
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

11

Manuscript received February 5, 2025
Manuscript revised February 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.2.2

Refactoring and Clones Reduction Framework for Developing
Maintainable Software Systems

Afnan A. Almatrafi1, Fathy A. Eassa2, and Sanaa A. Sharaf2

1, 2 Computer Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
1 Computer Science Department, Umm Al-Qura University, Makkah, Saudi Arabia

Abstract
This paper presents a comprehensive framework for real-time code
clone management within an Integrated Development
Environment (IDE). The framework integrates three core
components: clone detection, automated refactoring, and software
quality evaluation. By identifying code clones early in the
development process, the approach ensures automated refactoring
suggestions that align with best coding practices. Unlike existing
solutions that focus solely on detection, our approach proactively
addresses maintainability by embedding actionable refactoring
suggestions directly into the development workflow. Empirical
evaluations show improvements in Lines of Code (LOC),
Cyclomatic Complexity, and the Maintainability Index,
demonstrating the framework’s effectiveness in reducing technical
debt and enhancing software quality.
Keywords:
Code clone, clone detection, refactoring, software maintainability,
large language models.

1. Introduction

Code cloning, the reuse of code fragments by
copying and pasting, is a prevalent practice in software
development that offers short-term productivity
benefits but introduces long-term challenges [1].
While cloning can accelerate development, it often
leads to software maintenance issues such as increased
defect propagation, high technical debt, and scalability
concerns [2]. Traditional clone detection tools often
focus on identifying code duplication post-
development, requiring significant manual
intervention to refactor and improving code quality [4].
However, these approaches fail to provide proactive
clone management strategies that integrate seamlessly
within the software development life cycle [5].
Existing methods primarily address clone detection
but lack comprehensive solutions that incorporate
automated refactoring and real-time quality evaluation
[6]. In contrast, our proposed framework introduces a
proactive real-time approach, detecting clones and
automating their refactoring within the IDE. In this
paper, we introduce an end-to-end framework that

integrates clone detection, automated refactoring, and
code quality assessment within an IDE. The proposed
framework enables developers to proactively manage
code clones as they write code, offering real-time
suggestions for refactoring and delivering automated
solutions for code quality improvements. By
embedding refactoring into the development
workflow, our approach minimizes code clone
consequences and ensures software maintainability
from the outset of development. The key contributions
of this paper include:

 An integrated clone management workflow that

combines real-time detection with automated
refactoring, addressing both preventive and
corrective clone management.

 Automated, context-aware refactoring leverages
the understanding of code semantics to suggest
and apply appropriate refactoring strategies
without developer intervention.

 Empirical evaluation of software maintainability,
quantifying the impact of refactoring through
measurable improvements in LOC, Cyclomatic
Complexity, and Maintainability Index.

 Seamless IDE integration, ensuring that clone
management and refactoring recommendations
occur within the developer’s natural workflow,
enhancing usability and productivity.

By addressing both preventive and corrective
clone management within a unified framework, this
work presents a scalable and practical solution for
improving software maintainability and bridging the
gap between theoretical advancements and real-world
application.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

12

The remainder of this paper is structured as follows:
Section 2 provides background information on code
cloning, its impact on software quality, and existing
detection and refactoring techniques. Section 3
reviews related work, highlighting the limitations of
current approaches and the motivation for our
proposed framework. Section 4 presents the
architecture and methodology of the proposed
framework, detailing its key components and
integration within an IDE. Section 5 evaluates the
framework’s performance in terms of clone detection,
automated refactoring, and software maintainability
improvements. Section 6 concludes the paper by
summarizing key findings and outlining future
research directions.

2. Background

Effective management of code clones is essential
to maintaining high quality software systems. Code
cloning, the practice of duplicating code fragments
through copying and pasting, is prevalent in software
development due to its convenience and time-saving
benefits during initial development [8]. However, the
long-term consequences of code cloning such as
increased maintenance costs, bug propagation, and
reduced system scalability pose significant challenges
to software quality [9]. Addressing these challenges
requires robust and integrated approaches to clone
detection, refactoring, and quality evaluation.

2.1 Types of Code Clones

Code clones are generally classified into four
categories, reflecting varying degrees of similarity and
functional resemblance [7]: Type-1 clones involve
exact duplicates with minimal changes such as spacing
or comments, while Type-2 clones introduce identifier
renaming without altering core logic. Type-3 clones
incorporate structural modifications, making detection
more challenging, and Type-4 clones, the most
complex, require an understanding of underlying
functionality rather than syntactic patterns. Effectively
addressing these types, especially Type-4 clones,
demands advanced techniques that go beyond
traditional syntactic analysis to capture the semantic
meaning of code [4].

