
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.1, January 2025

135

Manuscript received January 5, 2025
Manuscript revised January 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.1.15

Unconstrained Arabic Handwritten Text Recognition Using

Convolutional Recurrent Neural Network

Ahmad AbdulQadir AlRababah
1
, Mohammed Khalid Aljahdali

2

2
, Abdulrahim Abdulhamid Al jahdali3, and Mohammed Saleh AlGhanmi4

1, 2, 3, 4Department of Computer Science
Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University

Rabigh 21911, Saudi Arabia

Abstract
Arabic text is cursive unlike many of most common languages, also,
letters have different shapes depending on position of the letter, the
shape of the first letter depends on what is after it, the shape of middle
letters depend on what is before it and after it, and the shape of the last
letter depends on what is before it. Moreover, different letters have
very similar shapes. These properties make Arabic text recognition a
difficult computer vision task. In this paper we try to solve the Arabic
text recognition task without being constrained by a dictionary or a
language model. We propose a new neural network architecture that
achieves state of the art results in the unconstrained recogni-tion task.
Our architecture is convolutional neural network with residual
connections, followed by Bi-directional Long Short-Term Memory
(BLSTM) layer, then finally a fully connected layer.
Keywords
deep learning; text recognition; convolutional neu-ral network;
recurrent neural network; computer vision

1. Introduction

Most of the text that we use in our daily lives is digital.
However, handwritten text is present in notes, documents,
letters, and historical scripts to name a few, which are still
an important part of our society. The Digitalization of hand-
written text is very important to allow us to use it with our
technologies.

Handwritten text recognition is an open research problem
in the field of Computer Vision, there is much research on the
topic. Moreover, Arabic handwritten text could be considered
a more difficult task than Latin languages, due to the nature of
the cursive text, similar characters, and the different ways of
writing characters see Fig.1. Also, Arabic handwritten text has
much less available datasets.

The emergence of Deep Learning techniques in the field of
Computer Vision after the amazing breakthrough on ImageNet by
[1]. Since then Deep Learning-based models dominated Computer
Vision tasks [2] achieving a higher result than any other state of
the art methods. As for text recognition, the trend continued
Recurrent Neural Networks and Convolutional Neural Networks

based models achieved state-of-the-art re-sults surpassing all other
methods.

Fig. 1. Difficulties of the Arabic Language Different letters have
very similar shapes, and the same letter could have very different

shapes.

However, most of the current state-of-the-art results, in the
arabic handwritten text recognition are constrained by a limited
number of words, and their accuracies are supported by decoders
that use the available dictionary of words [3] [4]. This encourages

us to try to approach the problem in an unconstrained way, where
our model does not require a decoder that limits its output to
the available dictionary.
Our method considers images as a sequence of width pixels. We
extract the features of the image, this output feature map would be
the number of filters in the final convolution layer by the width of
the input image downsampled by 4. This sequence is then
processed to the BLSTM layer, then finally the output of the
BLSTM is decoded using a fully connected layer that outputs the
probability of all classes for each point in the sequence. We use
the Connectionist temporal classification (CTC) [5] loss function
which allows us to calculate a loss for the predicted probabilities
of our model based on the ground-truth target, which might be of
different length than the predicted sequence. This approach allows
us to handle input images of arbitrary sizes. However, the
limitation of our method is that the downsampled width length
must be equal to or greater than the target sequence length.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.1, January 2025

136

This paper proposes a convolutional recurrent neural net-work
architecture, that achieves state-of-the-art results in the
unconstrained Arabic handwritten text recognition task. Section
II gives an overview of the related work in the text
recognition task. Section III describes the dataset,
preprocessing and augmentation. Section IV describes the
proposed architecture. Finally, section V describes the
system that is used for training, the experiments with the
hyperparameter choices, and the results.

