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Abstract 
This paper presents a promising Deep-Learning (DL) based 
approach for accurate symbol detection in a Slow Frequency 
Hopping (SFH) wireless communication system under a Narrow 
Band (NB) multipath channel fading. A feedforward neural 
network with three layers of input, hidden, and output was 
employed for deep learning.  The neural network is designed to take 
80 features as input, representing the received signal samples at the 
receiver. The neural network is trained to anticipate the transmitted 
symbol based on the provided training dataset, employing the 
Adaptive Moment Estimation (Adam) optimizer alongside 
categorical cross entropy as the loss function. Additionally, 
computer simulations are conducted to verify the effectiveness of 
the proposed method across various modulation schemes. 
Keywords: 
Frequency Hopping, Time Delay Estimation, Channel gains, a 
narrow band (NB) multipath channel, Confusion Matrix Machine 
Learning, Categorical Cross-Entropy Loss, Neural Network, Loss 
function. 

I. INTRODUCTION 

Wireless networks have become an essential part of 
modern communication infrastructure. Wireless networks 
provide vital services and play an important role in 
improving the quality of life. They are currently crucial 
drivers of internet-of-things (IoT) applications in a wide 
range of sectors and industries, whether for military 
purposes or civilian purposes, which may include health care, 
manufacturing, smart cities, transportation, and intelligent 
anticipating and responding to natural disasters [1]. In IoT 
network, information is collected from remote sensors and 
devices and sent to a central unit for processing over a 
wireless network. Despite the widespread prevalence of 
wireless networks, they face critical security threats, with 
radio-jamming attacks being the most significant threat. 
Low-cost devices such as software-defined radio (SDR) can 
be utilized to perform jamming by emitting high radiation 
energy on the same channel used by the legitimate signal [2]. 
Jamming attacks make it difficult for wireless devices on the 
receiving end to retrieve the transmitted information from 
the legitimate signal that has been jammed. 

Different anti-jamming techniques have been proposed to 
mitigate the impact of physic-layer jamming on wireless 
networks [3]-[6]. These techniques can be classified into 

four categories: coding using orthogonal pseudo-random 
codes to improve signal-to-interference ratio (SINR), power 
control by optimizing the transmitted, space diversity using 
multi-antenna signal processing, and spreading the signal in 
the frequency domain [3]. 

Spread spectrum techniques such as frequency hopping 
(FH) and direct sequence (DS) were employed in 
commercial wireless communications to reduce the impact 
of jamming [4]. However, some jamming techniques can 
recognize the spreading sequence from the cyclostationary 
behavior of the transmitted signal, leading to the complete 
jamming of the legitimate signal. To overcome this issue, the 
anti-jamming scheme in [4] utilizes a secret shared code to 
create a varying spreading sequence. Compared to DS, the 
FH spreading spectrum scheme is more immune to narrow-
band interference but has less implementation complexity 
than DS spread spectrum [5]. FH-based wireless 
communications provide robustness against frequency-
selective fading in millimeter-wave cellular 
communications.[6]. Furthermore, FH spread spectrum 
communication is appropriate for IoT applications due to its 
flexibility in handling dense wireless networks, as in the case 
of the IoT paradigm. A Long-range FH (LR-FH) scheme was 
proposed in [7] to handle distant communications, such as 
satellite-linked IoT devices. An overview and performance 
analysis for LR-FH were presented in [8]. The result of the 
study demonstrated that the LR-FH-based wireless network 
has significant flexibility for expansion and growth. 
However, it comes at the expense of capacity for each device 
connected to the network. Recently, the FH spread spectrum 
has been deployed to enable a single communication system 
to provide radar and communication tasks simultaneously 
[9]. Identifying the channel state information (CSI) and 
hopping parameters such as hopping sequences, hopping 
frequencies, and hopping rates is crucial to accurately 
recover the data symbol from the received signal in FH-
based wireless networks. Therefore, various signal detection 
and frequency hopping parameter estimation schemes have 
been proposed [10]-[17]. 

