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Abstract 
It is generally known that the difference of two composition 
operators formed by linear fractional self-maps of a ball cannot 
be nontrivially compactly contained in the Hardy space or any 
common weighted Bergman space. This study extends this 
finding in two important ways: Inducing maps are expanded to 
linear fractional maps that carry a ball into a second, and the 
difference is extended to generic linear combinations, potentially 
higher-dimensional space. 
Keywords: 
Fractional maps, Composition Operators, Compact Linear 
Operators. 

 
1. Introduction 
 

When 𝑚 is a non-negative integer, we designate 𝔹௠  as the 
complex 𝑚 -unit ℂ௠space's ball and 𝕊௠ as the unit sphere that 
forms 𝔹௠  border. To emphasize the special function played by 
the case where 𝑚 ൌ 1, we shall substitute the notations 𝔻 and 𝕋 
for 𝔹ଵ  and 𝕊ଵ , respectively. This paper's main focus is on 
composition operators generated by linear fractional maps that 
move a ball into a possible different-dimensional space. We 
reserve a pair of arbitrary two dimensions, 𝑚  and 𝑛 , unless 
otherwise specified. The first function spaces that come to mind 
are the Hardy space and the weighted Bergman spaces. 

Let the normalized 1 ൅ ℇ  weighted volume measure 𝔹௠ be 
denoted by the notation ℇ ൐ െ2, 𝑑𝑣௠,ଵାℇ 

𝑑𝑣௠,ଵାℇሺ𝑧ሻ ∶ൌ 𝑐௠,ଵାℇሺ1 െ |𝑧|ଶሻଵାℇ𝑑𝑣௠ሺ𝑧ሻ 

where 𝑐௠,ଵାℇ is the chosen constant to ensure that  𝑣௠,ଵାℇሺ𝔹௠ሻ ൌ
1  and 𝑑𝑣௠  is the normalized volume measure on 𝔹௠ . The 

holomorphic functions 𝑓  on 𝔹௠  Hilbert space ,is then the 
weighted Bergman space 𝐴ଵାℇ

ଶ ሺ𝔹௠ሻ. 

‖𝑓‖௠,ଵାℇ ∶ൌ ቊන |𝑓ሺ𝑧ሻ|ଶ
 

𝔹೘

𝑑𝑣௠,ଵାℇሺ𝑧ሻቋ
ଵ ଶ⁄

 

has a limit. For the Hardy space 𝐻ଶሺ𝔹௠ሻ, This is the Hilbert space 
of all holomorphic functions f on B m when the norm equals 1, we 
use the idea 𝐴ିଵ

ଶ ሺ𝔹௠ሻ) when 

 ℇ ൌ െ2. 

‖𝑓‖௠,ିଵ ∶ൌ ቊ sup
଴ழ௥ழଵ

න |𝑓ሺ𝑟𝜁ሻ|ଶ
 

𝕊೘

𝑑𝜎௠ሺ𝜁ሻቋ
ଵ ଶ⁄

 

has a limitation. The normalized surface area measurement on 𝕊௠ 
is indicated here by the symbol 𝑑𝜎௠.The weak star convergence 
𝑑𝑣௠,ଵାℇ → 𝑑𝜎௠  as ℇ → െ2ା  justifies the notation 𝐴ିଵ

ଶ ሺ𝔹௠ሻ ൌ
𝐻ଶሺ𝔹௠ሻ. A composition operator 𝐶஍ induced by the holomorphic 
map Φ ∶ 𝔹௡ → 𝔹௠ is defined by 

𝐶஍𝑓 ∶ൌ 𝑓 ∘ Φ 

for holomorphic 𝑓  on 𝔹௠  functions. To translate holomorphic 
functions on 𝔹௠ to those on 𝔹௡, 𝐶஍ is a linear operator. Over the 
past few decades, various elements of these composition operators 
have been explored; for a summary of the work done before the 
mid-1990s, also the monographs by Shapiro [17] and Cowen-
MacCluer [3]. Comparing the several-variable theory of 
composition operators to the one-variable theory reveals how 
much more complicated it is, as is common knowledge.  
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For example, Littlewood's Subordination Principle has the 
well-known consequence that, when 𝑚 ൌ 𝑛 ൌ 1 , 𝐶஍  is always 
confined on the Hardy space and the weighted Bergman spaces. 
Such boundedness is no longer guaranteed when higher 
dimensional balls are used; for further information, see [3, Section 
6.3] for the Hardy space and [9] for the weighted Bergman spaces. 
The existence of bounded composition operators results from 
holomorphic self-maps of a ball satisfying a particular additional 
property, though. 

The so-called Wogen condition is one such additional 
attribute; for further information, see [3, Section 6.2] and [19]. 
Cowen and MacCluer discovered linear fractional maps, another 
kind of inducing functions that guarantee boundedness, in a quite 
different setting. In this context, we refer to a linear fractional map 
as one that has the form Φ ∶  𝔹௠ → ℂ௠, and Φ is holomorphic. 

                            Φሺ𝑧ሻ ൌ
𝐴𝑧 ൅ 𝑏
〈𝑧, 𝑐〉 ൅ 𝑑

                            ሺ1ሻ 

When the linear operator 𝐴 ∶ ℂ௡ → ℂ௠, 𝑏 ∈ ℂ௠, 𝑐 ∈ ℂ௡ and 𝑑 ∈
ℂ are present. Here, 〈⋅,⋅〉 stands for the common inner product on 
ℂ௡ , For example, 〈𝑧,𝑤〉  is equal to 〈𝑧,𝑤〉 ൌ 𝑧ଵ𝑤ଵ ൅⋯൅ 𝑧௡𝑤௡ 
for 𝑧,𝑤 ∈ ℂ௡  where 𝑧௝  stands for the 𝑗 -th component of 𝑧 ; the 
context should make it apparent which dimension is lacking in this 
notation. 

There is no denying that on the set of 𝑧 ∈ ℂ௡ with 〈𝑧, 𝑐〉 ൅
𝑑 ് 0 extends to a holomorphic function. When 𝑐 ൌ 0, Take note 
that at 𝑧 ൌ െ𝑑𝑐 |𝑐|ଶ⁄ , the denominator of Φ  disappears. As a 
result, when Φሺ𝔹௡ሻ ⊂ 𝔹௠  is added, either | |𝑑| ൐ |𝑐|  or Φ  is 
obtained or reduces to a constant map. Therefore, we can assume 
|𝑑| ൐ |𝑐| in (18) from the beginning when  Φሺ𝔹௡ሻ ⊂ 𝔹௠ . In 
particular, we observe that in an open set containing 𝔹௡, any linear 
fractional map Φ ∶ 𝔹௡ → 𝔹௠  is holomorphic. When 𝑚 ൌ 𝑛 , 
Cowen and MacCluer [4] initially introduced and researched 
linear fractional maps and associated composition operators. They 
showed that composition operators generated by linear fractional 
self-maps of a ball are always bounded in terms of boundedness 
on the Hardy space and the weighted Bergman spaces (see [4, 
Theorems 14 and 15]). This turns out to be true for universal linear 
fractional maps from one ball into another, provided the weight 
parameters are coupled properly. In order to be more specific, we 
demonstrate (see Theorem (4.2.7)) that whenever 𝑚 ൌ 𝑛 ൅ ℇ, any 
linear fractional map Φ ∶ 𝔹௡ → 𝔹௠  generates a bounded 
composition operator 𝐶஍ ∶ 𝐴ଵାℇ

ଶ ሺ𝔹௠ሻ → 𝐴ଵାଶℇ
ଶ ሺ𝔹௡ሻThis justifies 

the parameter connection that is imposed on the premises of our 
main result, Theorem(1.1), below. 

In terms of compactness, we note that 𝐶஍ ∶ 𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ →

𝐴ଵାଶℇ
ଶ ሺ𝔹௡ሻ with 𝑚 ൌ 𝑛 ൅ ℇ is compact if and only if ‖Φ‖ஶ  ∶ൌ

sup
఍∈𝕊೙

|Φሺ𝜁ሻ| ൏ 1. The requirement is not difficult. 

In to show the need, we note that if it is closed and bounded, a 
simple modification of the argument of [3, Theorem 3.43] results 

in (
ଵି|஍ሺ௥఍ሻ|మ

ଵି௥మ
→ ∞  as 𝑟 → 1ି for each 𝜁 ∈ 𝕊௡  and subsequently 

‖Φ‖ஶ ൏ 1 by smoothness of on Φ on 𝔹௠. 

Research on compact differences, or more generally, linear 
combinations, in the theory of composition operators, has recently 
attracted attention. For examples, see [5, 7, 14, 18] for the Hardy 
spaces and [1, 2, 6, 8, 10, 11, 13, 15, 16] for the weighted Bergman 
spaces. 

Composition operators generated by linear fractional self-
maps of a ball are not able to construct a nontrivial compact 
difference, as independently shown in [6] and [8]. These operators 
are known to behave quite tightly in this circumstance. 

We broaden this rigidity in two important dimensions. In 
particular, we broaden the definition of difference to include linear 
combination and, concurrently, to include linear fractional self-
maps of a ball that take a ball into another. The following theorem 
provides a clearer explanation of our main discovery. 

Theorem(1.1) Given a non-negative integer 𝑁 , let Φଵ, … ,Φே ∶
𝔹௡ → 𝔹௠  distinctly different linear fractional maps and 
𝜆ଵ, … , 𝜆ே ∈ ℂ. let ℇ ൒ െ1 , 𝑚 ൌ 𝑛 ൅ ℇ, assume that ∑ 𝜆௝𝐶஍ೕ

ே
௝ୀଵ ∶

𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ → 𝐴ଵାଶℇ

ଶ ሺ𝔹௡ሻ is closed and bounded. Then, for each 

 𝑗 ൌ 1, … ,𝑁, either ฮΦ௝ฮ
ஶ
൏ 1 or 𝜆௝ ൌ 0. 

