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Abstract 
The World Wide Web has had an impact on nearly every aspect 
of society including commerce, science, politics and government, 
personal relationships, and health. In only one short decade it has 
evolved to become a global information space for almost every 
kind of information. As such, it presents an exciting object of 
study. This paper will describe the goals and architecture of 
WebFountain Project, some of the problems addressed by 
WebFountain and elements built in WebFountain to address them. 
It also focuses on the broad research areas that are involved Data 
Mining and Knowledge Discovery from Web. 
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1. Introduction 
 

The World Wide Web has had an impact on nearly 
every aspect of society including commerce, science, 
politics and government, personal relationships, and health. 
In only one short decade it has evolved to become a global 
information space for almost every kind of information. A 
group of people at IBM Almaden have been working since 
1999 on an infrastructure to design a crawler i.e., 
substantial portion of the web to extract information from 
it. This paper describes the goals and architecture of the 
WebFountain project, as well as outlines of some problems 
that raised and their attempts to understand the structure of 
information on the web.  

There are several projects worldwide that have focused 
on information retrieval and data mining of a substantial 
fraction of the entire web, and some of them have grown 
into businesses with high visibility. Some notable 
examples are search engines such as Altavista and Google1. 
Each of these uses a distributed “crawler” program to 
retrieve documents from the web and storing them into a 
federated database for later processing and extracting links 
to new URLs as it progresses. In the case of a search 
engine, the major pre-processing consists of building an 
inverted keyword index that maps terms to document IDs, 
which reduces to a large sorting operation. Once this is 
done, a query interface is built to provide a user interface. 
The importance of search as an application cannot be 
underestimated, and in fact it is believed that a majority of 

 
1 Altavista and Google are registered trademarks 

web user sessions now begin by first consulting a search 
engine for an informational need. 

The WebFountain system includes a search engine, but 
adds other features of hypertext analysis and knowledge 
discovery. The activity of knowledge discovery seeks to 
uncover potentially useful and understandable patterns in 
data, and in this case the underlying data is the structure 
and information present on the Web. This is integrated into 
business processes through a cyclic process. First they 
identified opportunities where data can provide value and 
then applied data mining to gain knowledge about the 
opportunity, apply this knowledge, and verify our results. 
At this point new insight may be gained to feed back into 
the cycle. This methodology has been applied with 
customer data for customer relationship management and 
predictive marketing, but when applied to web information 
the opportunities are quite broad. 

One of their activities was semantic tagging of web 
data. In recent years there has been an emerging trend to 
create a machine readable semantic web that augments the 
human readable World Wide Web [2] and creates an 
infrastructure for higher-level functionality. According to 
[7] an application of the WebFountain infrastructure that 
generated semantic tagging information for over 434 
million web pages, including the identification of named 
entities such as people, place names, product names, etc. 
Another example of semantic tagging applications was 
described in [16], in which geographic tagging of web 
pages and web sites was extracted from pages, and a 
navigational interface was provided to allow the user to 
find pages that were geographically similar to any given 
page. These represent example applications that the 
WebFountain project is designed to support. 

One can view the semantic tagging process as creating 
a semi-structured database from the raw hypertext 
information on the web. Once building of database 
completed, there are numerous opportunities for discovery 
of association rules [1], clustering and classification of 
documents and/or entities, deviation detection, and 
application to business processes. In this case the semantic 
tags become the primary data source for data mining, but 
the original web information is still crucial for verification 
and inference. 

The web has many substructures to it, including the 
high level knowledge that it represents, the linguistic 
structure of text, the character representation of the text, 
the visual structure of layout, and the hierarchical structure 
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of DNS, file systems, and DOM [11]. Perhaps the most 
interesting one is the link structure that turns it into 
hypertext. This link structure contains a great deal of 
information about the relationships between the 
information entities that reside at URLs, and will be 
discussed further in section 6. 

