
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

135

Manuscript received February 5, 2025
Manuscript revised February 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.2.14

Data Mining and Knowledge Discovery from Web

K.Narendra Kumar,

Asscociate professor in CIET,Lam,Guntur,AP, India

Abstract
The World Wide Web has had an impact on nearly every aspect
of society including commerce, science, politics and government,
personal relationships, and health. In only one short decade it has
evolved to become a global information space for almost every
kind of information. As such, it presents an exciting object of
study. This paper will describe the goals and architecture of
WebFountain Project, some of the problems addressed by
WebFountain and elements built in WebFountain to address them.
It also focuses on the broad research areas that are involved Data
Mining and Knowledge Discovery from Web.
Keywords:
Data Mining, Knowledge Discovery, Web, World Wide Web

1. Introduction

The World Wide Web has had an impact on nearly
every aspect of society including commerce, science,
politics and government, personal relationships, and health.
In only one short decade it has evolved to become a global
information space for almost every kind of information. A
group of people at IBM Almaden have been working since
1999 on an infrastructure to design a crawler i.e.,
substantial portion of the web to extract information from
it. This paper describes the goals and architecture of the
WebFountain project, as well as outlines of some problems
that raised and their attempts to understand the structure of
information on the web.

There are several projects worldwide that have focused
on information retrieval and data mining of a substantial
fraction of the entire web, and some of them have grown
into businesses with high visibility. Some notable
examples are search engines such as Altavista and Google1.
Each of these uses a distributed “crawler” program to
retrieve documents from the web and storing them into a
federated database for later processing and extracting links
to new URLs as it progresses. In the case of a search
engine, the major pre-processing consists of building an
inverted keyword index that maps terms to document IDs,
which reduces to a large sorting operation. Once this is
done, a query interface is built to provide a user interface.
The importance of search as an application cannot be
underestimated, and in fact it is believed that a majority of

1 Altavista and Google are registered trademarks

web user sessions now begin by first consulting a search
engine for an informational need.

The WebFountain system includes a search engine, but
adds other features of hypertext analysis and knowledge
discovery. The activity of knowledge discovery seeks to
uncover potentially useful and understandable patterns in
data, and in this case the underlying data is the structure
and information present on the Web. This is integrated into
business processes through a cyclic process. First they
identified opportunities where data can provide value and
then applied data mining to gain knowledge about the
opportunity, apply this knowledge, and verify our results.
At this point new insight may be gained to feed back into
the cycle. This methodology has been applied with
customer data for customer relationship management and
predictive marketing, but when applied to web information
the opportunities are quite broad.

One of their activities was semantic tagging of web
data. In recent years there has been an emerging trend to
create a machine readable semantic web that augments the
human readable World Wide Web [2] and creates an
infrastructure for higher-level functionality. According to
[7] an application of the WebFountain infrastructure that
generated semantic tagging information for over 434
million web pages, including the identification of named
entities such as people, place names, product names, etc.
Another example of semantic tagging applications was
described in [16], in which geographic tagging of web
pages and web sites was extracted from pages, and a
navigational interface was provided to allow the user to
find pages that were geographically similar to any given
page. These represent example applications that the
WebFountain project is designed to support.

One can view the semantic tagging process as creating
a semi-structured database from the raw hypertext
information on the web. Once building of database
completed, there are numerous opportunities for discovery
of association rules [1], clustering and classification of
documents and/or entities, deviation detection, and
application to business processes. In this case the semantic
tags become the primary data source for data mining, but
the original web information is still crucial for verification
and inference.

The web has many substructures to it, including the
high level knowledge that it represents, the linguistic
structure of text, the character representation of the text,
the visual structure of layout, and the hierarchical structure

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

136

of DNS, file systems, and DOM [11]. Perhaps the most
interesting one is the link structure that turns it into
hypertext. This link structure contains a great deal of
information about the relationships between the
information entities that reside at URLs, and will be
discussed further in section 6.

2. How big is the web?

In the early days of the web, this question was of great

interest because it was clear that the web was growing so
rapidly. Over time the web has not only grown, but its very
nature has also changed. In the early days of the web it
was natural to think of URLs as representing document
identifiers, or perhaps mini-documents in a web of
hypertext. One major theme that has emerged is that URLs
represent true resources rather than documents, and the
content that is fetched from a given URL is often expected
to change over time (sometimes very rapidly!). Another
trend that has emerged is the use of HTTP as a means to
access databases (e.g., reviews on products, inventory,
discussion lists, etc.). This is often indicated by the
presence of a ’?’ character in the URL, which arises from a
standard for encoding arguments into the HTTP protocol.