We demonstrate several fundamental characteristics of linear 
fractional maps that are required for the theorem's proof (1.1). We 
demonstrate the theory (1.1). Our strategy differs significantly 
from that in [6] and [8]. We also note that the parameter relation 
𝑚 ൌ 𝑛 ൅ ℇ  guarantees the boundedness of the composition 
operators under discussion (Theorem (3.1)). 

 
2. Methodology 
 

We first examine the impact of linear fractional maps on 
horocycle radii. Then, we give a uniqueness result for maps of 
linear fractions that contain a ball colliding with another. 

let 0 ൏ 𝑡 ൏ ∞ , we denote by ∆௧  the horodisk consisting of all 
points 𝜆 ∈ 𝔻 satisfying 

|1 െ 𝜆|ଶ ൏ 𝑡ሺ1 െ |𝜆|ଶሻ. 

A simple computation can be used to verify that ∆௧⊂ 𝔻 is truly a 

disk with a radius of 
௧

௧ାଵ
 and a center at 

ଵ

௧ାଵ
. To be more specific, 

∆௧ is tangent to 𝕋 at 1. 

As 𝑡 rises to 1, ∆௧ also grows and fills the entire 𝔻. The horocycle 
that forms the boundary of t is denoted by the symbol ∆௧. Since Γ௧ 
is perpendicular to 𝕋 at 1, one may verify that 

      lim
ఒ→ଵ
ఒ∈୻೟

ሺ1 െ 𝜆ሻଶ

|1 െ 𝜆|ଶ
ൌ െ1.                                                  ሺ2ሻ 

We just enter∆ஶ∶ൌ 𝔻 and Γஶ ∶ൌ 𝕋 for 𝑡 ൌ ∞. 

Note the Hopf Lemma in the following proposition: 𝜑ᇱሺ1ሻ ൐ 0 . 
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Proposition (2.1):  

If 𝜑ሺ1ሻ ൌ 1, then if 0 ൏ 𝑡 ൑ ∞  , 𝜑 ∶ ∆௧→ 𝔻 fractional linear map. 
Then s is specified by the equation and 𝜑ሺΓ௧ሻ ൌ Γ௦. 

 1 ൅
1
𝑠
ൌ

1
𝜑ᇱሺ1ሻ

ቊ1 ൅
1
𝑡
൅

Reሾ𝜑ᇱᇱሺ1ሻሿ

𝜑ᇱሺ1ሻ
ቋ                                   ሺ3ሻ. 

Proof:  

Since 𝜑 ∶ ∆௧→ 𝔻  is a linear fractional map 𝜑ሺ1ሻ ൌ 1 , the 
horocycle Γ௧is transferred onto another horocycle. Thus, we just 
need to determine the horocycle's radius, or 𝜑ሺΓ௧ሻ. To accomplish 
this, We parameterize the curve for 𝜑ሺΓ௧ሻ. 

𝜏ሺ𝜃ሻ ∶ൌ ൫1 െ 𝑟 ൅ 𝑟𝑒௜ఏ൯, െ𝜋 ൑ 𝜃 ൑ 𝜋 where 
ଵ

௥
∶ൌ 1 ൅

ଵ

௧
. 

Because 𝜑ሺΓ௧ሻ is a circle passing 1 at 𝜃 ൌ 0, it is sufficient to 
show that the right-hand side of (3) equals the curvature of 𝜏 at 
𝜃 ൌ 0. 

Since 

𝜏ᇱሺ0ሻ ൌ 𝑟𝜑ᇱሺ1ሻ𝑖   and   𝜏ᇱᇱሺ0ሻ ൌ 𝑟𝜑ᇱሺ1ሻ െ 𝑟ଶ𝜑ᇱᇱሺ1ሻ. 

Since the curve's normal vector is 1 is ሺെ1,0ሻ, we can see that the 
acceleration vector 𝜏ᇱᇱሺ0ሻ  is normal component is 𝑟𝜑ᇱሺ1ሻ ൅
𝑟ଶReሾ𝜑ᇱᇱሺ1ሻሿ; keep in mind that 𝜑ᇱሺ1ሻ ൐ 0. 

We have specifically'𝜑ᇱሺ1ሻ ൅ 𝑟Reሾ𝜑ᇱᇱሺ1ሻሿ ൒ 0. The curvature of 
at 𝜏 at 𝜃 ൌ 0is therefore given by 

|Imሾ𝜏ᇱሺ0ሻሿ ൈ Reሾ𝜏ᇱᇱሺ0ሻሿ|
|𝜏ᇱሺ0ሻ|ଷ

ൌ
𝜑ᇱሺ1ሻ ൅ 𝑟Reሾ𝜑ᇱᇱሺ1ሻሿ

𝑟ሾ𝜑ᇱሺ1ሻሿଶ
 

                                                     ൌ
1

𝜑ᇱሺ1ሻ
ቊ

1
𝑟
൅

Reሾ𝜑ᇱᇱሺ1ሻሿ

𝜑ᇱሺ1ሻ
ቋ. 

The evidence is complete since  
ଵ

௥
ൌ 1 ൅ ଵ

௧
. 

While not necessary for the current paper, we note several 
Proposition (2.1) ramifications that may be of interest on their own. 

Remark (2.2):  

(1) Given that 𝜑ሺ1ሻ ൌ 1, let 𝔻 be a linear fractional self-map. 
For t = 0, be. By Proposition for 0 ൏ 𝑡 ൏ 1, we have (2.1) 

1 െ |𝜑ሺ𝑧ሻ|ଶ

1 െ |𝑧|ଶ
ൌ

1 െ |𝜑ሺ𝑧ሻ|ଶ

|1 െ 𝜑ሺ𝑧ሻ|ଶ
⋅ ቤ

1 െ 𝜑ሺ𝑧ሻ
1 െ 𝑧

ቤ

⋅
|1 െ 𝑧|ଶ

1 െ |𝑧|ଶ
                                                       

                ൌ
𝑡

𝜑ᇱሺ1ሻଶ
൜൬1 ൅

1
𝑡
൰𝜑ᇱሺ1ሻ െ 𝜑ᇱሺ1ሻଶ

൅ Reሾ𝜑ᇱᇱሺ1ሻሿൠ ቤ
1 െ 𝜑ሺ𝑧ሻ

1 െ 𝑧
ቤ
ଶ

 

for 𝑧 ∈ 𝔻 ∩ Γ௧. This yields 

  lim
௭→ଵ
௭∈୻೟

1 െ |𝜑ሺ𝑧ሻ|ଶ

1 െ |𝑧|ଶ
ൌ 𝜑ᇱሺ1ሻ

൅ 𝑡ሼ𝜑ᇱሺ1ሻ െ 𝜑ᇱሺ1ሻଶ

൅ Reሾ𝜑ᇱᇱሺ1ሻሿሽ.              ሺ4ሻ 

As we wait, we have 

lim
௭→ଵ
௭∈୻೟

1 െ |𝜑ሺ𝑧ሻ|ଶ

1 െ |𝑧|ଶ
൒ lim inf

௭→ଵ

1 െ |𝜑ሺ𝑧ሻ|ଶ

1 െ |𝑧|ଶ
ൌ 𝜑ᇱሺ1ሻ; 

The Julia-Carathéodory Theorem guarantees the final equality. 
This results in the inequality along with step (4). 

  Reሾ𝜑ᇱᇱሺ1ሻሿ ൒ 𝜑ᇱሺ1ሻଶ െ 𝜑ᇱሺ1ሻ.                                          ሺ5ሻ 

From (4) and Proposition (2.1), we can see that the equality 
condition in (5) must be true. 

lim
௭→ଵ
௭∈୻೟

1 െ |𝜑ሺ𝑧ሻ|ଶ

1 െ |𝑧|ଶ
ൌ 𝜑ᇱሺ1ሻ   

forsome
all

0 ൏ 𝑡 ൏ ∞ 

                                     ⟺ Reሾ𝜑ᇱᇱሺ1ሻሿ ൌ 𝜑ᇱሺ1ሻଶ െ 𝜑ᇱሺ1ሻ 

      ⟺ 𝜑ሺΓஶሻ ൌ Γஶ 

                                    ⟺ 𝜑 is an automorphism of 𝔻. 

(2) We also notice that the inequality (5) holds for general 
holomorphic self-maps if and only if derivatives up to the 
second order are comprehensible. Take into account any 
holomorphic self-map 𝜑 of 𝔻 that admits a form expansion 
and is twice continuously differentiable near 1. 

𝜑ሺ𝑧ሻ ൌ 1 ൅ 𝜑ᇱሺ1ሻሺ𝑧 െ 1ሻ ൅
𝜑ᇱᇱሺ1ሻ

2
ሺ𝑧 െ 1ሻଶ ൅ 𝑜ሺ|𝑧 െ 1|ଶሻ 

as 𝑧 → 1within 𝔻. Note that the image curve 𝜑ሺΓ௧ሻ  is tangent to 
𝕋 for every 0 ൏ 𝑡 ൏ 1and that its curvature at 1 is at least 1. In 
light of Proposition (2.1)'s proof, we so arrive at 

1
𝜑ᇱሺ1ሻ

ቊ1 ൅
1
𝑡
൅

Reሾ𝜑ᇱᇱሺ1ሻሿ

𝜑ᇱሺ1ሻ
ቋ ൒ 1 

for every 0 ൏ 𝑡 ൏ 1. So, if we take the limit 𝑡 → ∞, we can see 
that (5) still holds for this generic. We will now discuss the 
uniqueness property for fractional linear maps that involve one 
ball being rolled into another. Some indication is necessary. the 
remaining portion of the paper, we 

𝐞௡ ∶ൌ ሺ1,0, … ,0ሻ ∈ 𝕊௡ 

as an accepted benchmark. The differentiation with regard to the 𝑗-
th component of the supplied variable is denoted by 𝜕௝,and we put 

𝜕 ∶ൌ ሺ𝜕ଵ, … ,𝜕௡ሻ   and   𝜕௝௞ ∶ൌ 𝜕௝𝜕௞ . 