 
 
2. How big is the web? 

 
In the early days of the web, this question was of great 

interest because it was clear that the web was growing so 
rapidly. Over time the web has not only grown, but its very 
nature has also changed. In the early days of the web it 
was natural to think of URLs as representing document 
identifiers, or perhaps mini-documents in a web of 
hypertext. One major theme that has emerged is that URLs 
represent true resources rather than documents, and the 
content that is fetched from a given URL is often expected 
to change over time (sometimes very rapidly!). Another 
trend that has emerged is the use of HTTP as a means to 
access databases (e.g., reviews on products, inventory, 
discussion lists, etc.). This is often indicated by the 
presence of a ’?’ character in the URL, which arises from a 
standard for encoding arguments into the HTTP protocol. 

Given these changes, it is clear that theWeb does not 
represent a static set of documents to count, but rather a 
rapidly evolving dynamic information space. Thus the 
question of “how big is the web” has several aspects to it. 

 
 is there any practical way of counting the number of 

legitimate URLs that represent content? In theory the 
web has no upper bound on its size, and the only 
practical bound is that currently imposed by the most 
popular browser, which limits URLs to only 2083 
characters. 

 as time passes, major new portions of the web appear, 
but others disappear. How can we characterize the rate 
at which information is removed from the web? Should 
it be archived, and if so - how? 

 the same content often can be found at multiple URLs, 
and sometimes content appears at many URLs with 
only subtle changes (e.g., new color scheme, new date, 
or different advertisements). Is there a reasonable 
methodology to characterize and estimate the 
duplication that appears on the web? 
 
As a lower bound, Google now reports that they 

include over 4.2 billion URLs in their web index, though it 
is not clear how many of these have been crawled since it 
is possible (and indeed, advantageous [10]) to index 
documents without crawling them. In particular, the 
precision of search is often improved by using the “anchor 
text” that points to them, namely the highlighted text 
underlying the hypertext link to a document. As of this 

writing, the crawler at IBM Almaden has discovered links 
to approximately six billion URLs, and has fetched a large 
fraction of these, some of them many times. The Internet 
Archive (www.archive.org) reportedly holds 
approximately 30 billion web pages that they have 
collected over the life of the World Wide Web from 
various sources. 

 
 
3. Crawling the Web 

 
While it is tempting to go after as much of the web as 

possible, there is a law of diminishing returns from doing 
so. In particular, there is a tension between the desire to 
have as much coverage as possible vs. the desire to have 
only good quality content. The definition of what 
constitutes “quality” is of course dependent on the 
application the content is used for, and this greatly 
complicates the construction of a general purpose 
architecture for web data mining. Moreover, the 
widespread appeal of the web means that it represents the 
full diversity of social forces in the world, and what 
constitutes “quality” to one person may not be in 
agreement with that of another person or culture. As an 
example, there appears to be a huge amount of 
pornographic material on the web, and for some 
applications this is problematic. Another example is 
provided by the direct manipulation of search engine 
rankings through the construction of hypertext with 
specific patterns. 

There is another tradeoff to be made between trying to 
cover as much content as possible and trying to maintain 
as fresh a copy as possible of any high quality dynamic 
content. Thus decisions must be made as to how to use the 
available processing and bandwidth in order to maintain a 
collection that balances quality, freshness, and coverage.  

Ignoring data types other than HTML, the average size 
of a document in our crawl is approximately 12,500 bytes. 
Making reasonable assumptions about how much data can 
be pulled through a 100 Mbit connection to the Internet, it 
is reasonable to assume that we could download 
approximately 800 URLs per second. This is accomplished 
by using a cluster of machines to manage the crawling. 
The crawler application is run as a parallel application, 
with responsibility for crawling a host being assigned to 
one of the cluster machines, and all hyperlinks to URLs on 
that site being reported to that machine. The division of 
work by hostname is dictated by the need to balance 
several requirements, including: 

 
politeness when fetching documents from the web, there is 

an accepted policy that automated crawlers should not 
consume the resources of a particular too heavily, by 
placing a delay between consecutive pages fetched. 
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DNS Before we can fetch a page from a site, we must 
resolve the DNS for the hostname. Since DNS is itself 
an unreliable distributed protocol, the latency for 
resolving hostnames must be masked from the fetching 
process. We maintain our own database for caching 
DNS information, as it is a rich source of information 
about the web. 