Given these changes, it is clear that theWeb does not
represent a static set of documents to count, but rather a
rapidly evolving dynamic information space. Thus the
question of “how big is the web” has several aspects to it.

 is there any practical way of counting the number of

legitimate URLs that represent content? In theory the
web has no upper bound on its size, and the only
practical bound is that currently imposed by the most
popular browser, which limits URLs to only 2083
characters.

 as time passes, major new portions of the web appear,
but others disappear. How can we characterize the rate
at which information is removed from the web? Should
it be archived, and if so - how?

 the same content often can be found at multiple URLs,
and sometimes content appears at many URLs with
only subtle changes (e.g., new color scheme, new date,
or different advertisements). Is there a reasonable
methodology to characterize and estimate the
duplication that appears on the web?

As a lower bound, Google now reports that they

include over 4.2 billion URLs in their web index, though it
is not clear how many of these have been crawled since it
is possible (and indeed, advantageous [10]) to index
documents without crawling them. In particular, the
precision of search is often improved by using the “anchor
text” that points to them, namely the highlighted text
underlying the hypertext link to a document. As of this

writing, the crawler at IBM Almaden has discovered links
to approximately six billion URLs, and has fetched a large
fraction of these, some of them many times. The Internet
Archive (www.archive.org) reportedly holds
approximately 30 billion web pages that they have
collected over the life of the World Wide Web from
various sources.

3. Crawling the Web

While it is tempting to go after as much of the web as

possible, there is a law of diminishing returns from doing
so. In particular, there is a tension between the desire to
have as much coverage as possible vs. the desire to have
only good quality content. The definition of what
constitutes “quality” is of course dependent on the
application the content is used for, and this greatly
complicates the construction of a general purpose
architecture for web data mining. Moreover, the
widespread appeal of the web means that it represents the
full diversity of social forces in the world, and what
constitutes “quality” to one person may not be in
agreement with that of another person or culture. As an
example, there appears to be a huge amount of
pornographic material on the web, and for some
applications this is problematic. Another example is
provided by the direct manipulation of search engine
rankings through the construction of hypertext with
specific patterns.

There is another tradeoff to be made between trying to
cover as much content as possible and trying to maintain
as fresh a copy as possible of any high quality dynamic
content. Thus decisions must be made as to how to use the
available processing and bandwidth in order to maintain a
collection that balances quality, freshness, and coverage.

Ignoring data types other than HTML, the average size
of a document in our crawl is approximately 12,500 bytes.
Making reasonable assumptions about how much data can
be pulled through a 100 Mbit connection to the Internet, it
is reasonable to assume that we could download
approximately 800 URLs per second. This is accomplished
by using a cluster of machines to manage the crawling.
The crawler application is run as a parallel application,
with responsibility for crawling a host being assigned to
one of the cluster machines, and all hyperlinks to URLs on
that site being reported to that machine. The division of
work by hostname is dictated by the need to balance
several requirements, including:

politeness when fetching documents from the web, there is

an accepted policy that automated crawlers should not
consume the resources of a particular too heavily, by
placing a delay between consecutive pages fetched.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

137

DNS Before we can fetch a page from a site, we must
resolve the DNS for the hostname. Since DNS is itself
an unreliable distributed protocol, the latency for
resolving hostnames must be masked from the fetching
process. We maintain our own database for caching
DNS information, as it is a rich source of information
about the web.

Because the crawler is the interface to the outside

world, running a crawler requires some attention to
problems that can crop up. Our crawler is described in
more detail in [8].

3.1 Storage Requirements

In order to store the uncompressed contents of two
billion HTML URLs, it takes about 25 terabytes of raw
disk space. Estimates on the cost of disk storage vary
widely, depending on the characteristics of the technology
(e.g., reliability, bandwidth, latency, packaging). One thing
is clear however: this cost has fallen rapidly over the last
five years, and the trend is even more pronounced than
Moore’s law. It is currently relatively straightforward to
build a system that can store a copy of the text on the web
for under US$100,000, and this number has not changed
substantially over the last five years (the web grows but
storage gets cheaper).

By supercomputing standards this does not represent a
very large data set any more, as the National Center for
Atmospheric Research reported in 2003 that they stored
over a terabyte of data for weather modeling, and NASA’s
Terra satellite reportedly generates 194 gigabytes of new
raw data each day. Moreover, the web is certainly not the
only large source of text that we could imagine storing and
processing.