In addition, we write for a holomorphic map Φ ∶ 𝔹௡ → 𝔹௠ 

Φᇱ ∶ൌ ൫𝜕௝Φ௞൯௠ൈ௡
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for's complicated derivative Φ. Throughout, Φ௞ stands for the 𝑘-
th component function of Φ. 

It is simple to observe how the second-order data at a particular 
place totally dictate a one-variable fractional linear map. We 
require such uniqueness in a multi-variable form. 

Lemma(2.3): Let 𝜑 ∶ 𝔹௡ → ℂ  be fractional linear map that is 
holomorphic at 𝐞௡. It follows that is constant if 𝜕𝜑ሺ𝐞௡ሻ ൌ 0. 

Proof: Since 𝜑 ∶ 𝔹௡ → ℂ is fractional linear map, there are 𝑎, 𝑐 ∈
ℂ௡ and 𝑏,𝑑 ∈ ℂ such that  

   𝜑ሺ𝑧ሻ ൌ
〈𝑧,𝑎〉 ൅ 𝑏
〈𝑧, 𝑐〉 ൅ 𝑑

.                                                       ሺ6ሻ 

We can make the assumption that 𝑐ଵ ൅ 𝑑 ് 0; otherwise, because 
𝜑 is holomorphic in the vicinity of 𝐞௡, reduces to a constant map. 
A simple computation results in 

            𝜕௝ሺ𝑧ሻ ൌ
𝑎௝ሺ〈𝑧, 𝑐〉 ൅ 𝑑ሻ𝑐௝ሺ〈𝑧, 𝑎〉 ൅ 𝑏ሻ

ሺ〈𝑧, 𝑐〉 ൅ 𝑑ሻଶ
                                  ሺ7ሻ 

that is    

   𝜕௝ሺ𝐞௡ሻ ൌ
𝑎௝ሺ𝑐ଵ ൅ 𝑑ሻ െ 𝑐௝ሺ𝑎ଵ ൅ 𝑏ሻ

ሺ𝑐ଵ ൅ 𝑑ሻଶ
                                      ሺ8ሻ 

for every 𝑗 As a result, if 𝜕𝜑ሺ𝐞௡ሻ ൌ 0, we get 

𝑎ଵ𝑑 ൌ 𝑐ଵ𝑏     and     𝑎௝ ൌ
𝑎ଵ ൅ 𝑏
𝑐ଵ ൅ 𝑑

𝑐௝ ൌ 𝜑ሺ𝐞௡ሻ𝑐௝ 

for every 𝑗 Note that 𝑎 ൌ 𝜑ሺ𝐞௡ሻ𝑐. As a result, if 𝑐ଵ ് 0, then 𝑏 ൌ
𝜑ሺ𝐞௡ሻ𝑑 . If not, we have 𝑎ଵ ൌ 𝑐ଵ ൌ 0  (recall 𝑑 ് 0 ) and 𝑏 ൌ
𝜑ሺ𝐞௡ሻ𝑑 again. In either scenario, the answer is 𝜑 ൌ 𝜑ሺ𝑒௡ሻ.The 
evidence is conclusive. The following lemma's characteristics (a) 
and (b) are true for general holomorphic mappings 𝜑 ∶ 𝔹௡ → 𝔻 of 
class 𝐶ଷ  on 𝔹௡ ; see [3, Lemma 6.6]. The following proof of 
proposition (2.5) will make use of property (a). The next section's 
(25) and (26) employ the properties (b) and (c), which are empty 
for 𝑛 ൌ 1. 

Lemma(2.4): Given that 𝜑ሺ𝐞௡ሻ ൌ 1, let 𝜑 ∶ 𝔹௡ → 𝔻 be a linear 
fractional map. Then, the following claims are true: 

(a) 𝜕ଵ𝜑ሺ𝐞௡ሻ ൐ 0; 
(b) 𝜕௝𝜑ሺ𝐞௡ሻ ൌ 0 for 𝑗 ൌ 2, … ,𝑛; 
(c) 𝜕௝௞𝜑ሺ𝐞௡ሻ ൌ 0 for 𝑗,𝑘 ൌ 2, … ,𝑛. 

Proof:  Only proof remains (c). Allow 𝜑 to be as in (6). Since 

 

           1 ൌ 𝜑ሺ𝐞௡ሻ ൌ
𝑎ଵ ൅ 𝑏
𝑐ଵ ൅ 𝑑

,                                                    ሺ9ሻ 

As of now (8) 

  𝜕௝𝜑ሺ𝐞௡ሻ ൌ
𝑎௝ െ 𝑐௝
𝑐ଵ ൅ 𝑑

                                                         ሺ10ሻ 

for every 𝑗 .As a result, by (b) 

     𝑎௝ ൌ 𝑐௝ ,   𝑗 ൌ 2, … ,𝑛.                                                      ሺ11ሻ 

So, by (7), (9) and for 𝑗 ൌ 2, … ,𝑛 ,and (11) 

𝜕௝𝜑ሺ𝑧ሻ ൌ 𝑐௝
〈𝑧, 𝑐 െ 𝑎〉 ൅ 𝑑 െ 𝑏
ሺ〈𝑧, 𝑐〉 ൅ 𝑑ሻଶ

ൌ 𝑐௝ሺ𝑐ଵ െ 𝑎ଵሻ
𝑧ଵ െ 1

ሺ〈𝑧, 𝑐〉 ൅ 𝑑ሻଶ
.                ሺ12ሻ  

Applying 𝜕௞ to both sides of the above equation for 𝑘 ൌ 2, … ,𝑛 
and then evaluating at 𝑧 ൌ 𝐞௡ leads us to our conclusion (c). The 
evidence is conclusive. Here is an example of the following 
uniqueness property for linear fractional maps. 

Proposition(2.5): If Φ,Ψ ∶ 𝔹௡ → 𝔹௠ are fractional linear maps. 

Φሺ𝐞௡ሻ ൌ Ψሺ𝐞௡ሻ ൌ 𝐞௠. If 

Φᇱሺ𝐞௡ሻ ൌ Ψᇱሺ𝐞௡ሻ     and     𝜕ሺ𝜕ଵΦଵሻሺ𝐞௡ሻ ൌ 𝜕ሺ𝜕ଵΨଵሻሺ𝐞௡ሻ, 

Then 

Φ ൌ Ψ. 

Proof: First, we prove Φଵ ൌ 𝛹ଵ . Let 𝜑 ∶ൌ Φଵ  and 𝜓 ∶ൌ 𝛹ଵ  for 
short. Choose 𝑎,𝑎ᇱ, 𝑐, 𝑐ᇱ ∈ ℂ௠ and 𝑏,𝑏ᇱ,𝑑,𝑑ᇱ ∈ ℂ such that 

𝜑ሺ𝑧ሻ ൌ
〈𝑧, 𝑎〉 ൅ 𝑏
〈𝑧, 𝑐〉 ൅ 𝑑

     and     𝜓ሺ𝑧ሻ ൌ
〈𝑧, 𝑎ᇱ〉 ൅ 𝑏ᇱ

〈𝑧, 𝑐ᇱ〉 ൅ 𝑑ᇱ
. 

Let 𝜑𝐞೙ and 𝜓𝐞೙ be the slice functions provided by 

𝜑𝐞೙ሺ𝜆ሻ ∶ൌ 𝜑൫𝜆𝐞೙൯ ൌ
𝑎ଵ𝜆 ൅ 𝑏
𝑐ଵ𝜆 ൅ 𝑑

     and     𝜓𝐞೙ሺ𝜆ሻ ∶ൌ 𝜓൫𝜆𝐞೙൯

ൌ
𝑎ଵ
ᇱ 𝜆 ൅ 𝑏ᇱ

𝑐ଵ
ᇱ 𝜆 ൅ 𝑑ᇱ

 

for 𝜆 ∈ 𝔻. As a result, 𝜑𝐞೙ and 𝜓𝐞೙) are linear fractional self-maps 
of 𝔻, and 

𝜑𝐞೙ሺ1ሻ ൌ 𝜑ሺ𝐞௡ሻ ൌ 𝜓ሺ𝐞௡ሻ ൌ 𝜓𝐞೙ሺ1ሻ, 

        𝜑𝐞೙
ᇱ ሺ1ሻ ൌ 𝜕ଵ𝜑ሺ𝐞௡ሻ ൌ 𝜕ଵ𝜓ሺ𝐞௡ሻ ൌ 𝜓𝐞೙

ᇱ ሺ1ሻ, 

          𝜑𝐞೙
ᇱᇱ ሺ1ሻ ൌ 𝜕ଵଵ𝜑ሺ𝐞௡ሻ ൌ 𝜕ଵଵ𝜓ሺ𝐞௡ሻ ൌ 𝜓𝐞೙

ᇱᇱ ሺ1ሻ. 

Because a linear fractional self-map of 𝔻 at a particular point is 
completely governed by its second-order data, this means that 
𝜑𝐞೙ ൌ 𝜓𝐞೙. Consequently, we may assume scaling coefficients as 
necessary. 

                                     𝑎ଵ ൌ 𝑎ଵ
ᇱ ,   𝑏 ൌ 𝑏ᇱ,   𝑐ଵ ൌ 𝑐ଵ

ᇱ    and   𝑑
ൌ 𝑑ᇱ.                                  ሺ13ሻ 

Assuming that 𝜑ሺ𝐞௡ሻ ൌ 𝜓ሺ𝐞௡ሻ ൌ 1, we also obtain by (11) 
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𝑎௝ ൌ 𝑐௝       and     𝑎௝
ᇱ ൌ 𝑐௝

ᇱ,   𝑗 ൌ 2, … ,𝑛. 

