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Abstract 
Semi-supervised clustering leverages side information such as 
pairwise constraints to guide clustering procedures. Despite 
promising progress, existing semi-supervised clustering 
approaches overlook the condition of side information being 
generated sequentially, which a natural setting is arising in 
numerous real-world applications such as social network and e-
commerce system analysis. We consider the semi-supervised 
clustering problem where we know (with varying degree of 
certainty) that some sample pairs are (or are not) in the same class. 
Unlike previous efforts in adapting clustering algorithms to 
incorporate those pairwise relations, our work is based on a 
discriminative model. According to the principle of ensemble 
clustering, the optimal partition lies in the convex hull, and can 
thus be uniquely represented by an m-dimensional probability 
simplex vector. As such, the dynamic semi-supervised clustering 
problem is simplified to the problem of updating a probability 
simplex vector subject to the newly received pairwise constraints. 
We then develop a computationally efficient updating procedure 
to update the probability simplex vector in O (m2) time, 
irrespective of the data size n. Our empirical studies on several 
real-world benchmark datasets show that the proposed algorithm 
outperforms the state of-the-art semi-supervised clustering 
algorithms with visible performance gain and significantly 
reduced running time. 
Keywords: 
Data Mining, Knowledge Discovery in Databases, Clustering, 
Semi Supervised Clustering, Pairwise Constraints. 

 
1. Introduction 
 

In recent times, majority of the data available 
throughout the world are warehoused in databases. Data 
mining that has received immense attention from the 
research community because of its importance is the 
process of detecting patterns from extremely huge 
quantities of data collection [1]. Knowledge Discovery in 
Databases (KDD) is the other name for data mining which 
has been identified as a potential field for database research. 
Classification or bunching of these data into a set of 
categories or clusters is one of the essential methods in 
manipulating these data. Clustering is a delineative task that 
attempts to detect similar category of objects based on the 
implications of their features dimensions. One can detect 
the predominant distribution patterns and interesting 

correlations that exist among data attributes by clustering 
which can determine dense and sparse areas [4, 5]. 
 

Despite the promising progress, one issue often 
overlooked by existing semi-supervised clustering 
approaches is how to efficiently update the clustering results 
when the pairwise constraints are dynamic, i.e., the new 
pairwise constraints are generated sequentially. This 
condition stands natural and is closely related to many real-
world applications. For example, one representative 
application in social network analysis is to identify user 
communities based on users’ profiles as well as their social 
connections. If we respectively treat user profiles and 
connections as features and pairwise constraints, this 
application is essentially a semi-supervised clustering 
problem. Since new connections are being formed over time, 
user communities should also be frequently updated. 
Similar situations also occur in various real-world 
ecommerce platforms, which typically require to group 
items or customers based on their profiles (i.e., features) and 
dynamic co-purchasing histories (i.e., pairwise constraints). 
 

There is an emerging interest in semi-supervised 
clustering algorithms in the machine learning and data 
mining communities. In addition to the data values, we 
assume there are a number of instance-level constraints on 
cluster assignment. More specially, we consider the 
following two types of pairwise relations: 
• Must-link constraints specify that two samples should be 
assigned into one cluster. • Cannot-link constraints specify 
that two samples should be assigned into different clusters. 
 

Pairwise relations naturally occur in various domains 
and applications. In gene classification, our knowledge that 
two proteins co-occurring in processes can be viewed as a 
must link [1]. In information retrieval, the expert critique is 
often in the form “these two documents shouldn’t be in the 
same cluster”, which can be viewed as a cannot-link [2]. 
Pairwise relations may arise from knowledge of domain 
experts [3], perceived similarity (or dissimilarity) [4], or 
even common sense [5]. Unfortunately, those pairwise 
relations are often determined in a subjective way [2] or 
with significant uncertainty [4]. 
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2. RELATED WORK 
 

In this section, we divide the related work into three 
categories, namely semi-supervised clustering, clustering 
according to user’s feedback, and dynamic network 
clustering. Most semi-supervised clustering methods can be 
categorized into two main groups [6]: constrained 
clustering methods and distance metric learning based 
methods. The constrained clustering methods employ side 
information to confine the solution space, and only seek 
feasible data partitions consistent with given constraints. 
Among them, hard constraints based methods only consider 
the cluster assignments such that all the constraints are 
strictly satisfied. For instance, Wagstaff et al. [3] modified 
the K-means clustering and self-organizing map algorithms 
to adjust the cluster memberships towards the given 
pairwise constraints. In, a generalized Expectation 
Maximization (EM) algorithm was applied to ensure that 
only the mixture models matching all the constraints are 
considered. The hard constraints based methods tend to be 
more sensitive to noise since some constraints may make 
the corresponding clustering problems infeasible [4].  
 