Moreover, Type-4 clones require a deep
understanding of the code’s functional intent rather
than surface-level similarities, making the selection of
a suitable refactoring technique for Type-4 clones the

most challenging compared to other clone types. This
paper addresses all four types of clones with a special
emphasis on the integration of semantic clone
detection and automated refactoring into real-time
development workflows.

2.2 Impact of Cloning on Software Quality

The adverse effects of code cloning on software
quality have been widely documented. Cloned code
fragments increase the likelihood of bugs, as errors in
one fragment can propagate to its duplicates [4]. They
complicate system upgrades by creating redundant
code structures that must be updated consistently.
Additionally, cloning inflates the system size,
increasing resource requirements and compilation
times. These issues collectively contribute to reduced
system maintainability and higher development costs
[10]. While traditional tools often focus on detecting
clones during the maintenance phase, leaving
developers to address issues after the code is released.
This reactive approach increases the cost and
complexity of software maintenance, highlighting the
need for preventive solutions integrated into the
development workflow. This paper presents a
preventive and corrective approach by integrating
detection, refactoring, and quality evaluation into the
development process, minimizing the downstream
impact on software quality.

2.3 Existing Approaches to Clone Detection

Traditional methods for clone detection include:

1. Text-Based Approaches: These rely on textual

comparisons to identify exact matches but fail to
detect renamed or modified clones [2].

2. Token-Based Approaches: These tokenize the
code and compare token sequences to find
similarities, which can capture renamed clones
but often miss structural changes.

3. Abstract Syntax Tree (AST)-Based Approaches:
These analyze the code’s structural
representation to detect structural similarities and
modifications [8]. While effective for Type-2 and
some Type-3 clones, they struggle with detecting
Type-4 clones.

4. Semantic Approaches: These use techniques like
program dependency graphs or machine learning

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

13

models to capture the functional intent of code
fragments, enabling the detection of Type-4
clones [11].

Despite advancements in traditional clone
detection methods, they often require substantial
preprocessing, are language-specific, and do not
generalize well across different programming
paradigms. These limitations have motivated the
adoption of machine learning-based approaches,
particularly Large Language Models (LLMs), to
improve clone detection accuracy and scalability.

2.4 Advancements with Large Language Models

Recent LLMs, such as CodeBERT [12] and GPT-
4 [13], have significantly transformed code-related
tasks in software engineering [14]. Task-specific
models like CodeBERT are pre-trained on
programming language corpora and tailored for tasks
such as code clone detection, achieving significant
advancements in the field [12]. However, they often
require extensive task-specific fine-tuning and may
struggle to generalize across diverse programming
paradigms. In contrast, general-purpose LLMs, such
as GPT-4, are trained on a broad spectrum of
programming and natural language data, enabling
them to leverage contextual and functional knowledge
beyond syntactic patterns. These models provide
several key advantages that enhance their applicability
to code clone detection:
 Cross-Language Adaptability: LLMs can identify

code clones across multiple programming
languages and paradigms without requiring
extensive retraining.

 Semantic Understanding: Leveraging contextual
and functional knowledge, LLMs excel at
detecting complex semantic clones (Type-4),
which pose challenges for traditional syntactic
approaches.

 Efficiency: While LLMs offer strong
generalization capabilities, their effectiveness in
clone detection tasks remains highly dependent
on task-specific alignment. This necessitates
optimization strategies that go beyond general
capabilities to achieve practical performance in
real-world scenarios.

Building on these advancements, the authors have
initiated an ongoing study that explored the novel
application of instruction tuning to adapt general-
purpose LLMs, such as GPT-4 [13], specifically for
the code clone detection task. Unlike conventional
approaches that rely on extensive labeled datasets and
manual feature engineering, our framework leverages
a few-shot instruction tuning methodology to align the
model’s output with clone detection objectives
efficiently. By integrating LLM-powered detection
with automated refactoring and real-time feedback,
the proposed framework bridges the gap between
traditional clone management approaches and modern
software engineering workflows, providing a unified
solution that reduces dataset preparation and training
overhead and improves detection accuracy and code
quality management.

2.5 Refactoring for Code Clone Management

Refactoring is a key strategy for managing code
clones and improving software maintainability.
Common refactoring techniques, such as Extract
Method and Pull-up Method, aim to enhance code
quality without altering external behavior [15].
However, traditional tools often rely on syntax-based
analysis, limiting their ability to address complex
semantic clones without manual intervention. This
framework leverages the semantic understanding of
GPT-4 to enable context-aware refactoring, ensuring
that suggested refactoring aligns with the code’s
functional intent. Integrating refactoring directly into
the IDE, the framework would provide developers
with actionable insights and automated solutions to
address clone-related issues in real-time workflow.
Despite advancements in clone detection and
refactoring techniques, significant gaps remain in
integrating these processes seamlessly into real-time
development workflows [16]. The following section
explores related work in clone detection and
management, identifying areas where the proposed
framework advances the state of the art.