The article in [10] proposed a joint signal parameter 
estimation technique for FH-based communication with M-
aray frequency shift keying (MPS). Also, the proposed 
scheme employs a maximum likelihood (ML) estimation 
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along with a smooth pseudo-Wigner–Ville distribution 
(SPWVD) to estimate hopping parameters. An adaptive 
smoothed Wigner Ville does not require any former 
experience of the signal parameters since the kernel 
parameters can be identified from the signal features [11]. 
Despite the Wigner–Ville distribution offering a large 
degree of resolution in both time and frequency, its 
computational complexity is high. 

 To enhance the estimate of signal parameters under low 
signal-to-noise (SNR) scenarios, authors in [12] developed a 
frequency hopping spectrum estimation scheme based on a 
sparse Bayesian approach. The approach in [12] involves 
partitioning the received signal into overlap measurements; 
the sparse Bayesian learning (SBL) approach was used to 
exploit the frequency hopping sequence through statistical 
methods. Based on space-time frequency analysis (STFA) 
and matrix joint diagonalization (JDM), a blind FH signal 
parameter estimation algorithm was presented in [13]. 
Results show that under low SNR as -4dB, the proposed 
scheme was able to estimate hop period, hop start time, hop 
end time, and frequency hopping frequency set with an 
accuracy reaches 73.26%; the estimation accuracy can reach 
97.374% at SNR of 5dB. The computational complexity of 
STFA is acceptable. However, the STFA cannot satisfy the 
high accuracy requirement for time and frequency domains 
at the same time [14].  

 
Energy detection-based FHSS signal detection was 

proposed in [15 Compressive Sampling][16]-[17]. The 
proposed signal detection method in [17] uses the cross-
correlation between the frequency-domain noisy-received 
signals to extract the decision statistic for energy detection; 
however, the adopted method in [17] cannot address the 
signal detection for slow-frequency hopping systems. In 
Unmanned aerial vehicles (UAVs), frequency hopping is 
used for data transmission and control [18]. The paper in [18] 
presented an adaptive noise-threshold calculation for 
frequency hopping signal detection for UAVs. For drones, a 
compressive sampling method that comprises frequency 
hopping signal spectrum extraction and soft detection was 
proposed in [19] to address the detection of FH-based radio 
control (RC) signals. 

 
Machine Learning (ML) has demonstrated great potential in 
wireless networks [20]. ML can be utilized in two different 
ways. Firstly, ML can be employed directly to improve the 
performance of specific task modules in a wireless network, 
such as modulation, error detection and correction, channel 
estimation, and signal detection. In the second way, the ML 
can be employed as an end-to-end (E2E) system. In the E2E 
system, the transmission and reception modules are replaced 
with ML. Employing ML in a communication system can 
significantly improve the system's overall efficiency [20]. 

 Adopting A short-time Fourier transform (STFT) to 
acquire the signal spectrogram for FH signal detection was 

presented in [21] under SNR and interference. A deep 
learning (DL) image processing algorithm was combined 
with signal estimation and detection to reduce the estimation 
error. Deep learning using neural networks was adopted in 
[22-28] for signal detection and channel parameter 
estimation. In [22], a hybrid convolution neural network 
(CNN) and recurrent neural network (RNN) were used for 
FH signal detection under unknown hopping rates to 
mitigate problems caused by the lack of time-frequency 
resolution and spectral leakage. Using CNN, the existence of 
the frequency hopping signal was presented in [ 23]. 
However, the proposed scheme in [23] could not identify the 
hopping frequencies [24]. 

An intelligent anti-jamming receiver for FH-based 
wireless networks was proposed in [25]. The proposed 
method combines time–frequency signal processing and DL 
to achieve accurate frequency-hopping sequence estimations. 
The combined model comprises a convolution CNN and a 
Gated Recurrent Unit (GRU). Results in [25] show that the 
proposed method can flexibly estimate the frequency 
hopping sequence regardless of sequence length. The paper 
in [26] also combines deep learning with time-frequency 
analysis to identify abnormal signals successfully. Finally, 
radio Frequency Jamming detection and classification using 
machine learning were introduced in [27] and [28]. 

