
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

1

Manuscript received February 5, 2025

Manuscript revised February 20, 2025

https://doi.org/10.22937/IJCSNS.2025.25.2.16

A Novel Approach to Find Reusability using Coupling and
Cohesion Metrics

Annushri Sethi1, Prof. Ritu Tandon2

1Student, Department of Computer Science, TCET, Indore, India

2Professor, TRUBA College of Engineering and Technology, Indore-Rao Bypass Road, India

Abstract:
The evaluation of the changeability of software program
structures is of most important subject for customers of big
structures found in rapid moving domains, which include
telecommunications. One way of approaching this problem is to
research the dependency between the changeability of the
software program and its layout, with the aim of locating design
properties that can be used as changeability signs. In the realm
of object- orientated systems, experiments have been performed
showing that coupling among classes is such an indicator.
However, magnificence brotherly love has now not been
quantitatively studied in admire to changeability. In this
research, we set out to research whether brotherly love is
correlated with changeability. As concord metrics, LCC and
LCOM have been followed, and for measuring changeability,
an alternate impact version changed into used. The facts
gathered on three take a look at systems of commercial size
suggest no such correlation. Guide investigation of training
purported to be weakly cohesive showed that the metrics used
do now not seize all of the facets of sophistication cohesion.
We finish that cohesion metrics inclusive of LCC and LCOM
ought to not be used as changeability indicators.

Keywords:
Cohesion, Coupling, Object Oriented Software, CBO

1. Introduction:

The object-oriented (OO) software improvement
era became to begin with delivered inside the early
1990’s. OO era employs classes collectively with gadgets
and their interdependencies to layout and put into effect
structures. OO introduced various underpinning
techniques to software improvement that distinguish OO
from traditional software improvement paradigm. It’s
miles used to encapsulate a fixed of closely associated
capability in a dependent hierarchy wherein not unusual
functionality is added in one elegance and more
specialized capability of that magnificence is delivered in
other classes.

Item-oriented generation is turning into an

increasing number of famous in industrial software
improvement environments [7]. This technology
facilitates within the improvement of a software product
of better high-quality and lower upkeep prices. Since the
traditional software metrics targets at the system-
orientated software program improvement so it cannot
satisfy the requirement of the object-oriented software, as
an end result a hard and fast of new object oriented
software metrics came into existence. Object orientated
Metrics are the measurement gear adapted to the item
oriented paradigm to assist control and foster best in
software program improvement [7]. OO generation
delivered diverse underpinning procedures like idea of
training, interfaces and so on. To the software program
improvement which distinguish it from traditional
software improvement paradigm.

Item/instance is a run time structure with country

and conduct. Object kingdom is stored in its fields
(variables) and behavior as its methods (capabilities).
Magnificence is static description of object [6].
Inheritance is one of the maximum widely used ideas of
OO paradigm. It’s far used to encapsulate a set of
intently associated functionality in a established
hierarchy wherein commonplace functionality is
introduced in one magnificence and more specialized
functionality of that class is brought in other training.
The specialized training inherits the common capability
from their great elegance and uploads their very own
greater functionality. The primary subject of inheritance
is to promote reusability in a machine.

2. Cohesion:

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

2

Cohesion may be a live that defines the degree of
intra-dependability inside components of a module. The
bigger the cohesion, the higher is that the program style
below figure shows how to determine cohesion module.

Figure 1: Determine Cohesion Modules

3. Coupling:

Coupling may be a live that defines the amount of
inter-dependability among modules of a program. It tells
at what level the modules interfere and act with one
another. The lower the coupling, the higher the program.

Figure 2: Type of Coupling and its importance

4. Literature Review:

Literature almost about the software evolution genuinely
introduces the erosive developments inside the software
architecture at the same time as meeting the changes
imposed by using the software program evolution. On
this thesis, we can try to become aware of such erosive
tendencies with the help of class brotherly love and
coupling metrics. Based totally at the literature
assessment, we suppose that both magnificence cohesion
and coupling need to follow deteriorating developments
at the same time as evolution within the software
architecture.