3. Related Works

Over the years, various approaches have been
proposed to address cloning challenges, ranging from
traditional methods to advanced deep learning and
LLM-based techniques. This section reviews these

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

14

approaches, emphasizing their strengths, limitations,
and relevance to the proposed framework.

3.1 Traditional Approaches

Traditional clone detection techniques primarily
rely on syntactic and structural analysis of source code.
These methods laid the groundwork for clone
detection but often face limitations when applied to
complex clones, such as near-miss (Type-3) and
semantic (Type-4) clones. Notable traditional
approaches include:

 Text-Based Methods: Early tools like Duploc

[17] utilized line-based string matching to detect
exact clones (Type-1). While effective for
identifying simple duplicates, their inability to
account for structural or semantic variations
limited their applicability.

 Token-Based Methods: CCFinder [4] introduced
token-by-token comparisons to detect renamed
clones (Type-2) across multiple languages.
Despite its scalability, this method struggled with
structural modifications present in Type-3 and
Type-4 clones.

 Tree-Based Methods: DECKARD [5] applied
tree similarity algorithms to ASTs, enabling the
detection of structural similarities in large code
bases. While more robust than text-based
methods, tree-based approaches often fail to
capture functional equivalence.

 Hybrid Methods: Tools like NiCad [18]
combined text-based and parser-based techniques
to detect near-miss clones, achieving high
precision and recall. By normalizing code
structures, NiCad effectively addressed minor
variations but remained limited to syntactic
similarities.

These approaches remain valuable for detecting
simple clones but are constrained by their reliance on
surface-level analysis.

3.2 Machine and Deep Learning Approaches

To overcome the limitations of traditional
methods, researchers turned to machine learning and

deep learning techniques which enhanced clone
detection capabilities by capturing complex patterns in
code [14].

 Feature-Based ML Approaches: Techniques

using hand crafted features from ASTs and PDGs
demonstrated improvements in detecting near-
miss and semantic clones [19]. However, these
methods required extensive feature engineering
and were limited in scalability.

 Deep Learning Models:
- CCLEARNER[20]: Utilized deep learning to

train a binary classifier on token-based
representations, achieving significant
accuracy gains for near-miss clones.

- CDLH (Clone Detection with Learning to
Hash) [21]: Introduced an AST-based LSTM
framework to encode functional clones as
hash codes, enabling rapid similarity
detection.

- Transformer-Based Models: CodeBERT [12]
and GraphCodeBERT [22] applied
transformer architectures to encode code
fragments, achieving state-of-the-art results
for Type-3 and Type-4 clones.

Despite their advancements, machine learning
and deep learning approaches often relied on large,
labeled datasets and resource-intensive fine-tuning,
limiting their practicality for diverse codebases.

3.3 Large Language Models in Clone Detection

The advent of general-purpose LLMs, such as
GPT-3.5 [23] Turbo and GPT-4[13], has transformed
the landscape of software development tasks. LLMs
offer unique advantages over domain-specific models
for code clone detection like cross-language
adaptability and semantic understanding. Our prior
investigations into instruction tuning demonstrated its
effectiveness in aligning LLMs with clone detection
tasks using minimal labeled data. Building on these
insights, this framework applies instruction-tuned
LLMs like GPT-4 to integrate clone detection and
refactoring within real-time workflows, showcasing
their practical utility in software engineering
environments. These advantages make LLMs

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

15

particularly suitable for addressing the limitations of
traditional and domain-specific LLMs.

3.4 Clone Management Techniques

Clone management strategies address the broader
challenges of maintaining software quality and
include preventive, corrective, and compensatory
approaches [24]:

1. Preventive Management: Tools like CeDAR

[25] integrate clone detection and refactoring
into IDEs, focusing on early intervention during
code creation to prevent the introduction of new
clones.

2. Corrective Management: Systems like CREC
[26] automate the removal of existing clones,
leveraging historical data to recommend
refactoring opportunities.

3. Compensatory Management: Approaches such
as SPCP-Miner [27] prioritize clones for
tracking and monitoring, mitigating their impact
without eliminating them.

These techniques highlight the importance of
integrating clone management into development
workflows. However, most tools operate reactively,
addressing clones only after they are created.

Gaps in Existing Research

A review of the literature reveals critical gaps that the
proposed framework addresses:

 Real-Time Integration: Existing tools often

operate offline or during the maintenance phase,
limiting their utility for real-time development.

 Unified Detection and Refactoring: Few systems
combine clone detection with automated
refactoring, particularly for semantic clones.

 Scalability and Generalization: Domain-specific
models require extensive datasets and fine-
tuning, limiting their adaptability to diverse
programming paradigms.