2. Related Work

As for text recognition recently an architecture of BLSTM

followed by CTC loss function and used Token Passing and Word
Beam Search (WBS) decoder [4]. They also proposed a novel
algorithm for adaptive data augmentation (ADA). They Explore
different architectural choices, the best performing is BLSTM,
CTC loss, WBS, and ADA algorithm. They achieve 95.19% CAR
and 96.19% WAR using characters as models, WBS decoder, and
ADA algorithm. Moreover, they achieve 86.70% CAR and 83.90%
WAR using characters as models and the WBS decoder, without
the ADA algorithm. However, these high results come with the
help of search decoders which depends on a dictionary of
vocabulary.

Another approach for text recognition et al Poznansk [6]
developed a CNN architecture, it uses the VGG [7] style which
consists of 9 convolution layers, 3 fully-connected layers, and the
max-out for the activation layers. Batch normalization used after
each convolution, and before each max-out activation. The novelty
of the approach was the use of multiple separate and parallel fully
connected layers, where each layer leads to a separate group of
predictions. Tested on IFN/ENIT they scored a word accuracy rate
of 99.29% for the abc-d configuration and 97.07% for the abcd-e
configuration.

For the unconstrained text recognition [8] proposed a simple
neural network architecture. The architecture contains mostly
depthwise convolutions instead of regular convolutions, as well as
gate blocks which is the use of attention gates to control the
interlayer Information flow, and filter out the insignificant signals.
They experimented with many datasets from different languages
dataset. they achieved remarkable results of 8.7% CER on the
KHATT dataset.

In the task of holistic word classification, [10] proposed a
CNN architecture for holistic Arabic handwritten name
classifications, they used SUST-ARG which is a dataset of
Arabic handwritten names. Their proposed architecture is a
CNN consisting of convolutional layers, RuLE activation
function, batch normalization, and max-pooling layers. They
achieved an accuracy of 99% on 20 classes (names).

For the task of Arabic characters classification a CNN
architecture was proposed by [11], also they introduced a
new Arabic Character dataset named Hijja. They used a
CNN architecture consisting of convolution layers, max-

pooling layers, and finally, a fully connected layers. They
achieved an accuracy of 88%, precision of 87.88%, recall
of 87.81%, and an F1 score of 87.8%.

We used the IFN/ENIT dataset [12], which is considered a
benchmark in the field of Arabic handwritten text recognition. It
is composed of 946 Tunisian town/village names, written by more
than 400 people. The dataset is split into 5 subsets: a, b, c, d, and
e, and there are 3 train/test configurations which are: abc/d, bcd/a,
and abcd/e.

Fig. 2. The difference between the original provided ground-truth

and our new ground-truth

Fig. 3. An example of a batch of images, with different widths.
All the images are padded with white space on the right to have

the same width as the widest image.

B. Preprocessing
The ground-truth preprocessing [13] is done to reformat the
ground-truth files. In the case of the IFN/ENIT dataset, the ground
truth is provided in terms of character shapes as modeling units
and not in terms of character as modeling units, also in their
labeling they do not consider space between two words as a
character or a modeling unit. For instance, in an image of a town
name that has more than one word, there is no indication that a
word ended and another has started. Moreover, there is an addition
of ‘llL’ on any ground truth character shape that has a ‘shadda’ see
Fig.2. We change this format into character as a modeling unit,
add a space between words, and remove the ’shadda’ indicators.

As for input images preprocessing, we normalize (Normal-
ization of images is making their pixel values between 1 and
0) images by dividing their pixel values by 255, this helps the
model learn faster and better; because, neural networks process
inputs using small weight values, and inputs with large values
can disrupt or slow down the learning process [14]. Also, we
resize the images to a fixed height and dynamic width to
preserve their aspect ratio. When we feed a batch of images to
the word recognition model we change the width of all the

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.1, January 2025

137

images in the batch to have the same width as the widest image
by adding white padding to the smaller images see Fig.3.