Table. 1 Literature survey

Author Name / Title Journal Strength Weakness
N. Rajkumar1
”Measuring Cohesion And
Coupling In Object
Oriented System Using Java
Reflection”

ARPN Journal of
Engineering and
Applied Sciences

This paper proposes a set of new measures to
find coupling and cohesion in a
developmental system using Java reflection
components to assess the usability. It will
predict the fault in an object-oriented system.

Next version will
calculate coupling and
cohesion metrics for
UML representations

Martin Hitz
 “Measuring Coupling and

http://www.isys.uni-
klu.ac.at/PDF/1995-

This distinction refers to dynamic
dependencies between objects on one hand

important aspects of
software quality at

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

3

Cohesion In Object-
Oriented Systems “

0043-MHBM.pdf and static dependencies between
implementations.

run-time and during
the maintenance
phase, respectively.

Aaron B. Binkley
 “A classical view of
object-oriented cohesion
and coupling”

http://citeseerx.ist.p
su.edu/viewdoc/do
wnload?doi=10.1.1.
99.4519&rep=rep1
&type=pdf

Evidence is starting to accumulate that this
paradigm is indeed as effective as has been
suggested

Most of the metrics
used in conjunction
with the object-
oriented paradigmare,
in fact, classical
metrics.

Mr. KailashPatidar
 “Coupling and Cohesion
Measures in Object
Oriented Programming”

International
Journal of
Advanced Research
in Computer
Science and
Software
Engineering

A large numbers of metrics have been built
and proposed for measuring properties of
object-oriented software such as size,
inheritance, cohesion and coupling. The
coupling is an important aspect in the
evaluation of reusability and maintainability
of components or services.

To achieve consistent
and satisfying results,
empirical data
obtained from
reallifesoftware
engineering projects

Shweta Sharma
“A review of Coupling and
Cohesion metrics in Object
Oriented Environment”

International
Journal of
Computer Science
& Engineering
Technology
(IJCSET)

This paper focuses on two very significant
factors of complexity measurement of
software, which are coupling and cohesion.
An extensive study of approximately all types
of coupling and cohesion metrics has been
reported in this paper

Very little work has
been done in areas of
dynamic coupling and
cohesion metrics and
need further more
investigations

5. Proposed Work:

Object oriented design is becoming greater
famous in software development environment and object
orientated design metrics is a vital part of software
program surroundings. Metrics measure certain
residences of software gadget through mapping them to
numbers (or to different symbols) in keeping with well-
described, objective dimension guidelines. Design
Metrics are measurements of the static kingdom of the
project’s design and extensively utilized for assessing the
size and in a few cases the pleasant and complexity of
software program. Analysis and preservation of object-
oriented (OO) software is costly and difficult.

We take two C# applications one implemented
with inheritance and one with interface. Then we follow
concord Metrics Tight class cohesion (TCC) and
unfastened magnificence cohesion (LCC) at the
applications to calculate the cohesion fee and evaluate
the result. On the premise of result we differentiate
between complexities of inheritance and interface.

Figure 3. Proposed System Architecture

6. Result Analysis:

In this paper we take two programs as an input.We consider
an inheritance program and one with maximum possible interface
program in C#. Calculate number of joint and disjoint sets. Apply
cohesion metrics on the calculated values. Compare the result.

7. Evaluation Parameters:

Software functionality very well, and also how
can we use the software functionality in new

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

4

environment thus we can find our purpose with few fault
and few pace. And it also increases the ratio since we
utilized software functionality effectively to receive the
desire purpose of the project. Understandability
components are calculated by using of the following
metrics and the descriptions metrics are:

1) Number of Association per class metric (NASSocC)
The Number of Association per Class metric is defined
as the total number of associations a class has with other
classes or with itself. When the number of associations is
less the coupling between objects are reduced [29]. Brian
introduced this metric.