Now, it is sufficient to demonstrate that 𝜑 ൌ 𝜓. 

    𝑐௝ ൌ 𝑐௝
ᇱ,   𝑗 ൌ 2, … ,𝑛                                                     ሺ14ሻ 

Fix an arbitrary 𝑗 ൌ 2, … ,𝑛  for the remainder of the proof to 
demonstrate this. By using 𝜕ଵ to apply to (12) and evaluating at z 
= 𝐞௡, we get 

For the remainder of the proof, fix an arbitrary 𝑗 ൌ 2, … ,𝑛. By 
adding 𝜕ଵ to (12) and evaluating at z = 𝐞௡, we obtain. 

𝜕௝ଵ𝜑ሺ𝐞௡ሻ ൌ 𝜕ଵ௝𝜑ሺ𝐞௡ሻ ൌ
ሺ𝑐ଵ െ 𝑎ଵሻ
ሺ𝑐ଵ ൅ 𝑑ሻଶ

𝑐௝ . 

In a similar vein, we 

𝜕௝ଵሺ𝐞௡ሻ ൌ
൫𝑐ଵ

ᇱ െ 𝑎ଵ
ᇱ ൯

൫𝑐ଵ
ᇱ ൅ 𝑑ᇱᇱ൯

𝑐௝
ᇱ ൌ

ሺ𝑐ଵ െ 𝑎ଵሻ
ሺ𝑐ଵ ൅ 𝑑ሻଶ

𝑐௝
ᇱ, 

The final equality originates from (13). According to the 
presumption 

 𝜕௝ଵ𝜑ሺ𝐞௡ሻ ൌ 𝜕௝ଵ𝜓ሺ𝐞௡ሻ that ሺ𝑐ଵ െ 𝑎ଵሻ൫𝑐௝ െ 𝑐௝
ᇱ൯ ൌ 0. As a result, 

we arrive at (14) as needed 𝑎ଵ ് 𝑐ଵ by Lemma (2.4), (a), and (10). 
We can now see that Φ and Ψ  and share a same denominator 
since Φଵ ൌ Ψଵ . So, Additionally, ΦെΨ ∶ 𝔹௡ → ℂ௠  is a linear 
fractional map that is holomorphic in the vicinity of 𝐞௡. 

We arrive at the conclusion Ψ ൌ Φ  by lemma given that 
Φᇱሺ𝐞௡ሻ ൌ Ψᇱሺ𝐞௡ሻ  and Φሺ𝐞௡ሻ ൌ Ψሺ𝐞௡ሻ , respectively (2.3). The 
evidence is overwhelming. 

 
3. OPERATORS OF COMPOSITIONS 

Theorem (1.1) assumes that each of the composition 
operators under examination is individually bounded, thus to start, 
we demonstrate that the parameter connection in this statement is 
a natural one. 

Theorem(3.1): If 𝜑 ∶ 𝔹௡ → 𝔹௠be a fractional linear map. Then 

𝐶஍ ∶ 𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ → 𝐴ଵାଶℇ

ଶ ሺ𝔹௡ሻ 

is constrained whenever 𝑚 ൌ 𝑛 ൅ ℇand ℇ൒ െ1. 

Proof: As stated in the Introduction, [4, Theorems 14 and 15] 
show the 𝑚 ൌ 𝑛. So let's say 𝑚 ് 𝑛. Replace ℇ ൒ െ1 with 𝑚 ൌ
𝑛 ൅ ℇ. 

We first look at the situation 𝑚 ൐ 𝑛 . Let 𝑃௠,௡ ∶ 𝔹௠ → 𝔹௡  , 
𝑃௠,௡ሺ𝑧ଵ, … , 𝑧௠ሻ ∶ൌ ሺ𝑧ଵ, … , 𝑧௡ሻbe the projection map. The famous 
integral identities come to mind when combined with this 
projection map. 

න ℎሺ𝑧ሻ
 

𝔹೙

𝑑𝑣௡,ଵାଶℇሺ𝑧ሻ ൌ න ℎ ∘ 𝑃௠,௡ሺ𝑤ሻ
 

𝔹೘

𝑑𝑣௠,ଵାℇሺ𝑤ሻ   for ℇ

൐ െ2 

and 

න ℎሺ𝑧ሻ
 

𝔹೙

𝑑𝑣௡,ଵାଶℇሺ𝑧ሻ ൌ න ℎ ∘ 𝑃௠,௡ሺ𝜁ሻ
 

𝕊೘

𝑑𝜎௠ሺ𝜁ሻ   for ℇ ൌ െ2 

regarding the functions ℎ ∈ 𝐿ଵ൫𝑑𝑣௡,ଵାଶℇ൯.A simple application of 
Fubini's Theorem can be used to verify the case ℇ ൐ െ2 , the 
situation ℇ ൌ െ2 can is, for example, found in [19, Lemma 1.9]. 
These core identities serve as evidence for us that 

ฮ𝐶஍𝑃௠,௡𝑓ฮ௠,ଵାℇ
ൌ ฮ𝑓 ∘ Φ ∘ 𝑃௠,௡ฮ௠,ଵାℇ

ൌ ‖𝑓 ∘ Φ‖௡,ଵାଶℇ

ൌ ‖𝐶஍𝑓‖௡,ଵାଶℇ 

𝑓 ∈ 𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ and ℇ ൒ െ2for any. Because Φ ∘ 𝑃௠,௡ is a linear 

fractional self-map of 𝔹௠ , 𝐶஍∘௉೘,೙
∶ 𝐴ଵାℇ

ଶ ሺ𝔹௠ሻ → 𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ is 

also bounded. 

In light of the foregoing, we deduce that 𝐶ఝ ∶ 𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ →

𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ) is bounded as necessary. We will now look at case 

𝑚 ൏ 𝑛 . In this instance, we employ the well-known Carleson 
measure method; for more information on Carleson measures, see, 
for instance, [3, Section 2.2]. We offer information for the case 
ℇ ൐ െ1 ; using [168, Theorem 2.38], the case ℇ ൌ െ1 can be 
handled identically. Note 

 

න |𝑓 ∘ Φ|ଶ
 

𝔹೙

𝑑𝑣௡,ଵାଶℇሺ𝑧ሻ ൌ න |𝑓|ଶ
 

𝔹೘

𝑑൫𝑣௡,ଵାଶℇ ∘ Φିଵ൯   𝑓

∈ 𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ 

where the pullback measure is supplied by 𝑣௡,ଵାଶℇ ∘ Φିଵ. 

൫𝑣௡,ଵାଶℇ ∘ Φିଵ൯ሺ𝐸ሻ ∶ൌ 𝑣௡,ଵାଶℇሾΦିଵሺ𝐸ሻሿ for Borel sets 𝐸 ⊂ 𝔹௠. 
This shows (see [3, Theorem 2.38]) that 𝐶஍ ∶ 𝐴ଵାℇ

ଶ ሺ𝔹௠ሻ →
𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ is bounded if and only if 𝑣௡,ଵାଶℇ ∘ Φିଵ is a Carleson 

measure for 𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ, which means 

  sup
ఎ∈𝕊೘

൫𝑣௡,ଵାଶℇ ∘ Φିଵ൯ሾ𝑆ఋ
௠ሺ𝜂ሻሿ ൌ 𝒪൫𝛿௠ାଶାℇ൯,   𝛿

൐ 0                                      ሺ15ሻ 

where 

𝑆ఋ
௠ሺ𝜂ሻ : ൌ ሼ𝑧 ∈ 𝔹௠ ∶ |1 െ 〈𝑧, 𝜂〉 ൏ 𝛿ሽ. 

We now show (15). For that purpose, we consider the embedding 
map 

 𝐸௠,௡ ∶ 𝔹௠ → 𝔹௡ given by 𝐸௠,௡ሺ𝑧ሻ ∶ൌ ሺ𝑧, 0, … ,0ሻ. This time Φ෩ ∶
ൌ 𝐸௠,௡  is a linear fractional self-map of 𝔹௡  and thus 𝐶஍෩ ∶
𝐴ଵାଶℇ
ଶ ሺ𝔹௡ሻ → 𝐴ଵାଶℇ

ଶ ሺ𝔹௡ሻ  is bounded, or equivalently, the 
pullback measure 𝑣௡,ଵାଶℇ ∘ Φ෩ିଵ  is a Carleson measure for 
𝐴ଵାଶℇ
ଶ ሺ𝔹௡ሻ. More explicitly, we have 
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sup
ఎ∈𝕊೙

൫𝑣௡,ଵାଶℇ ∘ Φ෩ିଵ൯ሾ𝑆ఋ
௠ሺ𝜁ሻሿ ൌ 𝒪൫𝛿௡ାଶାଶℇ൯,   𝛿

൐ 0.                                             ሺ16ሻ 

Meanwhile, note 

    Φ෩ିଵሾ𝑆ఋ
௠ሺ𝜂෤ሻሿ ൌ Φ෩ିଵሾ𝑆ఋ

௠ሺ𝜂ሻሿ                                        ሺ17ሻ 

for 𝜂 ∈ 𝕊௡ and 𝜂෤ ∶ൌ ሺ𝜂, 0, … ,0ሻ ∈ 𝕊௡. Now, since 𝑚 ൌ 𝑛 ൅ ℇ, we 
see that (16) and (17) imply (15). The proof is strong. Now, let's 
move on to the theorem's proof (1.1). We require multiple 
introductions. We start by remembering the reproducing kernels 
for the spaces in question. Let ℇ ൒ െ2 . Every 𝑤 ∈
𝔹௠ corresponds to a different replicating kernel, as is widely 
known. 