 
Because the crawler is the interface to the outside 

world, running a crawler requires some attention to 
problems that can crop up. Our crawler is described in 
more detail in [8]. 
 
 
3.1 Storage Requirements 

In order to store the uncompressed contents of two 
billion HTML URLs, it takes about 25 terabytes of raw 
disk space. Estimates on the cost of disk storage vary 
widely, depending on the characteristics of the technology 
(e.g., reliability, bandwidth, latency, packaging). One thing 
is clear however: this cost has fallen rapidly over the last 
five years, and the trend is even more pronounced than 
Moore’s law. It is currently relatively straightforward to 
build a system that can store a copy of the text on the web 
for under US$100,000, and this number has not changed 
substantially over the last five years (the web grows but 
storage gets cheaper). 

By supercomputing standards this does not represent a 
very large data set any more, as the National Center for 
Atmospheric Research reported in 2003 that they stored 
over a terabyte of data for weather modeling, and NASA’s 
Terra satellite reportedly generates 194 gigabytes of new 
raw data each day. Moreover, the web is certainly not the 
only large source of text that we could imagine storing and 
processing. 

By contrast, the largest comparable repository of 
textual material resides in the United States Library of 
Congress, which holds approximately 29 million books, 
with perhaps 10 billion pages (a printed page almost 
certainly contains more text than the average web page). 
The digitization of textual information that is currently 
stored on paper presents an intriguing area for the future of 
text analytics, and a number of projects have been 
undertaken in recent years to produce digital libraries with 
full search capabilities (e.g.,[17]) using only paper as the 
original data source. The typical approach for this is to 
scan the printed page, producing an image, and then 
process this image using optical character recognition to 
produce an approximate textual representation. A rule of 
thumb is that a scanned page requires about 50K of data 
for reasonable OCR quality, so the entire Library of 
Congress can be stored in a system that requires perhaps 
500 terabytes, including both images and text (in this case 
the images are already compressed). 

Email is also another potentially large collection of text 
for data mining purposes (though the privacy implications 
are chilling, to say the least). It has also been estimated 
that the world sends approximately 20 billion email 
messages per day in 2003, which translates into perhaps 
200 terabytes per day of email. Unfortunately in the case 
of email, a majority of it is currently unsolicited 
commercial email (spam), and the major problem faced at 
present is trying to classify the content. In the future we 
might expect some organizations to increase their efforts 
to apply knowledge discovery on email. 

 
 

4.  Mining the Web 
 
While the data set is not all that large, the Web still 

presents some challenges for storage and processing 
architecture. One of the crucial lessons in parallel 
applications is that data locality is a primary determining 
factor for performance and scalability. Most scientific 
applications use data that is inherently three-dimensional, 
and most scientific applications and simulations lend 
themselves to partitioning data so that communication 
from any given processor only involves a other few 
processors. The inherent low dimensionality of many 
problems is a fundamental reason why so many scientific 
applications have been amenable to parallel processing. By 
contrast, the web is often characterized as a high 
dimensional data set, since every distinct word potentially 
represents a dimension. If you look at all the data elements 
(documents) that are related to a given document based on 
textual similarity, it quickly encompasses a major portion 
of the Web unless you are careful to constrain the problem. 
From another perspective, the “small world” nature of the 
link graph (see [18]) suggests that the information on the 
web is very closely intertwined. 

In designing a distributed system to support large-scale 
hypertext analytics, main aspect is how to lay out the data. 
Consider for example the problem of constructing an 
inverted keyword index on the text corpus. Ignoring for a 
moment the problems of stemming, synonymy and 
polysemy, the problem of building an index comes down 
to tokenization and sorting the list of (docid, termid) pairs 
by termid. These sorted lists are called “postings lists”, and 
they typically make up a data set that is itself 30% the size 
of the original corpus, though this figure varies according 
to strategy. Once an index has been built, we can perform 
keyword queries on the data by retrieving the postings list 
for the query terms, and performing boolean and other 
operations on them.  