To overcome this issue, a lot of studies have treated 
side information as soft constraints [5]. Instead of satisfying 
all the constraints, the soft constraints based methods aim to 
preserve those constraints as many as possible, while 
penalizing the number of violated constraints. In [7], 
probabilistic models were proposed to deal with semi-
supervised clustering tasks, in which pairwise constraints 
were treated as Bayesian priors. In [7], pairwise constraints 
were formed as an additional penalty term in the objective 
of spectral learning. In [5], a parameter-free algorithm 
called Graph Scope was proposed to mine time-evolving 
graphs obeying the principle of Minimum Description 
Length (MDL). Facet Net [2] employed probabilistic 
community membership models to identify dynamic 
communities within a time-evolving graph. Kim and Han [8] 
further allowed a varying number of communities and 
presented a particle-and-density based algorithm to 
discover new communities or dissolve existing 
communities.  
 

Albeit looking similar, dynamic network clustering is 
different from the focus of this paper due to the following 
reasons: (i) dynamic network clustering algorithms only use 
links to guide clustering but ignore the important feature 
information; (ii) they rely on a large amount of link 
information to conduct clustering, while our studied 
dynamic clustering only requires a small number of 
pairwise constraints. Due to the flexibility of handling both 
data features and dynamic relationships, our proposed semi-
supervised clustering approach better fits conventional 
clustering applications. 
 

To apply the pairwise constraints to graph partition, 
existing methods either modify the affinity matrix directly 
[2], or constrain the underlying Eigen space [3]. In this work, 
we focus on the quadratic formulation for constrained 
spectral clustering proposed in [8] for two reasons: 1) the 
quadratic formulation matches nicely with the 
regularization framework for label propagation (referred to 
as the Generalized Label Propagation framework in [1]); 2) 
unlike other algorithms, the CSC algorithm in [8] can 
handle large amount of soft constraints, which is convenient 
for constraints generated from propagated labels. That 
being said, the equivalence we are to establish in Section IV 
is not limited to the formulation in [8], but also valid for 
other constrained spectral clustering formulation with a 
regularization framework 

 
 

3. PAIRWISE CONSTRAINTS 
 

We approach Problem 1 by considering pairs of 
correspondences. For each problem we will show how to 
detect geometric inconsistency of such a pair. Two 
geometrically inconsistent correspondences cannot both 
belong to the optimal solution and hence we look for large 
sets of pairwise consistent correspondences. In general 
pairwise consistency is not sufficient, but we will show how 
to get around this problem [7]. 
 

Assume we have established pairwise consistencies. 
We then build a graph with all hypothetical 
correspondences as vertices and edges connecting 
inconsistent ones [3]. Clearly a consistent subset according 
to Definition 1 cannot include any edges. Thus the maximal 
subset of pairwise consistent correspondences should be a 
good candidate for the optimal solution. Finding this set is 
equivalent to removing as few vertices as possible while 
covering all edges [6].  
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4.  PROPOSED WORK 
 

4.1 PAIRWISE CONSTRAINED COMPETITIVE 
AGGLOMERATION (PCCA) 

 
The objective function to be minimized should 

combine the feature-based similarity between data points 
and the pair-wise constraints available. Let M be the set of 
must-link pairs such that (xi; xj) € M implies xi and xj 
should be assigned to the same cluster, and C be the set of 
cannot-link pairs such that (xi; xj) € C implies xi and xj 
should be assigned to different clusters [5]. Using the same 
notations as for CA, the objective function PCCA must 
minimize is: 

 
The second term is composed of the cost of not respecting 
the pairwise must-link constraints and the cost of not 
respecting the pairwise cannot-link constraints. The penalty 
corresponding to the presence of two such points in 
different clusters (for must-link constraints) or in the same 
cluster (for cannot-link constraints) is weighted by their 
membership values [7]. This second term is weighted by α, 
which is a way to specify the relative importance of the 
supervision [11]. 
 