𝐾௪
௠,ଵାℇ ∈ 𝐴ଵାℇ

ଶ ሺ𝔹௠ሻ such that 

𝑓ሺ𝑤ሻ ൌ 〈𝑓,𝐾௪
௠,ଵାℇ〉஺భశℇమ ሺ𝔹೘ሻ,   𝑓 ∈ 𝐴ଵାℇ

ଶ ሺ𝔹௠ሻ 

where the inner product on 〈⋅,⋅〉஺భశℇమ ሺ𝔹೘ሻ   is indicated by, 

𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ.𝐾௪

௠,ଵାℇ formula is well-known and is provided by 

 𝐾௠,ଵାℇሺ𝑧,𝑤ሻ ∶ൌ 𝐾௪
௠,ଵାℇሺ𝑧, 𝑧ሻ

ൌ
1

ሺ1 െ 〈𝑧,𝑤〉ሻ௠ାଶାℇ ;                                    ሺ18ሻ 

see, for example, [19]. Note 

    ฮ𝐾௪
௠,ଵାℇฮ

௠,ଵାℇ

ଶ
ൌ 𝐾௠,ଵାℇ ሺ𝑧, 𝑧ሻ

ൌ
1

ሺ1 െ |𝑧|ଶሻ ௠ାଶାℇ .                                ሺ19ሻ 

The following positive of the replicating kernels is presumably 
well known. Here, we offer a rather simple proof of completeness. 

Lemma(3.2): Let ℇ ൒ െ2 , a non-Negative integer 𝑁 , let 
𝑧ଵ, … , 𝑧ே be distinct points in 𝔹௠. Then 

෍ 𝜆௝𝜆௞𝐾௠,ଵାℇ൫𝑧௝ , 𝑧௞൯

ே

௝,௞ୀଵ

൒ 0 

for any choice of 𝜆ଵ, … , 𝜆ே ∈ ℂ. Additionally, the equality only 
applies when 

 𝜆ଵ ൌ ⋯ ൌ 𝜆ே ൌ 0. 

Proof: The reproducing property suggests that 

𝐾௠,ଵାℇሺ𝑧,𝑤ሻ ൌ 〈𝐾௪
௠,ଵାℇ,𝐾௭

௠,ଵାℇ〉஺భశℇమ ሺ𝔹೘ሻ 

for all 𝑧,𝑤 ∈ 𝔹௠. Thus, we have 

෍ 𝜆௝𝜆௞𝐾௠,ଵାℇ൫𝑧௝ , 𝑧௞൯

ே

௝,௞ୀଵ

ൌ ෍ 〈𝜆௝𝐾௭ೖ
௠,ଵାℇ, 𝜆௞𝐾௭ೖ

௠,ଵାℇ〉஺భశℇమ ሺ𝔹೘ሻ

ே

௝,௞ୀଵ

 

                                                

ൌ 〈෍𝜆௞𝐾௭ೖ
௠,ଵାℇ

ே

௞ୀଵ

,෍𝜆௝𝐾௭ೕ
௠,ଵାℇ

ே

௝ୀଵ

〉஺భశℇమ ሺ𝔹೘ሻ 

                      ൌ ቯ෍𝜆௝𝐾௭ೕ
௠,ଵାℇ

ே

௝ୀଵ

ቯ

௠,ଵାℇ

ଶ

 

for any selection of 𝜆ଵ, … , 𝜆ே ∈ ℂ. The first portion of the lemma 
is proven by this. Since the points 𝑧ଵ, … , 𝑧ே  are all distinct, it 
should be noted that ൛𝐾௭భ

௠,ଵାℇ, … ,𝐾௭ಿ
௠,ଵାℇൟ  are linearly 

independent. Consequently, the lemma's second portion is also 
true. 

We now prove the following lemma, which is essential to our later 
arguments, using Lemma (3.2). We employ the standard multi-
index notation both in the proof that follows and elsewhere. This 
is, 

|𝛾| ∶ൌ 𝛾ଵ  ൅⋯൅ 𝛾௠, 

𝛾! ∶ൌ 𝛾ଵ! … 𝛾௠!,       

𝑥ఊ ∶ൌ 𝑥ଵ
ఊభ … 𝑥௠

ఊ೘             

For 𝑥 ൌ ሺ𝑥ଵ, … , 𝑥௠ሻ  and 𝑚  -tuples 𝛾 ൌ ሺ𝛾ଵ, … , 𝛾௠ሻ  Among 
integers, non-negative;  

These notations should make it clear from the context which 
dimensions are involved. Naturally, it is expected that 1 represents 
0଴. 

Lemma(3.3): A von-negative integer is given 𝑁 , let 
ሺ𝜇ଵ,𝐵ଵሻ, … , ሺ𝜇ே ,𝐵ேሻ  be distinct points in ℂ ൈ ℂ௠ . If 𝜆ଵ, … , 𝜆ே 
complicated numbers in such a form 

     ෍ 𝜆௝𝜆௞൫𝜇௝ ൅ 𝜇௞ ൅ 〈𝐵௝ ,𝐵௞〉൯
௦

ே

௝,௞ୀଵ

ൌ 0                                  ሺ20ሻ 

for all integers 𝑠 ൒ 0, then 𝜆ଵ ൌ ⋯  ൌ 𝜆ே ൌ 0. 

be complex numbers that satisfy (20) for all 𝑠 ൒ 0integers. 

Proof: Let 𝜆ଵ, … , 𝜆ே be complex numbers that satisfy (20) for all 
𝑠 ൒ 0 integers. First, we say 

        ෍𝜆௝𝜇௝
௣𝐵௝

ఊ
ே

௝ୀଵ

ൌ 0                                                       ሺ21ሻ 

for every single integer 𝑝 ൒ 0and several indices. 

By the instance 𝑠 ൌ 0 of (21) it is clear that it holds for 𝑝 ൌ 0 and 
|𝛾| ൌ 0. (20). The next step is to induct on 2𝑝 ൅ |𝛾|. Therefore, 
let's assume that (38) is true whenever 2𝑝 ൅ |𝛾| ൑ 𝑠 െ 1 for an 
integer 𝑠 ൒ 1. Take note of (20) that 
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0 ൌ ෍ 𝜆௝𝜆௞ ቀ𝜇௝ ൅ 𝜇௞ ൅ ൫𝐵௝ ,𝐵௞൯ቁ
௦

ே

௝,௞ୀଵ

 

               ൌ ෍
𝑠!

𝑝! 𝑞! 𝑟!
௣ା௤ା௥ୀ௦

෍ 𝜆௝𝜆௞𝜇௝
௣𝜇௞

௤〈𝐵௝ ,𝐵௞〉௥
ே

௝,௞ୀଵ

 

          ൌ ෍
𝑠!
𝑝! 𝑞!

௣ା௤ା௥ୀ௦

෍
1
𝛾!
𝜆௝𝜆௞𝜇௝

௣𝜇௞
௤𝐵௝

ఊ𝐵௞
ఊ

|ఊ|ୀ௥

 

                                           

ൌ ෍
𝑠!
𝑝! 𝑞!

௣ା௤ା௥ୀ௦

෍
1
𝛾!

|ఊ|ୀ௥

ቌ෍𝜆௝𝜆௞𝜇௝
௣𝐵௝

ఊ
ே

௝ୀଵ

ቍ൭෍𝜆௞𝜇௞
௤𝐵௞

ఊ
ே

௞ୀଵ

൱. 

We have 2𝑝 ൅ 𝑟 ൏ 𝑠 or 2𝑞 ൅ 𝑟 ൏ 𝑠 for 𝑝 and 𝑞 with 𝑝 ൅ 𝑞 ൅ 𝑟 ൌ
𝑠 and 𝑝 ് 𝑞. Thus, the terms in the aforementioned sum disappear 
whenever the induction hypothesis holds true. Consequently, we 
have 

0 ൌ ෍
𝑠!
𝑝!𝑝!

ଶ௣ା௥ୀ௦

෍
1
𝛾!
ቮ෍𝜆௝𝜇௝

௣𝐵௝
ఊ

ே

௝ୀଵ

ቮ

ଶ

|ఊ|ୀ௥

. 

In order to complete the induction, we therefore infer that (38) is 
true when 2𝑝 ൅ |𝛾| ൌ 𝑠. 

Set 𝑧௝ ∶ൌ ൫𝜇௝𝐵௝൯. now. We can assume that all the points𝑧ଵ, … , 𝑧ே 
belong to 𝔹௠ାଵ. by scaling, if necessary. Then, we have by (38) 

0 ൌ෍𝜆௝൫𝑧௝൯
ఊ

ே

௝ୀଵ

 

for every multi-index 𝛾 The justification provided demonstrates 
that this amounts to 

0 ൌ ෍ 𝜆௝𝜆௞〈𝑧௝ , 𝑧௞〉௦
ே

௝,௞ୀଵ

 

𝑠 ൒ 0 for all integers. This suggests, together with (18), 

0 ൌ ෍ 𝜆௝𝜆௞𝐾௠ାଶାℇ൫𝑧௝ , 𝑧௞൯

ே

௝,௞ୀଵ

 

ℇ ൒ െ2,for any. In light of Lemma (3.2), we can deduce that 𝜆ଵ ൌ
⋯ ൌ 𝜆ே ൌ 0as stated, is the case. The evidence is conclusive. 

Corollary(3.4): Let  a non-negative integer 𝑁 , let 
ሺ𝜇ଵ,𝐵ଵሻ, … , ሺ𝜇ே ,𝐵ேሻ be distinct points in ℂ ൈ ℂ௠. Let 𝑀 ൐ 0 and 
𝜆ଵ, … , 𝜆ே ∈ ℂ. If 

                                           ෍
𝜆௝𝜆௞

ൣ1 െ 𝜁൫𝜇௝ ൅ 𝜇௞〈𝐵௝ ,𝐵௞〉൯൧
ெ

ே

௝ୀଵ

ൌ 0                                       ሺ22ሻ 

if all 𝜁 ∈ ℂ are found close to the origin, then 𝜆ଵ ൌ ⋯ ൌ 𝜆ே ൌ 0. 