By contrast, the largest comparable repository of
textual material resides in the United States Library of
Congress, which holds approximately 29 million books,
with perhaps 10 billion pages (a printed page almost
certainly contains more text than the average web page).
The digitization of textual information that is currently
stored on paper presents an intriguing area for the future of
text analytics, and a number of projects have been
undertaken in recent years to produce digital libraries with
full search capabilities (e.g.,[17]) using only paper as the
original data source. The typical approach for this is to
scan the printed page, producing an image, and then
process this image using optical character recognition to
produce an approximate textual representation. A rule of
thumb is that a scanned page requires about 50K of data
for reasonable OCR quality, so the entire Library of
Congress can be stored in a system that requires perhaps
500 terabytes, including both images and text (in this case
the images are already compressed).

Email is also another potentially large collection of text
for data mining purposes (though the privacy implications
are chilling, to say the least). It has also been estimated
that the world sends approximately 20 billion email
messages per day in 2003, which translates into perhaps
200 terabytes per day of email. Unfortunately in the case
of email, a majority of it is currently unsolicited
commercial email (spam), and the major problem faced at
present is trying to classify the content. In the future we
might expect some organizations to increase their efforts
to apply knowledge discovery on email.

4. Mining the Web

While the data set is not all that large, the Web still

presents some challenges for storage and processing
architecture. One of the crucial lessons in parallel
applications is that data locality is a primary determining
factor for performance and scalability. Most scientific
applications use data that is inherently three-dimensional,
and most scientific applications and simulations lend
themselves to partitioning data so that communication
from any given processor only involves a other few
processors. The inherent low dimensionality of many
problems is a fundamental reason why so many scientific
applications have been amenable to parallel processing. By
contrast, the web is often characterized as a high
dimensional data set, since every distinct word potentially
represents a dimension. If you look at all the data elements
(documents) that are related to a given document based on
textual similarity, it quickly encompasses a major portion
of the Web unless you are careful to constrain the problem.
From another perspective, the “small world” nature of the
link graph (see [18]) suggests that the information on the
web is very closely intertwined.

In designing a distributed system to support large-scale
hypertext analytics, main aspect is how to lay out the data.
Consider for example the problem of constructing an
inverted keyword index on the text corpus. Ignoring for a
moment the problems of stemming, synonymy and
polysemy, the problem of building an index comes down
to tokenization and sorting the list of (docid, termid) pairs
by termid. These sorted lists are called “postings lists”, and
they typically make up a data set that is itself 30% the size
of the original corpus, though this figure varies according
to strategy. Once an index has been built, we can perform
keyword queries on the data by retrieving the postings list
for the query terms, and performing boolean and other
operations on them.

The decision of how to partition the data to best
support text indexing is a non-trivial one [19]. One option
is to partition the index by document, in which case the
building of an index on the documents is trivially
parallelizable. Query processing then becomes a highly

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

138

parallel process however, as we have to send the query to
every machine in order to discover all documents that
satisfy the query. By contrast, we could decide to partition
the postings lists by term, in which case we need only
consult the machines that hold postings lists for terms
contained in our query. In this case there are opportunities
for parallelizing the query processing as batches of queries
arrive with requests for different terms. Each of these
approaches has certain disadvantages for reliability,
performance, and scalability, and the choice of architecture
depends on the characterization of the likely queries. In the
case of a public search engine like Google, the queries
tend to be extremely short, with a heavy tail distribution
for query term frequency but very bursty traffic in
response to current events. Moreover, the customer
expectation is for nearly instantaneous response. In our
business model, we expect queries to be extremely
complex, but the customer may be more patient in waiting
for their results if it is part of a methodical business cycle.
In WebFountain they partitioned the index by document,
which means that the query runtime system has to involve
all machines with postings lists.

4.1 Semantic Tagging

In some cases it makes relatively little difference how
we partition the documents, because processing proceeds
in a trivially parallelizable fashion, processing one
document at a time. The WebFountain project employed a
large number of programs called “miners” that extract
metadata about the document and store the results with the
document. Some example miners that have been built
include:

encoding miner this miner uses various clues to deduce

the encoding used for the text of the page,
Language miner this takes the raw content of the page

along with the encoding from the encoding miner and
produces a guess of the dominant human language used
in the page.