2) Number of Dependencies In metric (NDepIn)
The quantity of Dependencies In metric is defined
because the range of instructions that depend upon a
given elegance [29]. When the dependencies are reduced
the elegance can characteristic extra independently.

3) Number of Dependencies Out metric (NDepOut)
This metrics carried out for measuring the dimensions of
this system through thinking about the no of lines in
software. strains of Code (LOC) counts all traces like as
supply line and the number of statements, the number of
comment lines and the quantity of clean traces [39].

Figure5.3: Calculate CBO, No of Association, Number
of Dependencies In metric and Number of Dependencies
out metric for Interface Program

Figure 4: Calculate CBO, No of Association, Number of
Dependencies In metric and Number of Dependencies
out metric for Inheritance Program

4) Lines of Code (LOC):
This metrics applied for measuring the size of the
program by considering the no of lines in program. Lines
of Code (LOC) counts all lines like as source line and the
number of statements, the number of comment lines and
the number of blank lines [28].

Figure 5: Calculate TCC ,LCC and LCOM metric for
Inheritance and Interface Program

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

5

Figure 6: Graph show TCC ,LCC and LCOM metric for
Inheritance and Interface Program

5) Comment Percentage (CP):

CP is computed by number of comment line
separated along Line of Code. High evaluate of the CP
increases the maintainability and understandability [39].

 CP = Comment Line / LOC;

6) Weighted Method per Class (WMC):

This metrics is applied towards calculating the
structure complexity of the programs. Method
complexity is measured by using Cyclomatic Complexity
and WMC is sum of complexity of the all methods,
which is applied in class.Suppose class is getting the
methods (m1, m2, and m3…mn) and complexity of the
methods are (c1, c2, and c3…cn) then

 WMC = c1+c2+c3+…. +cn;
Cyclomatic Complexity causes foundation of the graph
theory and is computed in one of the 3 directions.
Number of regions in flow graph.Cyclomatic Complexity
determined in flow graph as follow

C (G) = E – N +2;
Where N is the no of the nodes in graph and E is the no
off the edge in the graph.Cyclomatic Complexity defined
in flow graph as follow

C (G) = P+1;
Where ‘P’ is number of predicate nodes in the
graph.Statement where we are taking some decision are
called predicate node [39].

7) Depth of Inheritance Tree (DIT):

This metric is applied for measuring the inheritance
complexity for the programs, when programmer usages
the inheritance in his program then this Metric can be
utilized. DIT is the Maximum depth from the root node
of tree to special node. Here class is represented as a
node. Deeper node in the tree accepts more no of the

methods because they inherit and the more classes in the
tree and it make the class more complex [23]. DIT metric
is the length of the maximum path from the node to the
root of the tree. So this metric calculates how far down a
class is declared in the inheritance hierarchy. The
following figure shows the value of DIT for a simple
class hierarchy. DIT represents the complexity of the
behavior of a class, the complexity of design of a class
and potential reuse.

8) Flexibility:

It is defined as “the ease with which a system or
component can be modified for use in applications or
environments other than those for which it was
specifically designed” [43]. Flexibility is considered as a
factor affecting the reusability of a component.
Flexibility =1 - [(0.5 X Coupling) + (0.5 X Cohesion)],
Coupling = CBO, Cohesion = LCOM.’

9) Understandability:

It is defined as “the ease with which a system can be
comprehended at both the system-organizational and
detailed statement levels” [43].Understandability is
considered a factor of reusability. Understandability = 1 -
[(0.25 X Coupling) + (0.25 X Cohesion) + (0.25 X
Comments) + (0.25 X Size)].

10) Independence:

The term “independence” is introduced to reflect the
property of the system concerning the ability of a class to
perform its responsibilities on its own. Independence is
measured by DIT. Other classes inherit the classes lower
in the hierarchy; these classes depend on their ancestors
to perform their functionalities [43]. Portability =
Independence = 1 - adjusted DIT.