The paper introduces an intelligent receiver designed for 
a frequency-hopping wireless communication setup, which 
operates within a multipath fading channel. It utilizes a deep-
learning algorithm to decode the received signal. 
Specifically, a feedforward neural network (FFNN) 
consisting of input, hidden, and output layers is utilized for 
deep learning purposes.  

The collected data set underwent prepossessing procedure 
to guarantee consistency and simplify model training. The 
paper is organized as follows: Section II outlines the 
problem formulation. Section III details the development of 
the proposed model. Section IV presents simulation results 
and discussions. Finally, Section V concludes the paper. 

 
 

II. PROBLEM FORMULATION 
 

In this paper, we consider the baseband model of 
multipath FH system as shown in Fig. 1, modeled as a time-
varying linear filter [29-31]: 

          

ℎ(𝜏, 𝑡) = ∑ 𝛽௜(𝑡)𝑒ି௝∅೔(௧)௉(௧)
௜ୀଵ 𝛿(𝑡 − 𝜏௜(𝑡))    (1) 

 
The parameters 𝛽௜(𝑡), ∅௜(𝑡)  and 𝜏௜(𝑡)  are respectively the 
channel gain (magnitude and phase) and the associated time 
delay of the ith multipath, which are assumed to be 
independent. The received signal is the convolution of the 
input signal x(t) with the equivalent low-pass channel 
impulse response ℎ(𝜏, 𝑡) 

 



                             IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 
2025 

 

190

y(t)=x(t)* h(τ,t)                                 (2) 
 

The baseband model of the FH received signal in a 
multipath environment of the sample version form: 
 

𝑦(௡)(𝑘𝑇) = ∑ 𝛽௜(𝑡)𝑒ି௝∅೔(௧)𝑒ି௝ଶగ௙೙ఛ೔𝑠(𝑘𝑇 − 𝜏௜; 𝒃௡)   +
௉(௧)
௜ୀଵ

𝑤(௡)(𝑘𝑇)                                               (3) 
 

where 𝑦(௡)(𝑘𝑇) is the received signal in the nth hop, T is the 
sampling period, 𝑓௡ is the frequency in the nth hop, and  𝒃௡ 
is the sequence of the transmitted bits. 𝑠(𝑘𝑇; 𝒃௡)  is the 
transmitted baseband signal and 𝑤(௡)(𝑘𝑇) is the white  

  
Fig.1. Baseband model of multipath FH system 

 
Gaussian noise parameter. Parameter P denotes the total 

number of multi-path considered in the model. Channel 
parameters (Channel gain, time delay), and the transmitted 
bit the sequence is unknown. The hop frequency is known 
for both transmitter and receiver [30]. The discrete time 
version of (3) is given by: 

𝑦(௡)(𝑡) = ෍ 𝜷௜𝑒
ି௝ଶగ௙೙ఛ೔𝑠௜(𝑡) + 𝑤(௡)(𝑡)

௉

௜ୀଵ

 

 𝑡 = 1,2, … 𝑀       (4) 
 
where 𝑠௜(𝑡)  is the delayed version of the transmitted 

signal though the i-th multipath.  𝜷௜ is considered complex 
standard Gaussian random, 𝜏௜   is considered uniform 
random distribution and the AWGN is considered complex 
standard Gaussian random. The FH communication system 
depicted in Fig. 1, the parameters listed in table 1 and the full 
details were previously discussed in [30]. In the transmitter, 
the data information is modulated by the modulator.   The 
study involved a progressive exploration of modulation 
schemes, commencing with the baseline Binary Phase Shift 
Keying (BPSK) and subsequently extending to more 
complex schemes, including Quadrature Phase Shift Keying 
(QPSK), 8-PSK, and 16-PSK. As an example, let's take 
Quadrature Phase Shift  

Table I: Parameters of Baseband model of multipath FH 
system 

P Random Number of Multipath  P=1,2,3,4,… 
i Multipath index i=1:1:P 
n Frequency Hop index 
t Time index  𝑡 = 1,2, … 𝑀 
𝜷௜ The i-th path channel gain, Complex Gaussian 

random distribution 
𝜏௜    The i-th path time delay, uniform random 

distribution 
𝑓௡ The frequency in the n-th hop Known for both 

Tx and Rx., Randomly selected from 75 
frequencies 1899 to 1929 MHz. 