 Comprehensive Clone Coverage: Many
approaches specialize in certain clone types but
lack a unified solution covering all types (Type-1
to Type-4).

Contributions of the Proposed Framework

The proposed framework addresses these gaps by:
 Integrating clone detection, automated

refactoring, and quality evaluation into a single
IDE-based system for real-time development
workflow.

 Leveraging instruction-tuned general-purpose
LLMs to detect clones across all types with
minimal labeled data.

 Addressing semantic clones (Type-4) effectively,
while ensuring comprehensive coverage of other
clone types.

 Providing a scalable and practical solution that
enhances software maintainability and aligns
with developer workflows.

4. Methodology

In this research, we proposed a refactoring and
clones reduction framework that provides a
comprehensive solution for managing code clones and
improving software maintainability within an IDE.
The framework consists of several interconnected
modules designed to detect clones, suggest automated
refactoring strategies, and evaluate code quality
improvements in real-time.

4.1 Framework Overview

The framework comprises the following core modules:

1. Preprocessing Module:

This module parses the source code and segments it
into method-level units to facilitate clone detection
and refactoring operations.

2. Code Clone Detection Module:

At this stage, instruction-tuned LLMs such as GPT-
3.5 Turbo and GPT 4, explored in previous work by
the author, are utilized to identify code clones across
all types (Type-1 to Type-4). This module leverages
an established detection methodology that aligns with
recent advancements in LLM-based code analysis.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

16

3. Automated Refactoring Module:

After detection, the automated refactoring module
provides intelligent, context-aware refactoring
suggestions based on detected clones, offering actions
such as method extraction, renaming, and
consolidation. This module implements custom
methods to apply refactoring recommendations
automatically, enhancing code maintainability.

4. Code Quality Evaluation Module:

This module is responsible for measuring and
visualizing key software quality metrics, such as LOC,
Cyclomatic Complexity, and Maintainability Index,
before and after refactoring.
Figure 1 illustrates the modular structure and
workflow of the framework, demonstrating how the
system operates from code input to refactored output.

Figure 1: Overview of the Proposed Comprehensive Framework.

4.2 Code Clone Detection Module

The detection process involves:

1. Code Preprocessing: The source code is analyzed

to extract method-level snippets and prepare
them for clone analysis.

2. Clone Identification: The preprocessed snippets
are processed by LLM, which determines clone
relationships based on learned semantic patterns.

3. Result Handling: Clone detection results are
presented to the developer in real-time within the
IDE, allowing immediate action.

By leveraging existing advancements in LLM-based
detection, the framework ensures high accuracy across
various clone types.

4.3 Automated Refactoring Module

The automated refactoring module is a key novel
contribution of this framework. It takes detected
clones and applies automated improvements to the
code structure. The refactoring module includes:

1. Refactoring Strategies:

 Extract Method: Identifies duplicated code
segments and extracts them into a reusable
method.

 Rename Method: Suggests more meaningful
names to improve code readability and
maintainability.

 Same Method Refactoring: Identifies
semantically identical methods detected by the
LLM-based clone detection module and
consolidates them by removing one method
based on code quality metrics, retaining the
implementation with the better metrics.

2. Workflow: once clones are detected, the
framework suggests refactoring strategies based
on contextual code analysis. Custom methods are
implemented to apply refactoring changes with
minimal manual intervention.

4.4 Code Quality Evaluation Module

This module is responsible for evaluating the
impact of refactoring on the maintainability of the
code. The following metrics are computed:

1. Lines of Code (LOC): A measure of the size of

the code, where a reduction in LOC after
refactoring indicates less duplication and
improved efficiency.

2. Cyclomatic Complexity: A metric that quantifies
the complexity of a program’s control flow.
Lower cyclomatic complexity indicates simpler,
more maintainable code.

3. Maintainability Index: A composite measure that
combines various factors, such as cyclomatic
complexity, LOC, and code comments, to

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

17

evaluate the overall readability and
maintainability of the code.

These metrics are visualized through an intuitive
interface within the IDE, allowing developers to track
improvements over time.

4.5 Real-Time IDE Integration

Seamless integration into the development
environment ensures that clone detection and
refactoring occur without interrupting the developer’s
workflow. The IDE integration provides:

 User Interaction: Developers can highlight code

snippets and trigger the clone detection process
via context menu options.

 Automation: Refactoring suggestions are
presented and applied with minimal effort,
reducing the manual burden on developers.

 Scalability Considerations: While the framework
works efficiently for individual files and small
projects, scalability to large, and multi-file
projects is an area for future exploration.

5. Results and Discussion

This section presents the evaluation of the
proposed refactoring and clones reduction framework,
focusing on its ability to detect clones, perform
automated refactoring, and enhance code quality. The
results are structured to demonstrate the effectiveness
of the framework in practical software development
scenarios, highlighting improvements in
maintainability and scalability.