The decision of how to partition the data to best 
support text indexing is a non-trivial one [19]. One option 
is to partition the index by document, in which case the 
building of an index on the documents is trivially 
parallelizable. Query processing then becomes a highly 
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parallel process however, as we have to send the query to 
every machine in order to discover all documents that 
satisfy the query. By contrast, we could decide to partition 
the postings lists by term, in which case we need only 
consult the machines that hold postings lists for terms 
contained in our query. In this case there are opportunities 
for parallelizing the query processing as batches of queries 
arrive with requests for different terms. Each of these 
approaches has certain disadvantages for reliability, 
performance, and scalability, and the choice of architecture 
depends on the characterization of the likely queries. In the 
case of a public search engine like Google, the queries 
tend to be extremely short, with a heavy tail distribution 
for query term frequency but very bursty traffic in 
response to current events. Moreover, the customer 
expectation is for nearly instantaneous response. In our 
business model, we expect queries to be extremely 
complex, but the customer may be more patient in waiting 
for their results if it is part of a methodical business cycle. 
In WebFountain they partitioned the index by document, 
which means that the query runtime system has to involve 
all machines with postings lists. 

 
4.1 Semantic Tagging 

In some cases it makes relatively little difference how 
we partition the documents, because processing proceeds 
in a trivially parallelizable fashion, processing one 
document at a time. The WebFountain project employed a 
large number of programs called “miners” that extract 
metadata about the document and store the results with the 
document. Some example miners that have been built 
include: 

 
encoding miner this miner uses various clues to deduce 

the encoding used for the text of the page, 
Language miner this takes the raw content of the page 

along with the encoding from the encoding miner and 
produces a guess of the dominant human language used 
in the page. 

UTF-8 based on the encoding used, this miner will 
produce a canonicalized UTF-8 encoding of the page. 

porn miner a substantial fraction of the web is 
pornographic in nature, and this program determines 
with 

high probability whether a page should be considered 
pornographic. 

detagger this miner takes the UTF-8 content of the page 
and produces a detagged version in which all markup 
and punctuation is removed, leaving only the text. 

phone number miner this miner examines the UTF-8 
content and recognizes phone numbers. 

link miner this miner extracts hyperlinks and their 
associated metadata, including the tag type, the offset 
within the page, and the anchor text associated with the 
link. 

name miner this miner recognizes the names of people in 
the content, and produces a canonicalized version of the 
name (e.g., George Bush vs. G. W. Bush). The data from 
this is used in [12] for experiments on social networks. 

 
Each of these miners reads some input from the data 

store and produces some metadata that is written back to 
the store along with the page. All of the data for the page 
is stored in an XML-like structure [6]. In order to reduce 
the amount of disk I/O, these miners are run in a sequential 
chain on each page, lifting the necessary inputs for a page 
from disk, running the relevant pieces through each miner, 
producing tags along the way, and finally rewriting the 
record for the page, but now with the newly added tags.  

 
 

5. Global Analysis and aggregation 
 

Per-page mining requires very little coordination 
between the machines in the cluster, but some processing 
requires global coordination. In fact we have already seen 
two examples of such global processing, namely the 
crawling (which reports URLs to the relevant node that is 
responsible for the host of the URL) and the text indexer. 
At this time it is appropriate to mention that in addition to 
indexing the terms in the document, we also index the tags 
that are associated with the documents. This makes it 
possible to construct queries such as “find all pages that 
are written in German, have a link to a page on 
ibm.com.” Another problem that requires global 
computations is that of duplicate detection (or near 
duplicate detection). For this purpose they used a 
technique in which hashes over moving windows of the 
page are computed [4], and these “shingles” are gathered 
together to an off-cluster location and processed to provide 
global information on exact and approximate duplicate 
pages.  

Another form of processing that we perform outside 
the main store cluster is global ranking of documents [9]. 
This calculation entails assembling all of the links from all 
of the pages in order to compute the principal eigenvector 
of the incidence matrix for the hyperlink graph. For this 
purpose they run a parser to extract links, and we assemble 
them on a single machine, where we sort them by 
destination. It prunes the set of links to save only links that 
point the pages we have already crawled, saving the rest of 
the links to the uncrawled frontier for post-processing. 
This results in a directed graph that contains 
approximately 20 billion edges. In order to facilitate 
processing of this graph, they converted the URLs to 
sequential integer IDs, and construct a data representation 
for the graph that uses only the integer IDs.  The actual 
calculation of global ranking uses an iterative linear 
algebra process to compute a principal eigenvector of the 
incidence matrix for the graph, and for this we do not need 
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to hold the entire graph in memory. Instead, they scanned 
through the edges sequentially, performing a matrix-vector 
multiplication as we go. The processing for this turns out 
to be formidable but doable on a single machine [5].  