𝒔௞ The k-th Symbol taken from QAM 
𝑠௞(𝑡) The k-th continuous time signal representing 

the k-th Symbol  
𝑠௞,௜(𝑡) The delayed version of the the k-th transmitted 

signal though the i-th multipath. 
ℎ(𝜏, 𝑡) The Impulse response of NBFH multipath 

model 
𝑦(௡)(𝑘) The k-th received signal in the n-th consists of 

M samples 
𝑤(௡)(𝑘) AWGN to the k-th received signal in the n-th 
y The received M samples of the the k-th signal 

in the n-th hop 
𝒚𝒚 NN input 
 

Keying (QPSK),where the binary signal yields four unique 
input combinations: 00, 01, 10, and 11, corresponding to 
four symbols: s0, s1, s2, and s3. Consequently, in QPSK, the 
binary input data are grouped into pairs of two bits to create 
a symbol. Within the modulator, each symbol produces one 
of the four potential output phases: +45°, +135°, -45°, and -
135°. 
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The problem addressed in this article is the estimation of the 
transmitted bits / symbols, in other words, referring to Eq. 
(4), estimating the transmitted baseband signal 𝑠௜(𝑡) based 
on the received signal 𝑦(௡)(𝑡)  under additive white gaussian 
noise and multi path scenario via machine learning. The 
received M samples of the n-th hop is collected in vector y 
given by: 
 

𝒚 = [𝑦଴    𝑦ଵ   𝑦ଶ  … … 𝑦ெିଵ]         (5) 
 
The real part of 𝒚 is concatenated with the imaginary part of 
it to form a vector of length 2M which will be the input to 
ML. 
 

𝒚𝒚 = [Real (𝒚), Imaginary (𝑦)]                   (6) 
 

 
III. DEVELOPMENT OF ML METHOD 
 

In recent years, there has been increasing interest in 
using machine learning models to replace the conventional 
channel estimator. Machine learning models can be trained 
on a large dataset of channel measurements, and they can 
learn to estimate the channel response more accurately than 
traditional statistical models.   

There are several potential advantages to using a 
machine learning model to replace the conventional channel 
estimator. First, machine learning models can be more 
accurate than traditional statistical models, especially in 
complex or rapidly changing channels. Second, machine 
learning models can be more adaptive than traditional 
statistical models, and they can learn to adapt to changes in 
the channel over time. Third, machine learning models can 
be used to estimate a wider range of channel characteristics 
than traditional statistical models, such as the channel's 
directionality or polarization. However, there are also some 
challenges associated with using machine learning models 
for channel estimation. First, machine learning models can 
be computationally expensive to train and run. Second, 
machine learning models can be sensitive to the quality of 
the training data, and they may not perform well if the 
training data is not representative of the actual channel 
conditions. Third, machine learning models can be difficult 
to interpret, and it can be difficult to understand how they 
are making their predictions. The simplest deep architecture 
is the Multi-Layer Perceptron (MLP), which takes the form 
of a succession of fully connected layers separated by 
activation functions. Despite their simplicity, MLPs remain 
an important tool when the dimension of the signal to be 
processed is not too large. 
 

1. Datasets Generation 
The first step of the research is to create a synthetic 

dataset that mimics the complexity of actual signal delays. 
Multipath model with several number of paths with wide 

range of SNR (SNR=0, 5, 10, … dB) is considered.  The 
transmission was confined to the range 1899 to 1929 MHz, 
the uplink frequency ranges for the PCS system. A total of 
75 frequencies were considered with a 400 KHz frequency 
separation between carriers. The symbol period was set to 
4µs. A total of twenty thousand signals were generated, with 
each signal/symbol having a length of 40 complex samples, 
real and imaginary parts are concatenated on at 80 length 
input feature vectors. The time delay is taken random from a 
uniform distribution between zero and one, and the channel 
gain is taken as random complex normal distribution.  
 