Proof:  

The sum on the left side of (22) is a holomorphic function of 𝜁 
near the origin. Therefore, the origin should be the point at which 
all Taylor coefficients vanish. It then follows 

෍ 𝜆௝𝜆௞൫𝜇௝ ൅ 𝜇௞〈𝐵௝ ,𝐵௞〉൯
௦

ே

௝,௞ୀଵ

ൌ 0 

𝑠 ൒ 0 for all integers. Thus, the corollary by Lemma is concluded 
(3.3). 

We add new notation in this sentence. Let 

𝔹௡
ሺଵሻ ∶ൌ ሼ𝑤 ∈ 𝔹௡ ∶ 𝑤ଵ ൌ 0ሽ. 

Note that the slice in 𝔹௡ traveling through 𝐞௡ and 𝑤 for 𝑤 ∈ 𝔹௡
ሺଵሻ 

is exactly the horodisk ∆|௪|షమ , that is, 

∆|௪|షమൌ ሼ𝜆 ∈ 𝔻 ∶ 𝜆𝐞௡ ൅ ሺ1 െ 𝜆ሻ𝑤 ∈ 𝔹௡ሽ. 

We write 𝜑௪ for the slice function denoted by given 𝑤 ∈ 𝔹௡
ሺଵሻ and 

fractional linear map 𝜑 ∶ 𝔹௡ → 𝔻. 

𝜑௪ሺ𝜆ሻ ∶ൌ 𝜑ሺ𝜆𝐞௡ ൅ ሺ1 െ 𝜆ሻ𝑤ሻ,   𝜆 ∈ ∆|௪|షమ; 

note 𝜑௪ ൌ 𝜑  when 𝑛 ൌ 1 , because 𝑤 ൌ 0 . Note that 𝜑௪  is 
holomorphic in a neighborhood of 1. Setting 

   𝐺ఝሺ𝑤ሻ ∶ൌ 𝜕ଵ𝜑ሺ𝐞௡ሻ

െ෍𝜕௝𝜑ሺ𝐞௡ሻ𝑤௝

௡

௝ୀଶ

                                       ሺ23ሻ 

and 

𝐻ఝሺ𝑤ሻ ∶ൌ ෍
𝜕ఊ𝜑ሺ𝐞௡ሻ

𝛾!
ሺെ1ሻఊభ𝑤ଶ

ఊమ …𝑤௡
ఊ೙

|ఊ|ୀଶ

, 

one may check that 

             𝜑௪ሺ𝜆ሻ ൌ 𝜑ሺ𝐞௡ሻ ൅ 𝐺ఝሺ𝑤ሻሺ𝜆 െ 1ሻ ൅ 𝐻ఝሺ𝑤ሻሺ𝜆 െ 1ሻଶ

൅ 𝒪ሺ|𝜆 െ 1|ଷሻ          ሺ24ሻ 

as 𝜆 → 1 (uniformly in 𝑤). 

When 𝜑ሺ𝐞௡ሻ ൌ 1 in addition, note from Lemma (2.4) that 
𝐺஍ሺ𝑤ሻ and 𝐻ఝሺ𝑤ሻ reduce to  

        𝐺ఝሺ𝑤ሻ ൌ 𝜕ଵ𝜑ሺ𝐞௡ሻ                                                      ሺ25ሻ 

and 



IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.1, January 2025 
 

 

 

182

 

     𝐻ఝሺ𝑤ሻ ൌ
1
2
𝜕ଵଵ𝜑ሺ𝐞௡ሻ

െ෍𝜕ଵ௝𝜑ሺ𝐞௡ሻ𝑤௝

௡

௝ୀଶ

.                               ሺ26ሻ 

When 𝑛 ൌ 1, the summations in (23) and (26) should be regarded 
as meaningless. 

For a linear fractional map Φ ∶ 𝔹௡ → 𝔹௠ and 𝑤 ∈ 𝔹௡
ሺଵሻ, we use 

the notation 

               Φ௪ ∶ൌ ൫Φଵ,௪, … ,Φ௠,௪൯   and   𝐺஍ሺ𝑤ሻ ∶

ൌ ቀ𝐺஍భ
ሺ𝑤ሻ, … ,𝐺஍೘

ሺ𝑤ሻቁ            ሺ27ሻ 

Remember that the 𝑗-th component function of is denoted by the 
symbol 

 Φ௝,௪ ∶ൌ ൫Φ௝൯௪. The following lemma is entered: 

𝐿஍,ஏሺ𝑡,𝑤ሻ ∶ൌ ൬1 ൅
1
𝑡
൰ 𝜕ଵΦଵሺ𝐞௡ሻ ൅ 𝐻஍భ

ሺ𝑤ሻ ൅ 𝐻ஏభ
ሺ𝑤ሻ

െ 〈𝐺஍ሺ𝑤ሻ,𝐺ஏሺ𝑤ሻ〉 

for brevity. 

Lemma(3.5): suppose that they are linear fractional maps Φ,Ψ ∶
𝔹௡ → 𝔹௠ , 

 Φሺ𝐞௡ሻ ൌ 𝐞௠. Then the equality 

lim
ఒ→ଵ
ఒ∈୻೟

1 െ 〈Φ௪ሺ𝜆ሻ,Ψ௪ሺ𝜆ሻ〉
|1 െ 𝜆|ଶ

ൌ ൝𝐿஍,ஏሺ𝑡,𝑤ሻ
if Φሺ𝐞௡ሻ ൌ Ψሺ𝐞௡ሻ and
𝜕ଵΦଵሺ𝐞௡ሻ ൌ 𝜕ଵΨଵሺ𝐞௡ሻ

∞ otherwise
  

holds for 𝑤 ∈ 𝔹௡
ሺଵሻ and 0 ൏ 𝑡 ൏ 1 |𝑤|ଶ⁄ . 

Proof: Let 𝑤 ∈ 𝔹௡
ሺଵሻ and fix t such that 0 ൏ 𝑡 ൏ 1 |𝑤|ଶ⁄ . Let 𝜑 ൌ

Φଵ and  𝜓 ∶ൌ Ψଵ for simplicity. Note 

1 െ 〈Φ௪ሺ𝜆ሻ,Ψ௪ሺ𝜆ሻ〉
|1 െ 𝜆|ଶ

ൌ
1 െ |𝜑௪ሺ𝜆ሻ|ଶ

|1 െ 𝜆|ଶ
൅
𝜑௪ሺ𝜆ሻ ቂ𝜑௪ሺ𝜆ሻ െ 𝜓௪ሺ𝜆ሻቃ

|1 െ 𝜆|ଶ

െ෍
Φ௝,௪ሺ𝜆ሻΨ௝,௪ሺ𝜆ሻ

|1 െ 𝜆|ଶ

௠

௝ୀଶ

 ሺ28ሻ 

The boundaries of the three terms in the above right-hand side 
will be calculated separately. First, we determine the upper bound 
of the first term in the right-hand (28). Keep in mind that 𝜑௪ ∶
∆|௪|షమ→ 𝔻 is a fractional linear map when 𝜑௪ሺ1ሻ ൌ 1. As a result, 
according to Proposition (2.1), (24) and (25) 

1 െ |𝜑௪ሺ𝜆ሻ|ଶ

|1 െ 𝜑௪ሺ𝜆ሻ|ଶ
ൌ

1
𝜑௪ᇱ ሺ1ሻ

ቊ1 ൅
1
𝑡
൅

Re ሾ𝜑௪ᇱᇱሺ1ሻሿ

𝜑௪ᇱ ሺ1ሻ
ቋ െ 1 

                                  ൌ
1

𝜕ଵ𝜑ሺ𝐞௡ሻ
ቊ1 ൅

1
𝑡
൅ 2

Re ൣ𝐻ఝሺ𝑤ሻ൧
𝜕ଵ𝜑ሺ𝐞௡ሻ

ቋ െ 1 

for 𝜆 ∈ Γ௧ , 𝜆 ് 1 . Note 𝜕ଵ𝜑ሺ𝐞௡ሻ ൐ 0  by Lemma (2.4) (a). It 
follows that 

lim
ఒ→ଵ
ఒ∈୻೟

|1 െ 𝜑௪ሺ𝜆ሻ|ଶ

|1 െ 𝜆|ଶ

ൌ lim
ఒ→ଵ
ఒ∈୻೟

|1 െ 𝜑௪ሺ𝜆ሻ|ଶ

|1 െ 𝜑௪ሺ𝜆ሻ|ଶ

⋅
|1 െ 𝜑௪ሺ𝜆ሻ|ଶ

|1 െ 𝜆|ଶ
                                                         

                                   ൌ ൬1 ൅
1
𝑡
൰ 𝜕ଵ𝜑ሺ𝐞௡ሻ ൅ 2Reൣ𝐻ఝሺ𝑤ሻ൧

െ ሾ𝜕ଵ𝜑ሺ𝐞௡ሻሿଶ.                    ሺ29ሻ 

Next, We determine the last term's limit in the right-hand side of 
(45).Since Φ௝, 2 ൑ 𝑗 ൑ 𝑛, is holomorphic in a neighborhood of 1 
and Φ௝ሺ𝐞௡ሻ ൌ 0, we have by (24) 

Φ௝,௪ሺ𝜆ሻ ൌ 𝐺஍ೕ
ሺ𝑤ሻሺ𝜆 െ 1ሻ ൅ 𝒪ሺ|𝜆 െ 1|ଶሻ. 