UTF-8 based on the encoding used, this miner will
produce a canonicalized UTF-8 encoding of the page.

porn miner a substantial fraction of the web is
pornographic in nature, and this program determines
with

high probability whether a page should be considered
pornographic.

detagger this miner takes the UTF-8 content of the page
and produces a detagged version in which all markup
and punctuation is removed, leaving only the text.

phone number miner this miner examines the UTF-8
content and recognizes phone numbers.

link miner this miner extracts hyperlinks and their
associated metadata, including the tag type, the offset
within the page, and the anchor text associated with the
link.

name miner this miner recognizes the names of people in
the content, and produces a canonicalized version of the
name (e.g., George Bush vs. G. W. Bush). The data from
this is used in [12] for experiments on social networks.

Each of these miners reads some input from the data

store and produces some metadata that is written back to
the store along with the page. All of the data for the page
is stored in an XML-like structure [6]. In order to reduce
the amount of disk I/O, these miners are run in a sequential
chain on each page, lifting the necessary inputs for a page
from disk, running the relevant pieces through each miner,
producing tags along the way, and finally rewriting the
record for the page, but now with the newly added tags.

5. Global Analysis and aggregation

Per-page mining requires very little coordination
between the machines in the cluster, but some processing
requires global coordination. In fact we have already seen
two examples of such global processing, namely the
crawling (which reports URLs to the relevant node that is
responsible for the host of the URL) and the text indexer.
At this time it is appropriate to mention that in addition to
indexing the terms in the document, we also index the tags
that are associated with the documents. This makes it
possible to construct queries such as “find all pages that
are written in German, have a link to a page on
ibm.com.” Another problem that requires global
computations is that of duplicate detection (or near
duplicate detection). For this purpose they used a
technique in which hashes over moving windows of the
page are computed [4], and these “shingles” are gathered
together to an off-cluster location and processed to provide
global information on exact and approximate duplicate
pages.

Another form of processing that we perform outside
the main store cluster is global ranking of documents [9].
This calculation entails assembling all of the links from all
of the pages in order to compute the principal eigenvector
of the incidence matrix for the hyperlink graph. For this
purpose they run a parser to extract links, and we assemble
them on a single machine, where we sort them by
destination. It prunes the set of links to save only links that
point the pages we have already crawled, saving the rest of
the links to the uncrawled frontier for post-processing.
This results in a directed graph that contains
approximately 20 billion edges. In order to facilitate
processing of this graph, they converted the URLs to
sequential integer IDs, and construct a data representation
for the graph that uses only the integer IDs. The actual
calculation of global ranking uses an iterative linear
algebra process to compute a principal eigenvector of the
incidence matrix for the graph, and for this we do not need

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

139

to hold the entire graph in memory. Instead, they scanned
through the edges sequentially, performing a matrix-vector
multiplication as we go. The processing for this turns out
to be formidable but doable on a single machine [5].

There are numerous other global tasks that one might
imagine performing on the body of semantic tags and
content. One example that uses the recognition of people’s
names is to find good connection paths between people,
using colocation of names on a single page as an
indication of connection between them [12].

6. Modeling the Web

The many substructures of the web are what provide us
with the raw material for knowledge discovery, and part of
the research activity underlying this is the construction of
accurate data models that will explain and predict features
of these substructures. Examples of this include the power-
law distribution of inlinks [15], the bowtie structure of the
web hyperlink graph [3], and the interaction between the
hyperlink structure and the hierarchical structure of web
sites [11].

One interesting feature of the web is trying to predict
its rate of growth and the distribution of pages on different
sites. In Figure 1 we show the distribution of the number
of web pages per site. The linear appearance in a log-log
plot illustrates a common theme in models of the web,
namely that the distribution appears to have a tail that is a
power law, namely

Pr(host size > k) ≈ k-alpha
for large k and some constant alpha > 1. In this

particular case, models for the size of a web site at time t
have been hypothesized [13] to follow a multiplicative
growth model, in which if S(t) represents the expected
number of URLs on a site at time t, then S(t) = S(t - 1)g(t)
for some random variable g(t) that represents the growth
rate at time t. Note that this implies that

If log(g(i)) are identically and independently

distributed with finite mean and variance, then the central
limit theorem suggests that S(t) should have a lognormal
distribution in the limit as t ! 1, which in fact seems to
agree with data in Figure 1. One feature that is non-
obvious is that Figure 1 actually shows the distribution of
web site size observed at a single point in time, but in fact
the different web sites are in various stages of their
development, and most of the web sites are very small.
Because they are in an early stage of their development,
the asymptotics of the central limit theorem may not be
valid for most sites.

Figure 1. Distribution of the number of pages per web

site. This data was taken when our database contained 48
million web sites.

