 
 
B. Experiments  

In these experiments we used 1 GPU, which is the RTX 2080, 

also we used 16 bit precision for training, which allowed 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. This figure describes our full CRNN architecture. (a) Is the smallest block in the CNN. (b) Layer is composed of 4 residual blocks 
and two dropout layers. (c) Is the whole architecture, which consist of a CNN that have 4 Layers, then followed by BLSTM which takes 

the the output feature map of the CNN as a sequence, than the fully connected layer will output a probability distribution of all the classes 
for each point in the sequence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Example of CTC decoding. Which first removes all the repeations, then remove all the blank labels, resulting in a decoded sequence. 
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us to train faster and use less GPU memory. As for abc/d 
configuration of dataset, we used 64 as the initial number of 
channels in our CNN, and increased the number by factor 
of 2 in the following layers, we had two dropout layers with 
0.55 probability in each layer as seen in Fig.7, we used 
BLSTM with 2 layers, 256 hidden size, and 0.2 dropout 
probability. We used the Stochastic Gradient Descent (SGD) 
optimizer, with a learning rate of 0.025, momentum of 0.9, 
and weight decay of 1e-4 (0.0001); furthermore, we started 
with constant learning rate, then used a callback to use 
exponential learning rate decay policy from the 40 
epoch with a factor of 0.965. We used the default weight 
initialization provided by PyTorch. As for the data related 
hyperparameters, a batch size of 8 was used, and the initial 
images height was 32, we used a callback to increase the 
height of the images by 8, and 16 respectively,  which leads 
in an increase to the width to preserve the aspect ratio, the 
height increases was in the 123, and 137 epoch respectively. 
We trained for 149 epochs, which took 1 day and 15 hours. 
In Fig.9 we see the the loss and the Character Error Rate 
(CER) plotted over epochs during the training process.  
As for the abcd/e configuration, we trained with almost the 
same hyperparameters as the abc/d configurations expect 
the height increase was by 8 and 16 in the 120 and 132 
epoch respectively, finally the model was trained for 142 
epochs. 
 
 

TABLE I  
OUR CRNN MODEL RESULTS, ALSO COMPARED 
TO OTHER RESULTS.  

 
   CER   

Methods 
  

Configurations  
  abc/d abcd/e bcd/a  
      

Ours  1.99 7.27 2.61  
BLST
M1 [4] 6.9 11.84 8.59  
BLST
M2 [4] 4.81 8.79 6.67  

 
 

For the final configuration bcd/a, we had to train a new 
model, where we used also the same hyperparameters as the 
last two configurations, expect the height increase by 8 and 
16 in the 120 and 145 epoch respectively, finally the model 
was trained for 155 epoch. 

 
C. Results 
 

Overall, we achieve state-of-the-art results in the 
recognition task without the use of language models, 
dictionaries, and search-based decoders on the IFN/ENIT 
dataset; our results can be seen in Table.I. Unfortunately, to 
the best of our knowledge, there is not any published work 
that does not use language models, dictionaries, and search-
based decoders on the IFN/ENIT dataset. Therefore, we had 
to compare our results to other methods that use language 
models, dictionaries, or search-based decoders, which is not 
a fair comparison, but it also shows us that we do not need 
to constrained the output of the recognition models to a 
limited dictionary to achieve the highest results. 
 
 
5. Conclusion  
 

In conclusion, we propose a neural network 
architecture that uses CNN and RNN, to solve the Arabic 
text recog-nition task without constraints. We change the 
ground-truth format to characters as modeling unit, and 
apply 3 types of augmentations. Our approach is to 
recognize letters regardless of their shapes, and also our 
model accepts inputs of any size. We achieve state-of-the-
art results without the use of language models, dictionaries, 
or search-based decoders. We almost beat the current state-
of-the-art results that use language models, dictionaries, or 
search-based decoders. 
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