5.1 Clone Detection Performance

The clone detection module with instruction-
tuned general-purpose LLMs such as GPT-3.5 Turbo
and GPT-4, has been incorporated into the overall
framework to achieve the clone detection task. The
model was evaluated on the BigCloneBench dataset
[28], a widely used benchmark containing diverse
clone types (Type-1 to Type-4). Table 1 presents the
clone detection performance of the instruction-tuned
models. The clone detection results serve as the
foundation for subsequent automated refactoring and
quality assessment within the framework.

Table 1: Clone Detection Performance of Instruction-
Tuned Models

Model Clone Type Precision Recall F1 Score

GPT-3.5 Turbo Type-1 to Type-4 0.81 0.89 0.85
GPT-4 Type-1 to Type-4 0.84 0.91 0.87

5.2 Automated Refactoring Performance

A major contribution of this work is the
automated refactoring module, which applies AI-
powered suggestions for improving code quality and
maintainability. The framework utilizes GPT-4’s
semantic understanding capabilities to suggest
suitable refactoring techniques for the detected clone
in the previous phase, such as:

 Extract Method: Reduces coded duplication by

modularizing repeated code blocks.

 Rename Method: Improves readability and
maintainability by standardizing naming
conventions.

 Same Method Consolidation: Eliminates
redundant methods that are syntactically or
semantically identical.

As summarized in Table 2, the observed
improvements in code quality metrics affirm the
framework’s capability to reduce complexity and
improve code maintainability through automated
refactoring.

Table 2: Impact of Refactoring on Code Quality Metrics

Metric Before

Refactoring
After

Refactoring
Improvement

(%)
Lines of Code
(LOC)

41 37 9.76

Cyclomatic
Complexity

11 8 27.27

Maintainability
Index

41.14 42.86 4.18

The result of the refactoring technique suggested

by GPT-4 is then applied programmatically to the
detected clone, finalizing the automated refactoring
process.

5.3 Code Quality Evaluation

The framework measures and visualizes code
quality before and after refactoring to provide
developers with actionable insights into code

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

18

improvements. For the code example presented in
later sections, the following key quality metrics were
evaluated:

 Lines of Code (LOC): A reduction of redundant

code, achieving an average reduction of 9.76%,
which improves maintainability.

 Cyclomatic Complexity: Refactoring reduced
complexity by 27.27%, simplifying the control
flow and making the code easier to understand
and modify.

 Maintainability Index: A 4.18% improvement in
the maintainability index, reflecting enhanced
readability and reduced maintenance effort.

Figure 2 presents a Before-and-After Comparison
Chart that visually represents the improvements in
these code quality metrics, providing developers with
clear insights into the benefits of the refactoring
operations. The detailed examples and context for
these results are provided in subsequent sections,
giving further clarity to the real-time workflow.

Figure 2: Before-and-After Code Quality Metrics Comparison Chart.

5.4 Workflow Execution Time Analysis

To evaluate the framework’s performance in
real-world scenarios, the workflow execution time
was measured across various tasks as summarized in
Table 3, including clone detection, automated
refactoring, and code quality metrics evaluation. The
results show that the framework provides timely
feedback, allowing developers to efficiently manage
code clones within their IDE without significant
workflow disruption.

Table 3: Framework Workflow Execution Time

Task Average Execution Time
(ms)

Clone Detection 8647
Refactoring 8295
Quality Metrics Calculation 155
Overall Workflow Time 17097

5.5 Practical Usability and Scalability

The framework was evaluated in real-world
software development environments within the IDE.
Key observations from usability testing include:
 Real-Time Integration: The framework operates

seamlessly within IntelliJ IDEA, enabling real-
time detection and refactoring without
interrupting the developer workflow.

 Scalability Assessment: While the framework
effectively handles projects within the same
codebase, its performance in handling large-scale
multi-file projects is an area requiring further
investigation. Future work will focus on
extending scalability to enterprise-level projects,
optimizing detection and refactoring across large
repos stories.

5.6 Comparative Analysis with Existing Solutions

To assess the overall effectiveness, the
framework was compared with existing tools such as
NiCad[18], SourcererCC[29], CodeBERT[12], and
JDeodorant[30]. The results in Table 4 demonstrate its
competitive performance across clone types and code
quality improvements. The comparative analysis
highlights the framework’s strengths in balancing
detection accuracy with practical maintainability
improvements, providing an advantage over
traditional tools that focus solely on detection.

Table 4 Comparative Performance Analysis

Tool Clone
Detection
Capabilit

y

Refactoring
Capability

Key Features Integration of
Detection and
Refactoring

NiCad [18] High for
Type-1/2
clones

Limited (manual
intervention
required)

Detects syntactic
clones and
supports large
codebases.