Figure 7: Calculate NOC, DIT and LOC metric

for Inheritance and Interface Program

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

6

Figure 8: Graph shows NOC, DIT and LOC

metric for Inheritance and Interface Program

Figure 9: Calculate Size, Flexibility, Portability and
Indecency metric for Inheritance and Interface Program

Figure 10: Graph shows Size, Flexibility, Portability
and Indecency metric for Inheritance and Interface
Program

8. Conclusion:

The reason of this thesis is to locating the
approach and way to perceive complexity between
inheritance and interface programming via concord
metrics in item orientated packages. Metrics measure
certain homes of software program device via mapping
them to numbers (or to other symbols) according to
properly defined, goal measurement guidelines.
Code Metrics are measurements of the static kingdom of
the project’s Code and extensively utilized for assessing
the dimensions and in some cases the first-rate and
complexity of software. Analysis and upkeep of object-
orientated (OO) software program is highly priced and
hard. As a consequence, measuring the relationships has
turn out to be a prerequisite to broaden efficient
strategies for analysis and protection. Diverse concord
metrics had been proposed and used in past empirical
investigations; however none of these have taken the run-
time houses of software into account. “To improve
modularity and encapsulation the inter magnificence
brotherly love measures need to be large. By using
greater interfaces compared to inheritance the coupling
measures are reduced. True abstractions normally show
off high cohesion. In evaluation of concord in among
inheritance and interface for the modules, capabilities,
attributes, classes in oops thru concord metrics is carried
out, and interface is calculated as greater reusable code

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

7

than inheritance. The extra unbiased a category it's miles
easier to be reused with the aid of any other software.”

9. Future work:

Having delivered a framework for a complete metric for
brotherly love in item-orientated structures on class levels, we are
capable of discover a fundamental assessment of brotherly love
and concluded the reusability of code by way of differencing
among inheritance and interface in order that the proposed
problem can be resolved theoretically but it is able to be enforce
almost, to be able to make available the decreased price and
complexity for development of in practical international. The
similarly advanced metrics are given that also can be implement
in realistic behavior in order that a green manner can be
recognized to optimize our approach for improvement of IT
merchandise.

References:

[1] V. Krishnapriya, K. Ramar, "Exploring the
Difference Between Object Oriented Class
Inheritance and Interfaces Using Coupling
Measures," ace, pp.207-211, 2010 International
Conference on Advances in Computer Engineering,
2010

[2] K.K.Aggarwal, Yogesh Singh, ArvinderKaur,
RuchikaMalhotra. “Empirical Study of Object-
Oriented Metrics”,2006

[3] Martin Hitz, BehzadMontazeri.“Measuring Coupling
and Cohesion.In Object-Oriented Systems” in
Angewandte Informatik (1995)

[4] James M. Bieman andByung-kyookang.“Cohesion
and Reuse in Object Oriented System” Department
of Computer Science, Colorado State University
Fort Collins,Colorado,1995

[5] Shyam R. Chidamberand Chris F. Kemerer” A
Metrics Suite For object Oriented Design” IEEE
Transactions on software Engineering, Vol. 20, No.
6, June 1994

[6] KrishnaprasadThirunarayan.” Inheritance in
Programming Languages” Department of
Computer Science and Engineering ,Wright State
University ,Dayton, OH-45435

[7] ArtiChhikara Maharaja Agrasen College, Delhi,
India. R.S.Chhillar “Applying Object Oriented
Metrics to C#(C Sharp) Programs”Deptt. Of
Computer Sc.And Applications, Rohtak,
India.SujataKhatriDeenDyalUpadhyaya College,
Delhi, India(2011)

[8] Christopher L. Brooks, Chrislopher G. Buell, “A
Tool for Automatically Gathering Object-Oriented
Metrics”, IEEE, 1994

[9] Friedrich Stiemann, Philip Mayer and Andreas
Meibner, “DecouplingClasses with Inferred
Interfaces”, Proceedings of the 2006
ACMSymposium on Applied Computing,
P.No:1404 – 1408.