7. Scalability

WebFountain approach to knowledge discovery on the
web has been done on a cluster of hundreds of machines,
and is very I/O intensive. It was noted in Section 3 that
storage technology seems to have advanced at a rate that
easily keeps up with the rate of growth of the textual web.
At present there is a great deal that can be done by
operating on a single URL at a time, extracting semi-
structured data that can be processed globally with
relatively little effort. In the future we might start to see
much more aggressive approaches to the problem, in
which large-scale supercomputers are applied to the
problems and major portions of the web are operated upon
in RAM. For example, modern supercomputers already
exist that have fast interconnection networks and terabytes
of RAM, but to our knowledge these have never been
employed for any web knowledge discovery applications.

While we can devise growth models such as those
described in Section 6, it is important to remember that the
web is only a little over a decade old, and it is difficult to
predict what the future of the web will hold. One of the
biggest unknowns lies in mining activities surrounding the
“deep web” that consists of HTTP interfaces to large
databases. Moreover, an increasing amount of information
(e.g., weblogs [14]) is being made available in semi-
structured formats that lend themselves to knowledge
discovery. The emergence of the Web as a global
information space means that new forms of data and
information will appear on the web, and there are likely to
be significant challenges ahead.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

140

8. Conclusions

This paper attempted to describe some of the work

done in developing WebFountain Project on data mining
and knowledge discovery on Web. This burgeoning field
offers many opportunities and challenges in distributed
and parallel computation, and the rapid growth and
evolution of the web promises to bring forth many new
and interesting problems for future research.

References
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. 20th Int. Conf. Very Large Data
Bases, VLDB, pages 487–499, 1994.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, May 2001.

[3] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S.
Rajagopalan, R. Stata, A. Tomkins, and J. L. Wiener. Graph
structure in the web. In Proc. 9th WWW, pages 309–320,
2000.

[4] A. Z. Broder, S. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. WWW6/Computer Networks,
29(8-13):1157–1166, 1997.

[5] Y.-Y. Chen, Q. Gan, and T. Suel. I/O efficient techniques
for computing pagerank. In CIKM 2002, pages 549–557,
McLean, Virgina, 2002.

[6] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran,
T. Kanungo, K. S. McCurley, S. Rajagopalan, A. Tomkins, J.
A. Tomlin, and J. Y. Zien. A case for automated larg-scale
semantic annotation. Journal of Web Semantics, 1:115–132,
2003.

[7] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran,
T. Kanungo, K. S. McCurley, S. Rajagopalan, A. Tomkins, J.
A. Tomlin, and J. Y. Zien. A case for automated largescale
semantic annotation. Journal of Web Semantics, 1:115–132,
2003.

[8] J. Edwards, K. S. McCurley, and J. A. Tomlin. An adaptive
model for optimizing performance of an incremental web
crawler. In Proc. of the 10th Int. World Wide Web Conf.,
pages 106–113, 2001.

[9] N. Eiron, K. McCurley, and J. Tomlin. Ranking the web
frontier. In Proc. WWW Conference, 2004.

[10] N. Eiron and K. S. McCurley. Analysis of anchor text for
web search. pages 459–460, Toronto, 2003.

[11] N. Eiron and K. S. McCurley. Link structure of hierarchical
information networks, 2004. submitted.

[12] C. Faloutsos, K. S. McCurley, and A. Tomkins. Connection
subgraphs in social networks, 2004. submitted.

[13] B. Huberman and L. Adamic. Growth dynamics of the
world-wide web. Nature, 399:130, 1999.

[14] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the
bursty evolution of blogspace. In Proc. 10th Int. World Wide
Web Conf., pages 568–576, Budapest, 2003.

[15] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A.
Tomkins, and E. Upfal. Stochastic models for the web graph.
In Proc. 41st FOCS, pages 57–65, 2000.

[16] K. S. McCurley. Geospatial mapping and navigation of the
web. In Proc. 10th International World Wide Web
Conference, pages 221–229, Hong Kong, 2001.

[17] K. S. McCurley and H. D. Ziegler. Advances in Cryptology:
Electronic Proceedings of the Eurocrypt and Crypto
Conferences 1981-1997, volume 1440 of Lecture Notes in
Computer Science. Springer-Verlag, 1998.

[18] M. E. J. Newman. The structure and function of complex
networks. SIAM Review, 45:167–256, 2003.

[19] A. Tomasic and H. Garcia-Molina. Performance of inverted
indices in shared-nothing distributed text document
information retrieval systems. In Proc. PDIS ’93, 1993.