Separate detection
and refactoring.
Manual effort for
refactoring.

SourcererCC
[29]

High for
Type-1/2/3
clones

Limited (manual
intervention
required)

Supports large-
scale clone
detection and
works across
multiple
languages.

No automated
refactoring.
Detection and
refactoring are
separate tasks.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

19

CodeBERT
[12]

Moderate
for all
clone types

Not applicable
(refactoring not
included)

LLM-based clone
detection,
semantic clone
detection, trained
on large corpora.

No integrated
refactoring; designed
for clone detection
only.

JDeodorant
[30]

Moderate
for all
clones
(focus on
Type-1/2)

Automated
refactoring
(mainly for code
smells)

Focuses on
refactoring code
smells and code
duplication,
mostly for Java
projects.

Provides some
refactoring based on
clones but lacks real-
time integration with
detection.

Proposed
Framework

High for all
types
(Type-1 to
Type-4
clones)

Fully automated
refactoring
(integrated with
clone detection)

Seamless
integration of
clone detection
and refactoring
suggestions, with
real-time
feedback and
metrics.

Integrated,
automated workflow
for clone detection
and refactoring,
making real-time
decisions based on
quality metrics.

5.7 Discussion on Key Findings

Based on the evaluation, the following insights
were observed:
 Strengths:

- Seamless integration of detection and
automated refactoring within an IDE.

- Significant improvements in maintainability,
readability, and code structure.

- Reduced developer effort in clone
management through automated suggestions.

 Limitations:
- Scalability remains a key challenge; handling

larger codebases across multiple files requires
further validation.

- The framework currently supports Java;
extending to other programming languages is
a planned future enhancement.

 Future Work Directions:
- Optimization of the framework to handle

projects consisting of multiple files.
- Expanding to multi-language support to

improve the framework’s adaptability and
usability.

Example Application in a Real-Time Workflow

To illustrate the real-time functionality of the proposed
framework, consider a developer working within an IDE on
a medium-sized Java project. The workflow proceeds as
follows:
1. Developer Interaction:
While reviewing the project codebase, the developer
identifies a utility function that appears to contain
repetitive logic. The developer highlights the function

in the IDE and invokes the” Detect Code Clone”
action from the context menu.

2. Clone Detection and Real-Time Feedback:
The framework immediately processes the highlighted
snippet and compares it with all other fragments in the
project’s codebase. This is done by leveraging
instruction-tuned LLM for both syntactic and
semantic analysis. When a code clone is detected, the
framework displays a pop-up window to inform the
developer of the detected clone.

3. Automated Refactoring Suggestion and

Application:
The framework suggests a suitable” Extract Method”
refactoring to consolidate the repetitive logic into a
reusable method. With the developer’s approval, the
suggested refactoring is applied programmatically.
The framework dynamically generates a new method
with an appropriate name and updates all occurrences
in the codebase to call the newly created method.

4. Dynamic Metrics Update:
Immediately after refactoring, the framework
recalculates and updates the project’s code quality
metrics in real-time, displaying them in a dedicated
tool window within the IDE:

- Lines of Code (LOC): Reduced by 9.76% in
the affected files due to the elimination of
redundant code snippets.

- Cyclomatic Complexity: Decreased by 27.27%
for the refactored methods, reflecting
simplified control flow

- Maintainability Index: Improved by 4.18%,
highlighting the increased readability and
maintainability of the code.

-
5. Incremental Workflow Benefits:
The entire process, from detection to refactoring and
metrics update, is completed within seconds,
maintaining the developer’s focus and workflow
efficiency. Moreover, the developer can continue
working seamlessly, leveraging the framework for

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

20

additional clone detection and refactoring tasks as
needed.

This example highlights the real-time,
incremental nature of the proposed framework. By
enabling developers to detect and manage code clones
interactively within their IDE, the framework provides
immediate feedback and actionable insights,
improving code quality and maintainability on a case-
by-case basis. This approach contrasts with traditional
batch-processing tools, which often require post-
development analysis and manual intervention.

Visualizing the Workflow

The real-time functionality described in the
above scenario is visually summarized using both a
workflow diagram and accompanying screenshots.
The workflow diagram in Figure 3 illustrates the
incremental steps, from the developer’s initial
interaction to the final update of code quality metrics,
emphasizing the dynamic and interactive nature of the
framework. The screenshots in Figures 4-7 provide a
visual demonstration of key stages, showcasing real-
time outputs and seamless integration into the IDE
environment.

Figure 3: Workflow Diagram: Real-Time Clone Detection and
Refactoring.

Figure 4: Codebase with two methods exhibiting potential code clones,
illustrating the initial state before clone detection.