2. Dataset preprocessing 
The dataset went through preprocessing procedures to 

guarantee consistency and make model training easier. 
Categorical labels are used for training. After then, the 
dataset was split into training (80%) and testing (20%) 
groups [32], accommodate this variability, the output layer 
utilizes a linear activation function, allowing for the 
flexibility required to capture such experiment-specific 
nuances.  

3. Neural Network Architecture 
A feedforward neural network is a type of artificial neural 
network where the information moves in only one direction 
forward from the input layer, through the hidden layers, and 
finally to the output layer. Each layer consists of nodes 
(neurons), and connections between nodes have associated 
weights. During training, the weights are adjusted to 
minimize the difference between the predicted output and 
the true output. 

 
 

Fig 2. Feedforward Neural Network (FNN) architecture, the diagram 
automatically generated by ChatUML 
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The architecture of the NN employed in this study comprises 
three hidden layers, each playing a pivotal role in capturing 
the intricate relationships within the synthesized signals.  
A. Input Layer: 

This means that the input layer is designed to handle 80 
features, representing the real and imaginary parts of the 40 
complex samples. The values associated with these neurons 
would be the actual values of the features in your input data. 
The primary role of the input layer is to pass this information 
forward to the subsequent layers in the neural network. The 
subsequent layers, often hidden layers, and an output layer, 
perform computations and learn patterns from the input data 
through the adjustment of weights associated with the 
connections between neurons. 
 
B. Hidden Layers: 
The hidden layers consist of three layers:  

a. Hidden Layer1: 
 This is the first hidden Fully Connected Layer with 128 
neurons. Each of the 128 neurons in this layer is connected 
to all 80 neurons in the input layer. So, the fully connected 
layer serves as the first hidden layer, and it directly receives 
input from the features in your input data. The weights 
associated with these connections are learned during training 
to allow the network to capture complex patterns and 
relationships in the data. The Rectified Linear Unit (ReLU) 
activation function applied after the first hidden layer; the 
ReLU is a common activation function used in neural 
networks. It introduces non-linearity by outputting the input 
for positive values and zero for negative values. This non-
linearityis important for the network to learn complex 
patterns. The ReLU activation function is defined as follows: 

f(x)=max(x,0)                       (7) 
 

b. Hidden Layer 2  
This is the second hidden fully connected layer with 64 

neurons directly connected to the first hidden layer. This 
implies that the 64 neurons in the second hidden layer 
receive input from the 128 neurons in the first hidden layer. 
The weights associated with these connections are learned 
during the training process, allowing the neural network to 
capture and model complex patterns in the data. The ReLU 
activation applied after this layer. 

 
c. Hidden Layer 3 

This is the third fully connected layer with 32 neurons: 
The values from the ReLU activation function in the second 
layer are connected to each of the 32 neurons in this third 
hidden layer. During training, the network learns the weights 
associated with these connections to capture patterns and 
relationships in the data.  
 
 

 
 Neural Network Training Process 

Adaptive Moment Estimation (Adam) optimization 
algorithm, a popular and effective optimization algorithm 
used to minimize the loss fun during the training of neural 
networks. Adam combines ideas from Root Mean Square 
Propagation (RMSprop) and Momentum. Adam maintains 
two moving averages for each parameter: first moment 
(mean) and the second moment (uncentered variance). These 
moving averages are computed using exponential decay and 
are used to adaptively adjust the learning rates for each 
parameter during training. The algorithm helps overcome 
some limitations of other optimization techniques, such as 
being sensitive to the choice of learning rates. the additional 
non-linear transformations to the input data, aiding the 
network's ability to learn complex representations. The 
ReLU activation function is used after this layer. 
 