The same holds for Ψ௝. It follows that 

  lim
ఒ→ଵ
ఒ∈୻೟

Φ௝,௪ሺ𝜆ሻΨ௝,௪ሺ𝜆ሻ
|1 െ 𝜆|ଶ

ൌ 𝐺஍ೕ
ሺ𝑤ሻ𝐺ஏೕ

ሺ𝑤ሻ                              ሺ30ሻ 

for each 𝑗 ൌ 2, … ,𝑚. 

Finally, we determine the upper bound for the second term in the 
right-hand (28). If Φሺ𝐞௡ሻ ് Ψሺ𝐞௡ሻ, then it is evident that the limit 
being considered is ∞. So, assume Φሺ𝐞௡ሻ  ൌ Ψሺ𝐞௡ሻ ൌ 𝐞௠ . We 
have by (24) and (25) 

𝜑௪ሺ𝜆ሻ െ 𝜓௪ሺ𝜆ሻ
ൌ ሾ𝜕ଵ𝜑ሺ𝐞௡ሻ െ 𝜕ଵ𝜓ሺ𝐞௡ሻሿሺ𝜆 െ 1ሻ ൅ ൣ𝐻ఝሺ𝑤ሻ െ 𝐻టሺ𝑤ሻ൧ሺ𝜆 െ 1ሻଶ

൅ 𝒪ሺ|𝜆
െ 1|ଷሻ                                                                                                 ሺ31ሻ 

as 𝜆 → 1. Thus we see that 

lim
ఒ→ଵ
ఒ∈୻೟

|𝜑௪ሺ𝜆ሻ െ 𝜓௪ሺ𝜆ሻ|
|1 െ 𝜆|ଶ

ൌ ∞     if 𝜕ଵ𝜑ሺ𝐞௡ሻ ് 𝜕ଵ𝜓ሺ𝐞௡ሻ. 

The second portion of the lemma is proven by this. As opposed to 
that, if 𝜕ଵ𝜑ሺ𝐞௡ሻ ൌ 𝜕ଵ𝜓ሺ𝐞௡ሻ, then we obtain by (2) and (31) 

lim
ఒ→ଵ
ఒ∈୻೟

𝜑௪ሺ𝜆ሻ ቂ𝜑௪ሺ𝜆ሻ െ 𝜓௪ሺ𝜆ሻቃ

|1 െ 𝜆|ଶ

ൌ 𝐻టሺ𝑤ሻ െ 𝐻ఝሺ𝑤ሻ.                     ሺ32ሻ 

Also, note from (24) 

ሾ𝜕ଵ𝜑ሺ𝐞௡ሻሿଶ ൌ 𝜕ଵ𝜑ሺ𝐞௡ሻ ⋅ 𝜕ଵ𝜓ሺ𝐞௡ሻ ൌ 𝐺ఝሺ𝑤ሻ𝐺టሺ𝑤ሻ. 
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Thus, by (29), (30), and we infer the first part of the lemma (32). 
The evidence is conclusive. For a linear fractional map Φ ∶ 𝔹௡ →
𝔹௠, recall that 𝐺஍ denotes the map defined in (27). 

Lemma(3.6): let a non-negative integer 𝑁, let Φଵ, … ,Φே ∶ 𝔹௡ →
𝔹௠ be distinct linear fractional maps such that 

             Φଵሺ𝐞௡ሻ ൌ ⋯ ൌ Φேሺ𝐞௡ሻ ൌ 𝐞௠   and   𝜕ଵΦଵ
ଵሺ𝐞௡ሻ ൌ ⋯

ൌ 𝜕ଵΦଵ
ேሺ𝐞௡ሻ.          ሺ33ሻ 

Then, the following claims are true: 

(a) When 𝑛 ൌ 1, the vectors 

ቆ𝐻஍భ
ೕ ሺ0ሻ,𝐺஍ೕሺ0ሻቇ ∈ ℂ ൈ ℂ௠,   𝑗 ൌ 1, … ,𝑁 

are all distinct; 

(b) When 𝑛 ൒ 2, the vectors 

ቆ𝐻஍భ
ೕ ሺ𝑤ሻ,𝐺஍ೕሺ𝑤ሻቇ ∈ ℂ ൈ ℂ௠,   𝑗 ൌ 1, … ,𝑁 

are all distinct for almost every 𝑤 ∈ 𝔹௡
ሺଵሻ.  

The (n-1)-dimensional volume measure on 𝑤 ∈ 𝔹௡
ሺଵሻ ≅

𝔹௡ିଵ  is what is meant by "nearly every" in this context 
ሺ𝑛 െ 1ሻ. 

Proof: From Proposition, Assertion (a) immediately follows (2.5). 

So, for the remainder of the proof, assume 𝑛 ൒ 2. Let 𝑤 ∈ 𝔹௡
ሺଵሻ. 

Since we have (33) by assumption, we note from (25) that 
𝐺஍భ

ೕ ሺ𝑤ሻ ൌ 𝜕ଵΦଵ
௝ሺ𝐞௡ሻ are all the same. So, by (26), we only need 

to consider the vectors 

𝑄௝ሺ𝑤ሻ ∶ൌ ൭
1
2
𝜕ଵΦଵ

௝ሺ𝐞௡ሻ

െ෍𝜕ଵ,௞Φଵ
௝ሺ𝐞௡ሻ𝑤௞,𝐺஍మ

ೕ ሺ𝑤ሻ, … ,𝐺஍೘
ೕ ሺ𝑤ሻ

௡

௞ୀଶ

൱ 

for 𝑗 ൌ 1, … ,𝑁. For each 𝑗, setting 

𝐴௝ ∶ൌ ൭
𝜕ଵଵΦଵ

௝

2
,𝜕ଵΦଶ

௝ , … ,𝜕ଵΦ௠
௝ ൱ 

and 

𝑀௝ ∶ൌ

⎝

⎜
⎛
𝜕ଵଶΦଵ

௝ ⋯ 𝜕ଵ௡Φଵ
௝

𝜕ଶΦଶ
௝ ⋯ 𝜕௡Φଶ

௝

⋮
𝜕ଶΦ௠

௝
⋮
⋯

⋮
𝜕௡Φ௠

௝
⎠

⎟
⎞

௠ൈሺ௡ିଵሻ

, 

note 

𝑄௝ሺ𝑤ሻ ൌ 𝑀௝ሺ𝐞௡ሻ𝑤ᇱ ൅ 𝐴௝ሺ𝐞௡ሻ 

where 𝑤ᇱ ∶ൌ ሺ𝑤ଶ, … ,𝑤௡ሻ and the matrix 𝑀௝ሺ𝐞௡ሻ is regarded as a 
linear operator from ℂ௡ିଵ  to ℂ௠ . Since Φଵ, … ,Φ୒  are distinct 
maps satisfying (33) by assumption, note from Proposition (2.5) 
that 

either 𝐴௝ሺ𝐞௡ሻ ് 𝐴௞ሺ𝐞௡ሻ     or      𝑀௝ሺ𝐞௡ሻ ് 𝑀௞ሺ𝐞௡ሻ 

whenever 𝑗 ് 𝑘. Thus, if 𝑀௝ሺ𝐞௡ሻ ൌ 𝑀௞ሺ𝐞௡ሻ and 𝑗 ് 𝑘, then we 
see 

𝑄௝ሺ𝑤ሻ െ 𝑄௞ሺ𝑤ሻ ൌ 𝐴௝ሺ𝐞௡ሻ െ 𝐴௞ሺ𝐞௡ሻ ് 0 

for all 𝑤. So, for simplicity, we may assume 𝑀௝ሺ𝐞௡ሻ ് 𝑀௞ሺ𝐞௡ሻ 
whenever 𝑗 ് 𝑘. Given 𝑗 ൏ 𝑘, let 𝑆௝௞  be the set of all 𝜁 ∈ ℂ௡ିଵ 
such that 

ൣ𝑀௝ሺ𝐞௡ሻ െ 𝑀௞ሺ𝐞௡ሻ൧ ൌ 𝐴௞ሺ𝐞௡ሻ െ 𝐴௝ሺ𝐞௡ሻ. 

Note that 𝑆௝௞ lies in a hyperspace of ℂ௡ିଵ, because the kernel of 

 𝑀௝ሺ𝐞௡ሻ െ 𝑀௞ሺ𝐞௡ሻ ് 0 cannot be of full dimension. In particular, 
the set 

𝑆 ∶ൌ ራ 𝑆௝௞
ଵஸ௝ழ௞ஸே

, 

is a part of the measure 0 subset of ℂ௡ିଵ. We get the lemma's 
conclusion because 𝑄ଵሺ𝑤ሻ, … ,𝑄ேሺ𝑤ሻ are all distinct if and only if 
𝑤ᇱ ∉ 𝑆. The evidence is conclusive. 

We are now prepared to demonstrate our key finding. Thesis (1.1). 
We shall make advantage of the fact that a bounded linear operator 
is closed and bounded if and only if its adjoint is closed and 
bounded when it leaves one Hilbert space and enters another. 
Along with this observation, we make note of a straightforward 
but crucial fact regarding adjoints of composition operators. When 
𝐶஍ ∶ 𝐴ଵାℇ

ଶ ሺ𝔹௠ሻ → 𝐴ଵାℇ
ଶ ሺ𝔹௡ሻ  is bounded, its adjoint 𝐶஍

∗ ∶
𝐴ଵାଶℇ
ଶ ሺ𝔹௡ሻ → 𝐴ଵାℇ

ଶ ሺ𝔹௠ሻ  takes the practice of reproducing 
kernels to a level where 

   𝐶஍
∗ 𝐾௭

௡,ଵାଶℇ ൌ 𝐾஍ሺ௭ሻ
௠,ଵାℇ,                                                           ሺ34ሻ 

which the replicating property readily verifies. 