C. Augmentation

As for input augmentation, we use a general geometric
augmentation for text images that was proposed by [15], this
augmentation helps create more images that realistically appear as
written by a different writer see Fig.4. Furthermore, we use
arithmetic image augmentations [16], by adding a random value to
each pixel, inverting the pixel values, or multiplying each pixel
with a random value, these arithmetic operations result in changing
the background color, text color, or both of them see Fig.5. Also,
we use standard image

Fig. 4. Real image vs augmented images by general geometric

augmentation for text images.

Fig. 6. Real image vs augmented images by Gaussian noise,

Poisson noise, rotation, and shear Augmentations.

augmentations Gaussian noise, Poisson noise, rotating, and
shearing see Fig.6. Overall, we use these augmentations to
improve the generalization capability of the model and
reduce overfitting.

3. Methods

Our proposed architecture is Convolutional layers with

residuals connections [17], [18], followed by a BLSTM [19]– [21],
then fully connected layer to decode the output of the BLSTM see
Fig.7, then softmax activation to convert the output into
probabilities, and the CTC loss function. Most of the current
methods approach this task directly using a recurrent neural
network [4]. We think this task is a visual task, thus Convolutional
Neural Network (CNN) is needed; however, the content of images
are arabic words, arabic letters unlike other languages, depends on
what is before and what is after; therefore, using Recurrent Neural
Network (RNN) is also appropriate. Consequently, we use the two
architectures to solve this task. First we use the CNN to extract the
features, downsample the height dimension to 1, and downsample
the width dimension by 4. The output feature map becomes the
downsampled width dimension by the number of output channels.
After that, we treat the width as a sequence and feed it to the
BLSTM, each element of the output sequence is decoded by the
fully connected layer followed by softmax activation. Then, the

final output dimensions will be the downsampled width by the
number of classes, meaning that for each width we will have
probabilities for each letter. In the case of training, we send the
probabilities to the CTC loss function with the ground-truth label,
to calculate a loss value for training the model. In the other case,
which is the inference, we use greedy decoder where we take the
highest probable letter at each width. Because we are using the
CTC loss function we will have a blank class beside the rest of the
letters, and we have to apply the CTC decoding which is done by
two steps, see Fig.8. Firstly, removing all the repetitions of
the letters. Secondly, removing all the blank letters. Finally,
by applying the CTC decoding we will end up with our
predicted sequence of letters.

To discuss our proposed architecture further, the CNN is
composed of two building blocks which are the residual blocks
and the layers. The residual block contains two convolutional
layers each followed by a batch normalization layer and a ReLU
activation function, and before the last ReLU activation we apply
the residual connection y = f (x) + x. Equation 1 requires that the
dimensions of x and f(x) matches, and in the case that they do not
match we apply 1x1 convolution to the x, to match their
dimensions. The layers are 4 stacked residual blocks, with a
dropout layer after each two residual blocks. The CNN is 3 layers,
each followed by max-pooling layer, expect the last which is
followed by adaptive average pooling, which reduce the height of
the feature map to 1, and keep the width, unless the width is more
than 256 it will be reduced to 256 by the adaptive average pooling
layer. As for the BLSTM layer, it is composed of 2 stacked layers,
input dimensions same as the last layer in the CNN, and the hidden
dimensions of it is a hyperparameter that we set. Finally we have
a fully connected layer, which takes an input size of the BLSTM
hidden dimensions, and output size of the number of characters.

y = f (x) + x (1)

4. Experiment & Results

As for experiments we built a whole system for training,

testing, and inference. This system helped us conduct many
experiments. In following two sections we will discuss the
system, and our results

A. Experiments System

This system uses PyTorch [22] for the neural networks,
and PyTorch Lightning [23] to integrate callbacks (which
allows us to add features like changing the images size
during training), training loggers [24], and 16 bit precision
training. Our system has many features that allowed us to
experiment easily, which are:

Multiple weight initializers
Increasing the size of images during training
Different learning rate schedulers.