C. Output Layer 

This is a fully connected output layer with a number of 
neurons equal to the number of classes. In QPSK case, the 
number of Classes is set to 4, representing the possible 
transmitted symbols. Soft max activation is applied to the 
output of the fully connected layer. To converts the raw 
scores into class probabilities. For deep learning 
classification purposes, the SoftMax of the output of the 
classifier network is the probability distribution, which is 
then converted to the binary matrix in which each class is 
represented by a unique binary number for classification 
purposes. The SoftMax activation function is commonly 
employed in the output layer for multi-class classification 
problems. It converts the raw output scores of the network 
into probabilities, ensuring that the sum of the probabilities 
for each class is 1. This makes it suitable for classification 
tasks. It specifies the loss function and performance metrics 
for multi-class classification tasks. The SoftMax activation 
function can be described mathematically as: 

𝜎௜ =
௘ೣ೔

∑ ௘
ೣೕ಴

ೕషభ

                                                  (8) 

 
where the vector  𝑥 = [𝑥ଵ, 𝑥ଶ, … , 𝑥஼]  represents the raw 
scores for every single class, 𝜎 = [𝜎ଵ, 𝜎ଶ, … , 𝜎஼]   is the 
SoftMax function output vector with 𝑥௜  being the raw score 
for the class i, and C  is the number of classes.  The SoftMax 
activation function normalizes the raw scores 𝑥௜  so that the 
output values lie between 0 and 1 such that the sum of the 
probabilities of the raw scores is one, i.e. ∑ 𝜎௜

஼
௜ = 1. 

The categorical cross-entropy loss is a popular and 
effective performance metric. It is a widely utilized metric 
for addressing multi-class classification challenges. It 
quantifies the disparity between the predicted probability 
distribution, determined through the SoftMax activation 
function, and the actual probability distribution represented 
by one-hot encoded labels. The objective function is often 
categorical cross-entropy for a multi-class classification task 
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such as modulation recognition. Categorical cross-loss is a 
measure of the difference between two probability 
distributions. The SoftMax activation function and 
Categorical cross-entropy work together in multi-class 
classification tasks. The Categorical Cross-Entropy Loss can 
be represented in mathematical form as [32]: 

𝐿 = −
ଵ

ே
∑ ∑ 𝑦௜௝ log (𝑝௜௝)஼

௝ୀଵ
ே
௜ୀଵ                             (9) 

 
Where N is the total number of samples in the validation set, 
C is the number of classes, 𝑦௜௝ is the indicator function that 
is 1 if the true label for sample 𝑖 is class 𝑗 and 0 otherwise, 
and  𝑝௜௝  is the predicted probability assigned by the model to 
sample 𝑖  being of class 𝑗 . optimizer include adaptive 
learning rates, which can be beneficial when dealing with 
sparse data and noisy gradients. It also incorporates 
momentum-like behaviours to help accelerate the 
optimization process. Initial learning rate is set to 3e-4. 
Maximum number of epochs is set to 15. Mini-batch size is 
set to 64. Validation is performed every 5 epochs. The train 
Network function in MATLAB is used to train the neural 
network using the specified architecture, training data, and 
options. By plotting various metrics during training, we can 
learn how the training is progressing. For example, we can 
determine if and how quickly the network accuracy is 
improving, and whether the network is starting to overfit the 
training data. 
 

IV. SIMULATION RESULTS 
 

We launch an extensive computer simulation to assess the 
performance of the proposed estimator. Both training and 