4.2 SEMI-SUPERVISED CLUSTERING WITH 

PAIRWISE CONSTRAINTS (SSPC) 
 

In this section, we first present a general framework 
for semi-supervised clustering, followed by the proposed 
efficient algorithm for dynamic semi-supervised clustering 
[8]. Semi-Supervised Clustering Let X = (x1... xn) be a set 
of n data points to be clustered, where each data point xi 
∈Rd, i ∈ [n] is a vector of d dimensions [3]. Let Mt be the 
set of must-link constraints generated until time t, where 

each must-link pair (xi,xj) ∈Mt implies that xi and xj should 
be in the same cluster. Similarly, let Ct be the set of cannot-
link constraints generated until time t, where each cannot-
link pair (xi,xj) ∈ Ct implies that xi and xj should belong to 
different clusters [5]. For ease of presentation, we also 
define Ωt = Mt∪Ct to include all pairwise constraints 
generated until time t. Similar to most studies on data 
clustering, we assume that the number of clusters r is given 
a priori[8]. Throughout this paper, we use a binary matrix F 
∈ {0,1}n×r to represent the result of partitioning n data 
points into r clusters, where Fij = 1 indicates that xi is 
associated with the j-th cluster. We further denote F as the 
set of all possible clustering results. 

 

 

 
 
4.3  DYNAMIC SEMI-SUPERVISED CLUSTERING 

(DSSC) 
 

The proposed algorithm is based on a key 
observation that the number of different clustering results F 
in the set ∆ = {F ∈F: d (K, F) ≤ ε} is not very large when ε 
is relatively small and the eigenvalues of K follow a skewed 
distribution [1]. To see this, we denote by λ1... λn the 
eigenvalues of K ranked in descending orders, and v1... vn 
the corresponding eigenvectors. {λk} follows a q-power 
law if there exists a constant c such that λk ≤ ck−q, where q 
> 2. The following lemma summarizes an important 
property of K when its eigenvalues follow a q-power law 
[9]. Specifically, the proposed clustering process is 
composed of two steps: an offline and an online step [7]. In 
the offline step, we generate multiple partitions of the same 
dataset X and use such partitions to construct a convex hull 
∆. In the online step, an efficient learning algorithm is 
developed to update the combination weights based on the 
newly received pairwise constraints. 

 

 
IV d.  

4.4 SEMI-SUPERVISED PAIRWISE GAUSSIAN 
PROCESS CLASSIFIER (SPGP) 

 
We can now combine the likelihood (and its 

approximation) formulated in Equation (9) and (11), and a 
Gaussian prior based on the semi-supervised kernel. As 
mentioned in Section, the classification is given by the MAP 
solution off [10]. According to Proposition 2, the 
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optimization in equation (12) can be divided into the 
following two steps 

 
Here K is one of the graph kernels, and both K and f are 
decomposed as in Section. The decomposition (step 1-step 
2) effectively reduces the optimization over f to a subset fc, 
which is substantially cheaper when only a small portion of 
samples are constrained [10]. 
The objective function in step 1 consists of two terms: the 
empirical error 

 
V.  

 
5. EXPERIMENTS 

 
      In this section, we empirically demonstrate that our 
proposed semi-supervised clustering algorithm is both 
efficient and effective.  
 
5.1  DATASETS 

 
Four real-world benchmark datasets with varied 

sizes are used in our experiments, which are:  
• COIL20, a dataset containing 20 objects with 1,440 
images in total. Each image is represented by a 1024-
dimensional vector.  

 
• USPS, a widely used handwritten digits dataset including 
9,298 handwritten images. Each image is represented by a 
256-dimensional vector that belongs to one of 10 classes.  
• Covtype5, a dataset used to predict forest covers types 
using cartographic variables. This dataset consists of 
581,012 records belonging to seven cover type classes, i.e., 
spruce/fir, lodge pole pine, ponderosa pine, 
cottonwood/willow, aspen, Douglas-fir, and krummholz.  
• MNIST8m, a dataset artificially enlarged from the MNIST 
handwritten digits dataset6. It contains a total of 8,100,000 
samples that belong to 10 classes. 
 