Different optimizers

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.1, January 2025

138

Changing learning rate schedulers during training
Support multiple datasets, by defining a class for that
dataset

Support multiple architectures
Many hyperparameters choices via CLI

Logging experiment name, hyperparameters, and
results in Weights and Biases

Many other features

B. Experiments

In these experiments we used 1 GPU, which is the RTX 2080,

also we used 16 bit precision for training, which allowed

Fig. 7. This figure describes our full CRNN architecture. (a) Is the smallest block in the CNN. (b) Layer is composed of 4 residual blocks
and two dropout layers. (c) Is the whole architecture, which consist of a CNN that have 4 Layers, then followed by BLSTM which takes

the the output feature map of the CNN as a sequence, than the fully connected layer will output a probability distribution of all the classes
for each point in the sequence.

Fig. 8. Example of CTC decoding. Which first removes all the repeations, then remove all the blank labels, resulting in a decoded sequence.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.1, January 2025

139

us to train faster and use less GPU memory. As for abc/d
configuration of dataset, we used 64 as the initial number of
channels in our CNN, and increased the number by factor
of 2 in the following layers, we had two dropout layers with
0.55 probability in each layer as seen in Fig.7, we used
BLSTM with 2 layers, 256 hidden size, and 0.2 dropout
probability. We used the Stochastic Gradient Descent (SGD)
optimizer, with a learning rate of 0.025, momentum of 0.9,
and weight decay of 1e-4 (0.0001); furthermore, we started
with constant learning rate, then used a callback to use
exponential learning rate decay policy from the 40
epoch with a factor of 0.965. We used the default weight
initialization provided by PyTorch. As for the data related
hyperparameters, a batch size of 8 was used, and the initial
images height was 32, we used a callback to increase the
height of the images by 8, and 16 respectively, which leads
in an increase to the width to preserve the aspect ratio, the
height increases was in the 123, and 137 epoch respectively.
We trained for 149 epochs, which took 1 day and 15 hours.
In Fig.9 we see the the loss and the Character Error Rate
(CER) plotted over epochs during the training process.
As for the abcd/e configuration, we trained with almost the
same hyperparameters as the abc/d configurations expect
the height increase was by 8 and 16 in the 120 and 132
epoch respectively, finally the model was trained for 142
epochs.

TABLE I
OUR CRNN MODEL RESULTS, ALSO COMPARED
TO OTHER RESULTS.

 CER

Methods

Configurations
 abc/d abcd/e bcd/a

Ours 1.99 7.27 2.61
BLST
M1 [4] 6.9 11.84 8.59
BLST
M2 [4] 4.81 8.79 6.67

For the final configuration bcd/a, we had to train a new
model, where we used also the same hyperparameters as the
last two configurations, expect the height increase by 8 and
16 in the 120 and 145 epoch respectively, finally the model
was trained for 155 epoch.

C. Results

Overall, we achieve state-of-the-art results in the
recognition task without the use of language models,
dictionaries, and search-based decoders on the IFN/ENIT
dataset; our results can be seen in Table.I. Unfortunately, to
the best of our knowledge, there is not any published work
that does not use language models, dictionaries, and search-
based decoders on the IFN/ENIT dataset. Therefore, we had
to compare our results to other methods that use language
models, dictionaries, or search-based decoders, which is not
a fair comparison, but it also shows us that we do not need
to constrained the output of the recognition models to a
limited dictionary to achieve the highest results.

5. Conclusion

In conclusion, we propose a neural network
architecture that uses CNN and RNN, to solve the Arabic
text recog-nition task without constraints. We change the
ground-truth format to characters as modeling unit, and
apply 3 types of augmentations. Our approach is to
recognize letters regardless of their shapes, and also our
model accepts inputs of any size. We achieve state-of-the-
art results without the use of language models, dictionaries,
or search-based decoders. We almost beat the current state-
of-the-art results that use language models, dictionaries, or
search-based decoders.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”
Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[2] A. A. AlRababah, “Neural networks precision in technical vision
sys-tems,” IJCSNS, vol. 20, no. 3, p. 29, 2020.