There are numerous other global tasks that one might 
imagine performing on the body of semantic tags and 
content. One example that uses the recognition of people’s 
names is to find good connection paths between people, 
using colocation of names on a single page as an 
indication of connection between them [12]. 

 
 

6. Modeling the Web 
 

The many substructures of the web are what provide us 
with the raw material for knowledge discovery, and part of 
the research activity underlying this is the construction of 
accurate data models that will explain and predict features 
of these substructures. Examples of this include the power-
law distribution of inlinks [15], the bowtie structure of the 
web hyperlink graph [3], and the interaction between the 
hyperlink structure and the hierarchical structure of web 
sites [11]. 

One interesting feature of the web is trying to predict 
its rate of growth and the distribution of pages on different 
sites. In Figure 1 we show the distribution of the number 
of web pages per site. The linear appearance in a log-log 
plot illustrates a common theme in models of the web, 
namely that the distribution appears to have a tail that is a 
power law, namely 

Pr(host size > k) ≈ k-alpha 
for large k and some constant alpha > 1. In this 

particular case, models for the size of a web site at time t 
have been hypothesized [13] to follow a multiplicative 
growth model, in which if S(t) represents the expected 
number of URLs on a site at time t, then S(t) = S(t - 1)g(t) 
for some random variable g(t) that represents the growth 
rate at time t. Note that this implies that 

 
If log(g(i)) are identically and independently 

distributed with finite mean and variance, then the central 
limit theorem suggests that S(t) should have a lognormal 
distribution in the limit as t ! 1, which in fact seems to 
agree with data in Figure 1. One feature that is non-
obvious is that Figure 1 actually shows the distribution of 
web site size observed at a single point in time, but in fact 
the different web sites are in various stages of their 
development, and most of the web sites are very small. 
Because they are in an early stage of their development, 
the asymptotics of the central limit theorem may not be 
valid for most sites. 

 
Figure 1. Distribution of the number of pages per web 

site. This data was taken when our database contained 48 
million web sites. 

 
 

7. Scalability 
 

WebFountain approach to knowledge discovery on the 
web has been done on a cluster of hundreds of machines, 
and is very I/O intensive. It was noted in Section 3 that 
storage technology seems to have advanced at a rate that 
easily keeps up with the rate of growth of the textual web. 
At present there is a great deal that can be done by 
operating on a single URL at a time, extracting semi-
structured data that can be processed globally with 
relatively little effort. In the future we might start to see 
much more aggressive approaches to the problem, in 
which large-scale supercomputers are applied to the 
problems and major portions of the web are operated upon 
in RAM. For example, modern supercomputers already 
exist that have fast interconnection networks and terabytes 
of RAM, but to our knowledge these have never been 
employed for any web knowledge discovery applications.  

While we can devise growth models such as those 
described in Section 6, it is important to remember that the 
web is only a little over a decade old, and it is difficult to 
predict what the future of the web will hold. One of the 
biggest unknowns lies in mining activities surrounding the 
“deep web” that consists of HTTP interfaces to large 
databases. Moreover, an increasing amount of information 
(e.g., weblogs [14]) is being made available in semi-
structured formats that lend themselves to knowledge 
discovery. The emergence of the Web as a global 
information space means that new forms of data and 
information will appear on the web, and there are likely to 
be significant challenges ahead. 
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8. Conclusions 
 
This paper attempted to describe some of the work 

done in developing WebFountain Project on data mining 
and knowledge discovery on Web. This burgeoning field 
offers many opportunities and challenges in distributed 
and parallel computation, and the rapid growth and 
evolution of the web promises to bring forth many new 
and interesting problems for future research. 
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