 
Fig.3. a Validation and Training Loss for BQPSK 
 

 
Fig.3.bValidation and Training Loss for 4-QPSK 
 

validation loss metrics are crucial for evaluating the model's 
effectiveness. The training loss guides parameter updates, 
while validation loss provides an independent assessment of 
the model's generalization to unseen data. Monitoring both 
ensures the model is well-performing and generalizable. Fig 
3 illustrates the training loss and validation loss for various 
modulation schemes and dataset sizes specified in Table 2. 
A decreasing training loss indicates effective learning from 
the provided data. The stability or reduction of the validation 
loss indicates the model's expected performance on real-
world scenarios beyond the training set. The 
experimentation involved assessing the performance of 
various phase shift keying (PSK) modulation schemes, 
namely 2-PSK, 4-PSK, 8-PSK, and 16-PSK, using a 
machine learning model. Each modulation scheme was 
trained with a different number of signals, ranging from 500 
for 2-PSK to 20,000 for 16-PSK. The elapsed time for 
training increased as the complexity of the modulation 
scheme grew, with 2-PSK completing in 2.0 seconds and 16-
PSK taking 34.0 seconds. The training process was 
conducted over 15 epochs for all schemes, with validation 
occurring every 5 epochs. However, the number of iterations 
varied significantly between the schemes, with 2-PSK and 
4-PSK completing 30 iterations each, while 8-PSK required 
540 iterations and 16-PSK necessitated 1220 iterations to 
reach convergence. This discrepancy in iteration counts 
translated to varying iteration per epoch values, with 2-PSK 
requiring 2 iterations per epoch, 4-PSK 17 iterations per 
epoch, 8-PSK125 iterations per epoch, and 16-PSK 250 
iterations per epoch. Additionally, a constant learning rate of 
0.0003 was maintained throughout the training process for 
all modulation schemes. These results offer insights into the 
performance and computational requirements of different 
PSK modulation schemes, crucial for optimizing 
communication system designs and machine learning model 
training strategies. The accuracy of a neural  

 
Fig.3.c Validation and Training Loss for 8-QPSK 
 

L
o
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Fig.3.d Validation and Training Loss for 16-PSK 
 
network shown in Fig. 4 is commonly computed as the ratio 
between the number of correct predictions and the total 
number of predictions. The validation accuracy varied across 
the schemes, with 2-PSK achieving a perfect accuracy of 
100%, followed by 99.29% for 4-PSK, 96.8% for 8-PSK,  
and 94.6% for 16-PSK.  

A confusion matrix as shown in Fig. 5 is a table that is 
often used to evaluate the performance of a classification 
algorithm on a set of data for which the true values are 
known. The probability matrix is closely related to the 
confusion matrix, typically refers to the matrix of predicted 
probabilities for each class given by a classification model. 
Each row in the probability matrix corresponds to an actual 
class, and each column corresponds to the predicted 
probability for a specific class. This confusion matrix helps 
evaluate the performance of a classification model across 
four different classes, providing insights into the model's 
strengths and weaknesses in predicting each class. Accuracy 
is inversely related to the Symbol Error Rate (SER), as 
higher accuracy implies a lower likelihood of incorrectly 
detected symbols. 

V. CONCLUSION 

This work develops an intelligent receiver for SFH 
system using deep learning, The neural network will replace 
the conventional receiver, it is designed to take 80 features  
 
Table2: The training progress table.  

Results 2-PSK 4-PSK 8-PSK 16-PSK 
Number of Train 
Signals 

500 1000 10000 20000 

Validation Accuracy 100% 99.29 96.8% 94.6% 
Elapsed time 2.0 s 4.0 s 11.0 s 34.0 s 
Epoch  15 5/15 5/15 
Iterations 30/30 15/15 540 1220 
Iteration per Epoch 2 17 125 250 
Maximum Iterations 30 569 1875 3750 
Validation Frequency 5 5 5 5 
Constant Learning rate =0.0003,  

 
 

Fig.4.a Validation and Training Accuracy for BQPSK 
 

 
Fig.4.b Validation and Training Accuracy for 4 QPSK 

 
(Received signal samples) as input and predict one of 2, 4, 
8, or 16 classes, representing the transmitted symbol 
depending on the modulation technique. The training 
process of the feedforward neural network aims to optimize 
the network's weights to minimize the classification error on 
the provided training and validation datasets. The generated 
training losses and validation losses confirmed the ability of 
the machine to learn. In our next research article, the 
performance, and the complexity of the DNN estimator will 
be compared with the conventional ones.  
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Fig.4.d Validation and Training Accuracy for 16-PSK 
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Fig.5 Confusion matrix for a three multi path and zero dB SNR.  
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