[3] G. A. Abandah, F. T. Jamour, and E. A. Qaralleh, “Recognizing hand-
written arabic words using grapheme segmentation and recurrent neural
networks,” International Journal on Document Analysis and Recognition
(IJDAR), vol. 17, no. 3, pp. 275–291, 2014.

[4] M. Eltay, A. Zidouri, and I. Ahmad, “Exploring deep learning ap-
proaches to recognize handwritten arabic texts,” IEEE Access, vol. 8,
pp. 89 882–89 898, 2020.

[5] A. Graves, “Connectionist temporal classification,” in Supervised
Se-quence Labelling with Recurrent Neural Networks. Springer,
2012, pp. 61–93.

[6] A. Poznanski and L. Wolf, “Cnn-n-gram for handwriting word recog-
nition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 2305–2314.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.1, January 2025

140

[8] M. Yousef, K. F. Hussain, and U. S. Mohammed, “Accurate, data-
efficient, unconstrained text recognition with convolutional neural
net-works,” Pattern Recognition, vol. 108, p. 107482, 2020.

[9] S. A. Mahmoud, I. Ahmad, W. G. Al-Khatib, M. Alshayeb, M. T. Parvez, V.
Margner,¨ and G. A. Fink, “Khatt: An open arabic offline handwritten text
database,” Pattern Recognition, vol. 47, no. 3, pp. 1096–1112, 2014.

[10] M. E. Mustafa and M. K. Elbashir, “A deep learning approach for
handwritten arabic names recognition,” 2020.

[11] N. Altwaijry and I. Al-Turaiki, “Arabic handwriting recognition
system using convolutional neural network,” Neural Computing and
Applica-tions, pp. 1–13, 2020.

[12] M. Pechwitz, H. El Abed, and V. Margner,¨ “Handwritten arabic
word recognition using the ifn/enit-database,” in Guide to OCR for
Arabic Scripts. Springer, 2012, pp. 169–213.

[13] A. A. Q. AlRababah, “On the associative memory utilization in
english-arabic natural language processing,” International Journal of
Advanced and Applied Sciences, vol. 4, pp. 14–18, 2017.

[14] T. Jayalakshmi and A. Santhakumaran, “Statistical normalization and
back propagation for classification,” International Journal of Computer
Theory and Engineering, vol. 3, no. 1, pp. 1793–8201, 2011.

[15] C. Luo, Y. Zhu, L. Jin, and Y. Wang, “Learn to augment: Joint data
augmentation and network optimization for text recognition,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 13 746–13 755.

[16] A. B. Jung, K. Wada, J. Crall, S. Tanaka, J. Graving, C. Reinders, S. Ya-dav,
J. Banerjee, G. Vecsei, A. Kraft, Z. Rui, J. Borovec, C. Vallentin, S. Zhydenko,
K. Pfeiffer, B. Cook, I. Fernandez,´ F.-M. De Rainville, C.-H. Weng, A. Ayala-
Acevedo, R. Meudec, M. Laporte et al., “imgaug,”
https://github.com/aleju/imgaug, 2020, online; accessed 01-Feb-2020.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[18] ——, “Identity mappings in deep residual networks,” in European
conference on computer vision. Springer, 2016, pp. 630–645.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[20] A. Graves, M. Liwicki, S. Fernandez,´ R. Bertolami, H. Bunke, and J.
Schmidhuber, “A novel connectionist system for unconstrained hand-
writing recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 31, no. 5, pp. 855–868, 2008.

[21] A. Graves and J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” Advances in neural infor-
mation processing systems, vol. 21, pp. 545–552, 2008.

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alche´-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[23] W. Falcon, “Pytorch lightning,” GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, vol. 3, 2019.

[24] L. Biewald, “Experiment tracking with weights and biases,” 2020,
software available from wandb.com. [Online]. Available:
https://www.wandb.com/