For convenience, we repeat Theorem (1.1) in the manner that 
follows. 

Theorem (3.7) Given a positive integer 𝑁, let Φଵ, … ,Φே ∶ 𝔹௡ →
𝔹௠  be distinct linear fractional maps such that ฮΦ௝ฮ

ஶ
ൌ 1 for 

𝑗 ൌ 1, … ,𝑁. For ℇ ൒ െ1 with 

 𝑚 ൌ 𝑛 ൅ ℇ and 𝜆ଵ, … , 𝜆ே ∈ ℂ, assume that 

 ∑ 𝜆௝𝐶 ஍ೕ
ே
௝ୀଵ  ∶ 𝐴ଵାଶℇ

ଶ ሺ𝔹௠ሻ → 𝐴ଵାℇ
ଶ ሺ𝔹௡ሻ  is compact. Then 𝜆ଵ ൌ

⋯ ൌ 𝜆ே ൌ 0. 

Proof: First, we show 
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         lim
|௭|→ଵష

෍ 𝜆௝𝜆௞ ቆ
1 െ |𝑧|ଶ

1 െ 〈Φ௝ሺ𝑧ሻ,Φ௞ሺ𝑧ሻ〉
ቇ
௡ାଶାଶℇே

௝,௞ୀଵ

ൌ 0.                          ሺ35ሻ 

Put 𝑇 ∶ൌ ∑ 𝜆௝𝐶஍ೕ
ே
௝ୀଵ  for short. Since 𝑇 ∶ 𝐴ଵାℇ

ଶ ሺ𝔹௠ሻ →
𝐴ଵାଶℇ
ଶ ሺ𝔹௡ሻ  is compact by assumption, its adjoint 𝑇 ൌ

∑ 𝜆௞𝐶஍ೖ
∗ே

௞ୀଵ ∶ 𝐴ଵାଶℇ
ଶ ሺ𝔹௡ሻ → 𝐴ଵାℇ

ଶ ሺ𝔹௠ሻ  is also compact. Note 
from (18) and (19) that, as |𝑧| → 1ି , the normalized kernel 
𝐾௭
௡,ଵାଶℇ ฮ𝐾௭

௡,ଵାଶℇฮ
௡,ଵାଶℇ

ൗ  converges to 0 uniformly on closed and 

bounded sets in 𝔹௡ , or equivalently, converges to 0 weakly in 
𝐴ଵାଶℇ
ଶ ሺ𝔹௡ሻ . It follows that since a compact operator maps a 

weakly convergent sequence onto a norm convergent one. 

        𝑇∗ ቌ
𝐾௭
௡,ଵାଶℇ

ฮ𝐾௭
௡,ଵାଶℇฮ

௡,ଵାଶℇ

ቍ

→ 0   in   𝐴ଵାℇ
ଶ ሺ𝔹௠ሻ                                           ሺ36ሻ 

as |𝑧| → 1ି. Meanwhile, for 𝑧 ∈ 𝔹௡, we have by (34) 

ฮ𝑇∗𝐾௭
௡,ଵାଶℇฮ

௠,ଵାℇ

ൌ ෍ 𝜆௝𝜆௞〈𝐶஍ೖ
∗ 𝐾௭

௡,ଵାଶℇ,𝐶஍ೕ
∗ 𝐾௭

௡,ଵାଶℇ〉஺భశℇమ ሺ𝔹೘ሻ

ே

௝,௞ୀଵ

 

                  ൌ ෍ 𝜆௝𝜆௞ 〈𝐾஍ೖሺ௭ሻ
௠,ଵାℇ,𝐾஍ೕሺ௭ሻ

௠,ଵାℇ〉஺భశℇమ ሺ𝔹೘ሻ

ே

௝,௞ୀଵ

 

   ൌ ෍ 𝜆௝𝜆௞𝐾஍ೖሺ௭ሻ
௠,ଵାℇ ቀΦ௝ሺ𝑧ሻቁ

ே

௝,௞ୀଵ

 

so that 

 ะ𝑇∗
𝐾௭
௡,ଵାଶℇ

ฮ𝐾௭
௡,ଵାଶℇฮ

௡,ଵାଶℇ

ะ

௠,ଵାℇ

ଶ

ൌ ෍ 𝜆௝𝜆௞ ቆ
1 െ |𝑧|ଶ

1 െ 〈Φ௝ሺ𝑧ሻ,Φ௞ሺ𝑧ሻ〉
ቇ
௡ାଶାଶℇே

௝,௞ୀଵ

           ሺ37ሻ 

For this equality, we used (18), (19), and the relationship 𝑚 ൌ 𝑛 ൅
ℇ. Therefore, we have (35) by (36) and (37). 

We now demonstrate _𝜆ଵ ൌ 0, and one may demonstrate 𝜆ଶ ൌ
⋯ ൌ 𝜆ே ൌ 0 . by the exact same justification. Since it is assumed 
that ‖Φଵ‖ஶ ൌ 1 , there are some 𝜁 ∈ 𝕊௡  and 𝜂 ∈ 𝕊௠  such that 
Φଵሺ𝜁ሻ ൌ 𝜂. After unitary variable changes, we can infer that 𝜁 ൌ
𝐞௡  and 𝜂 ൌ 𝐞௠ , resulting in Φଵሺ𝐞௡ሻ ൌ 𝐞௠ . 𝐽 , the index set 
provided by 

𝐽 ∶ൌ ൛𝑗 ∶ Φ௝ሺ𝐞௡ሻ ൌ Φଵሺ𝐞௡ሻ   and 𝜕ଵΦଵ
௝ሺ𝐞௡ሻ ൌ 𝜕ଵΦଵ

ଵሺ𝐞௡ሻൟ. 

Using Lemma (3.6), pick 𝑤 ∈ 𝔹௡
ሺଵሻ such that 

         ቆ𝐻஍భ
ೕ ሺ𝑤ሻ,𝐺஍ೕሺ𝑤ሻቇ ് ൬𝐻஍భ

ೖሺ𝑤ሻ,𝐺஍ೖሺ𝑤ሻ൰    for   𝑗,𝑘

∈ 𝐽   with   𝑗 ് 𝑘.     ሺ38ሻ 

Let 0 ൏ 𝑡 ൏ 1 |𝑤|ଶ⁄ . Applying (35) along the curve 𝑧ఒ ≔ 𝜆𝐞೙ ൅
ሺ1 െ 𝜆ሻ𝑤  for 𝜆 ∈ 𝛤௧  and then using 1 െ |𝑧ఒ|ଶ ൌ ሺ1 𝑡⁄ െ
|𝑤|ଶሻ|1 െ 𝜆|ଶ, we obtain 

0 ൌ lim
ఒ→ଵ
ఒ∈୻೟

෍ 𝜆௝𝜆௞ ቆ
|1 െ 𝜆|ଶ

1 െ 〈Φ௪
௝ ሺ𝜆ሻ,Φ௪

௞ ሺ𝜆ሻ〉
ቇ
௡ାଶାଶℇே

௝,௞ୀଵ

ൌ lim
ఒ→ଵ
ఒ∈୻೟

ቐ෍ ൅
௝,௞∈௃

෍  
௝,௞∉௃

ቑ 

where the source of the second equality is Lemma (3.5). 
Additionally, each term in the brace of the previous statement is 
rendered nonnegative by (37) and disappears. Lemma (3.5) again 
suggests that 

0 ൌ lim
ఒ→ଵ
ఒ∈୻೟

෍ 𝜆௝𝜆௞ ቆ
|1 െ 𝜆|ଶ

1 െ 〈Φ௪
௝ ሺ𝜆ሻ,Φ௪

௞ ሺ𝜆ሻ〉
ቇ
௡ାଶାଶℇ

௝,௞∈௃

 

   ൌ ෍ 𝜆௝𝜆௞ ቌ lim
ఒ→ଵ
ఒ∈୻೟

|1 െ 𝜆|ଶ

1 െ 〈Φ௪
௝ ሺ𝜆ሻ,Φ௪

௞ ሺ𝜆ሻ〉
ቍ

௡ାଶାଶℇ

௝,௞∈௃

 

ൌ ෍
𝜆௝𝜆௞

ൣ𝐿஍ೕ,஍ೖሺ𝑡,𝑤ሻ൧
௡ାଶାଶℇ

௝,௞∈௃

.                                 

Note_𝛿 ∶ൌ 𝜕ଵΦଵ
ଵሺ𝐞௡ሻ ൐ 0 by Lemma (2.4) (a). So, multiplying 

both sides of the above by ቀ
௧

ఋ
ቁ
ିሺ௡ାଶାଶℇሻ

,We succeed 

෍
𝜆௝𝜆௞

ቂ
𝑡
𝛿 𝐿஍ೕ,஍ೖሺ𝑡,𝑤ሻቃ

௡ାଶାଶℇ
௝,௞∈௃

ൌ 0. 

For any 𝑗,𝑘 ∈ 𝐽, Observe that the purpose 

𝑡 ⟼
𝑡
𝛿
𝐿஍ೕ,஍ೖሺ𝑡,𝑤ሻ   ሺ𝑤 ∶ fixedሻ 

ൌ 1 െ 𝑡 ቎
〈𝐺஍ೕሺ𝑤ሻ,𝐺஍ೖሺ𝑤ሻ〉 െ 𝐻஍భ

ೕ ሺ𝑤ሻ െ 𝐻஍భ
ೖሺ𝑤ሻ

𝛿
െ 1቏ 

extends unquestionably to a holomorphic function in the area 
around the origin. Thus, from (38) and Corollary (3.4), we deduce 
that 𝜆௝ ൌ 0  for all 𝑗 ∈ 𝐽 . In particular, we reach the necessary 
conclusion that 𝜆ଵ ൌ 0. The evidence is conclusive. 
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