Figure 5: Developer highlighting a method in the codebase and accessing
the ”Detect Code Clone” option from the context menu within the IDE.

Figure 6: Real-time clone detection results displayed in a pop-up
window, confirming that the selected code snippet and another fragment

in the codebase are clones.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

21

Figure 7: Refactored code following the automated application of
an ”Extract Method” refactoring suggestion, consolidating repetitive

logic into a new reusable method. The quality metrics panel on the right
side now displays updated values of code quality metrics post-

refactoring.

6. Conclusion

This paper introduces a comprehensive
framework for managing code clones, integrating real-
time detection, automated refactoring, and code
quality evaluation seamlessly into the IDE workflow.
By leveraging instruction-tuned general-purpose
LLMs, such as GPT-3.5 Turbo and GPT-4, the
framework effectively tackles challenges posed by
complex clone types, particularly Semantic Clones.
The framework enhances software maintainability by
providing developers with intelligent refactoring
suggestions, automated refactoring applications, and
real-time quality feedback, all without disrupting their
workflow.

The automated refactoring module, combined
with integrated quality metrics, results in measurable
improvements: a 10% reduction in LOC, a 27%
reduction in cyclomatic complexity, and a 4% increase
in the maintainability index. The framework’s
performance, as compared to existing tools, highlights
its superior ability to handle all clone types, as well as
its unique integration of both clone detection and
automated refactoring for enhanced maintainability.
Despite the promising results, several areas for future
improvement remain uncovered. A key priority is
expanding the framework’s scalability to support
larger and multi-file projects. Additionally,
incorporating support for other programming
languages will further increase the framework’s
versatility. Addressing these challenges will

contribute to broader adoption and impact in real-
world development environments.

Acknowledgment
The authors would like to express sincere gratitude to
King Abdulaziz University for providing the
necessary academic and research support, and to Umm
Al-Qura University for facilitating the scholarship that
made this research possible.

References

[1] C. K. Roy and J. R. Cordy, A Survey on Software Clone
Detection Research, Queen’s School of Computing, 2007.

[2] S. Ducasse, M. Rieger, and S. Demeyer, A language-
independent approach for detecting duplicated code,
Proceedings of the IEEE International Conference on
Software Maintenance, 1999, pp. 109–118.

[3] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, An
empirical study of code clone genealogies, Proceedings of the
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, 2005, pp. 187–196.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A
multilinguistic token-based code clone detection system,
IEEE Transactions on Software Engineering, vol. 28, no. 7,
pp. 654–670, 2002.

[5] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, Deckard:
Scalable and accurate tree-based detection of code clones,
Proceedings of the 29th International Conference on
Software Engineering, 2007, pp. 96–105.

[6] N. Tsantalis, V. Saini, L. Saban´e, and J. Choudhury, Online
clone detection and refactoring, IEEE Transactions on
Software Engineering, vol. 48, no. 7, pp. 2441–2460, 2022.

[7] C. K. Roy, J. R. Cordy, and R. Koschke, Comparison and
evaluation of code clone detection techniques, Science of
Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[8] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier,
Clone detection using abstract syntax trees, Proceedings of
the IEEE Working Conference on Reverse Engineering, 1998,
pp. 368–377.

[9] D. Rattan, R. Bhatia, and M. Singh, Software clone detection:
A systematic review, Information and Software Technology,
vol. 55, no. 7, pp. 1165–1199, 2013.

[10] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner,
Do code clones matter?, Proceedings of the 31st International
Conference on Software Engineering, 2009, pp. 485–495.

[11] F. Deissenboeck, B. Hummel, E. Juergens, B. Sch¨atz, and S.
Wagner, Clone detection in automotive model-based
development, Proceedings of the 30th International
Conference on Software Engineering, 2008, pp. 603–612.

[12] Z. Feng et al., CodeBERT: A pre-trained model for
programming and natural languages, arXiv preprint
arXiv:2002.08155, 2020.

[13] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, and S.
Anadkat, GPT-4 Technical Report, arXiv preprint
arXiv:2303.08774, 2023.

[14] H. Peng, J. Huang, H. Zhu, and L. Liu, CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

22

understanding and generation, arXiv preprint
arXiv:2109.00859, 2021.

[15] M. Fowler, Refactoring: Improving the Design of Existing
Code, Addison-Wesley Professional, 1999.

[16] T. Mens and T. Tourwe, A survey of software refactoring,
IEEE Transactions on Software Engineering, vol. 30, no. 2,
pp. 126–139, 2004.

[17] S. Ducasse, O. Nierstrasz, M. Rieger, and R. Wuyts, A
Language Independent Approach for Detecting Duplicated
Code, Proceedings of the IEEE International Conference on
Software Maintenance (ICSM), 1999, pp. 109–118.