[10] Pradeep Kumar Bhatia, Rajbeer Mann, “ An
Approach to Measure Software Reusability of OO
Design”, Proceedings of 2nd International
Conference on Challenges & Opportunities in
InformationTechnology(COIT-2008),RIMT-
IET,MandiGobissndgarh, March 29, 2008.

[11] Fried Stiemann, Wolf Siberski and Thomas Kuhne,
“ Towards the Systematic Use of Interfaces in Java
Programming”, 2nd Int. Conf. on the Principles and
practice of Programming in Java PPJ 2003, P.No:13-
17.

[12] Girba, T.; Lanza, M.; Ducasse, S. (2005)
Characterizing the Evolution of Class Hierarchies.
Proceedings of the 9th European International
Conference on Software Maintenance and
Reengineering.Manchester, UK, pp.2-11.

[13] Gilb, T. (1976) Software Metrics. Chartwell-Bratt,
Cambridge, MA.

[14] Hall, T., Rainer, A., Jagielska, D. (2005) Using
software development progress data to understand
threats to project outcomes. Proceedings of the 11th
IEEE International Software Metrics Symposium
(METRICS 2005). Como, Italy, 10 pages.

[15] Harrison R., Counsell S. and Nithi R.:
“Experimental Assessment of the Effect of
Inheritance on the Maintainability of Object-
Oriented Systems”, the Journal of Systems and
Software, vol. 52, pp. 173-179, 2000.

[16] Henry, S.M., Kafura, D.G. (1981) Software structure
metrics based on information flow. IEEE
Transactions on Software Engineering, 7(5):510-518.

[17] Hudli, R., Hoskins, C., Hudli, A., “Software Metrics
for Object-oriented Designs”, IEEE, 1994.

[18] Judith Barnard,” A new reusability metric for object-
oriented software Journal software quality control
volume 7 issue 1, 1998.

[19] Kemerer, C.F. and Slaughter, S. (1999) An
Empirical Approach to Studying Software Evolution.
IEEE Transactions on Software Engineering,
25(4):493-509.

[20] Ken Pugh,” Interface Oriented Design”, Chapter 5,
2005.

[21] Lee, Y., Liang, B., Wang, F., “Some Complexity
Metrics for Object-Oriented Programs Based on
Information Flow”, Proceedings: CompEuro, March,
1993, pp. 302-310.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025

8

[22] L.C., Briand, Daly, J., Wust, J. (1999b) A unified
framework for coupling measurement in object-
oriented systems. IEEE Transactions on Software
Engineering, 25(1):91-121.

[23] Lehman, M. M., Programs, Cities, Students, Limits
to Growth?, Inaugural Lecture, in Imperial College
of Science and Technology Inaugural Lecture Series,
Vol. 9, 211-229 (1970, 1974). Also in Programming
Methodology, (D. Gries. ed.), Springer Verlag, 42-
62 (1978). Reprinted in Lehman and Belady, 1985.

[24] Lorenz, Mark and Kidd, Jeff, Object-Oriented
Software Metrics, Prentice Hall Publishing, 1994.

[25] Lorenz, M., Kidd, I. (1994) Object-Oriented
Software Engineering Metrics, Prentics-Hall
Englwood Cliff, NJ.

[26] Marcela Genero, Mario Piattini and Coral
Calero,“ A Survey of Metrics for UML Class
Diagrams”, in Journal of Object Technology,Vol. 4,
No. 9, Nov-Dec 2005.

[27] McCabe, T. (1976) A software complexity measure.
IEEE Transactions on Software Engineering,
2(4):308-320.

[28] Mohsen D. Ghassemi and Ronald R.
Mourant,”Evaluation of Coupling in the Context of
Java Interfaces”, Proceedings OOPSLA 2000, P. No:
47-48, Copyright ACM 2000, 1-58113-307-3/00/10.

[29] Mathew Cochran, “Coding Better: Using Classes Vs
Interfaces”, January 18th, 2009.