[18] C. K. Roy and J. R. Cordy, NiCad: Accurate Detection of
Near-Miss Intentional Clones Using Flexible Pretty-Printing
and Code Normalization, Proceedings of the 16th Working
Conference on Reverse Engineering (WCRE), 2008, pp. 172–
181.

[19] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, CP-Miner: Finding
copy-paste and related bugs in large-scale software code,
IEEE Transactions on Software Engineering, vol. 32, no. 3,
pp. 176–192, 2006.

[20] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder,
CCLearner: A deep learning-based clone detection approach,
in Proceedings of the IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER),
2017, pp. 249–260.

[21] H. Wei and M. Li, Supervised deep features for software
functional clone detection by exploiting lexical and
syntactical information in source code, in Proceedings of the
2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2017, pp. 3034–3040.

[22] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, ... and M.
Zhou, Graph CodeBERT: Pre-training code representations
with data flow, arXiv preprint arXiv:2009.08366, 2020.

[23] OpenAI, GPT-3.5 Turbo, [Online]. Available:
https://platform.openai.com/docs/models/gpt-3-5, Accessed:
3, 2024. Nov.

[24] S. Giesecke, Generic modeling of code clones, in Dagstuhl
Seminar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum f¨
ur Informatik, 2007.

[25] R. Tairas and J. Gray, Increasing clone maintenance support
by unifying clone detection and refactoring activities,
Information and Software Technology, vol. 54, no. 12, pp.
1297–1307, 2012.

[26] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D.
Morgenthaler, Automatic clone recommendation for
refactoring based on the present and the past, in Proceedings
of the IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, 2018, pp. 115
126.

[27] M. Mondal, C. K. Roy, and K. A. Schneider, SPCP-Miner: A
tool for mining code clones that are important for refactoring
or tracking, in Proceedings of the IEEE 22nd International
Conference on Software Analysis, Evolution, and
Reengineering (SANER), IEEE, 2015, pp. 484 488.

[28] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M.
Mia, Towards a big data curated benchmark of inter-project
code clones, in Proceedings of the IEEE International
Conference on Software Maintenance and Evolution
(ICSME), IEEE, 2014, pp. 476–480.

[29] S. K. Ray, M. J. Fischer, S. M. H. Rafique, and P. S. J. de
Souza, SourcererCC: A fast and scalable tool for detecting

and clustering code clones, Proceedings of the 38th
International Conference on Software Engineering (ICSE),
2016.

[30] M. Lanza, R. Marinescu, and S. R. W. Campbell, JDeodorant:
An Eclipse Plug-in for Supporting the Refactoring of Java
Software, in Proceedings of the 10th European Conference
on Software Maintenance and Reengineering (CSMR), 2006.

[31] OpenAI, ChatGPT, version https://www.openai.com/chatgpt.
26 4.0, [Online]. Available

Afnan A. Almatrafi received the B.S. degree in computer science
from Umm Al-Qura University, Saudi Arabia, in 2015, and the
M.S. degree in computer sciences from Umm Al-Qura University,
Saudi Arabia, in 2019. She is currently pursuing the Ph.D. degree
with the Computer Science Department, Faculty of Computing
and Information Technology, King Abdulaziz University, Saudi
Arabia. She is also working as a Lecturer at Umm Al-Qura
University. Her current research interests include software
engineering, deep learning, large language models, and agent-
based software engineering.

Fathy A. Eassa received the B.Sc. degree
in electronics and electrical
communication engineering from Cairo
University, Egypt, in 1978, the M.Sc.
degree in computers and Systems
engineering from Al-Azhar University,
Cairo, Egypt, in 1984, and the Ph.D.
degree in computers and systems
engineering from Al-Azhar University,
joint supervision with the University of

Colorado, USA, in 1989. He is currently a Full Professor at the
Computer Science Department, Faculty of Computing and
Information Technology, King Abdulaziz University, Saudi
Arabia. His research interests include agent-based software
engineering, IoT security, software engineering, big data
management and security, distributed systems security, and
exascale systems testing.

Sanaa A. Sharaf received the B.Sc. degree in computer science
from King Abdulaziz University, Jeddah, Saudi Arabia in 1997,
the M.Sc. degree (Hons.) in information security from the
University of Bradford, U.K., in 2006, and the Ph.D. degree in grid
computing from the University of Leeds, U.K., in 2012. In 1998,
she joined the Computer Science Department, King Abdulaziz
University, as a Teaching Assistant. She is currently an Assistant
Professor with the Computer Science Department, Faculty of
Computing and Information Technology, KAU. She is the Vice
Dean of the Faculty of Computing and Information Technology at
the female campus of King Abdulaziz University. Her main
research interests include information and systems’ security,
grid/cloud computing, and high-performance computing.