 
 
 
 
 
6.  EXPERIMENTAL RESULTS 

 
6.1   COIL20 DATASET RESULTS 

 

 COIL20 Dataset  
 

Algorith
m 

Accurac
y 

Precisio
n Recall 

F-
Measure 

PCCA 89.45 87.91 92.77 90.89 

SSPC 79.91 76.08 74.78 86.56 

DSSC 70.92 79.67 79.89 85.78 

SPGP 84.67 90.67 86.78 77.67 
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The above graph shows that performance of Coil20 dataset. 
The Accuracy of PPCA algorithm is 89.45 which is higher 
when compare to other three (SSPC, DSSC, SPGP) 
algorithms. The Precision of SPGP algorithm is 90.67 
which is higher when compare to other three (SSPC, DSSC, 
PPCA) algorithms. The Recall of PPCA algorithm is 92.77 
which is higher when compare to other three (SSPC, DSSC, 

SPGP) algorithms. The F-Measure of PPCA algorithm is 
90.89 which is higher when compare to other three (SSPC, 
DSSC, SPGP) algorithms. 

 
 

 
6.2   USPS DATASET RESULTS 

 

 USPS Dataset  
Algorithm Accuracy Precision Recall F-Measure 

PCCA 70.45 85.91 94.77 88.89 

SSPC 70.91 86.08 94.78 60.56 

DSSC 70.92 90.67 91.89 85.78 

SPGP 80.67 96.67 70.78 88.67 
 

 
 

 
The above graph shows that performance of USPS 

dataset. The Accuracy of SPGP algorithm is 80.67 which is 
higher when compare to other three (SSPC, DSSC, PCCA) 
algorithms. The Precision of SPGP algorithm is 96.67 
which is higher when compare to other three (SSPC, DSSC, 

PPCA) algorithms. The Recall of SSPC algorithm is 94.78 
which is higher when compare to other three (PCCA, DSSC, 
SPGP) algorithms. The F-Measure of PPCA algorithm is 
88.89 which is higher when compare to other three (SSPC, 
DSSC, SPGP) algorithms. 

 
 

6.3    COVTYPE5 DATASET RESULTS 
 

 Covtype5 Dataset  
Algorithm Accuracy Precision Recall F-Measure 

PCCA 79.45 88.91 84.77 88.89 

SSPC 74.91 90.08 90.78 70.56 

DSSC 80.98 76.67 72.89 85.78 

SPGP 88.67 70.67 77.78 90.67 
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The above graph shows that performance of Covtype5 
dataset. The Accuracy of SPGP algorithm is 88.67 which is 
higher when compare to other three (SSPC, DSSC, PCCA) 
algorithms. The Precision of SSPC algorithm is 90.08 
which is higher when compare to other three (SPGP, DSSC, 
PPCA) algorithms. The Recall of SSPC algorithm is 90.78 

which is higher when compare to other three (PCCA, DSSC, 
SPGP) algorithms. The F-Measure of SPGP algorithm is 
90.67 which is higher when compare to other three (SSPC, 
DSSC, PCCA) algorithms. 

 

 
6.4   MNIST8M DATASET RESULTS 

 

 MNIST8m Dataset  
Algorithm Accuracy Precision Recall F-Measure 

PCCA 93.45 88.91 87.77 78.89 

SSPC 80.91 90.08 93.78 70.56 

DSSC 84.98 93.67 79.89 85.78 

SPGP 88.67 84.67 71.78 89.67 
 

 
 

The above graph shows that performance of 
MNIST8m dataset. The Accuracy of PCCA algorithm is 
93.45 which is higher when compare to other three (SSPC, 
DSSC, SPGP) algorithms. The Precision of DSSC 
algorithm is 93.67 which is higher when compare to other 
three (SSPC, SPGP, PPCA) algorithms. The Recall of 

SSPC algorithm is 93.78 which is higher when compare to 
other three (PCCA, DSSC, SPGP) algorithms. The F-
Measure of SPGP algorithm is 89.67 which is higher when 
compare to other three (SSPC, DSSC, PCCA) algorithms. 
7.   CONCLUSION 

 

-표준

-표준

-표준

-표준

-표준

-표준

PCCA SSPC DSSC SPGP

Covtype5 Dataset Accuracy

Covtype5 Dataset Precision

Covtype5 Dataset Recall

Covtype5 Dataset F-Measure

-표준
-표준
-표준
-표준
-표준
-표준
-표준
-표준
-표준
-표준
-표준

PCCA SSPC DSSC SPGP

MNIST8m Dataset Accuracy

MNIST8m Dataset Precision

MNIST8m Dataset Recall

MNIST8m Dataset F-Measure



IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.2, February 2025 
 

 

217

 

In this paper, we proposed a dynamic semi-
supervised clustering algorithm which can efficiently 
update clustering results given newly received pairwise 
constraints. The key idea is to cast the dynamic clustering 
process into a search problem over a feasible clustering 
space that is defined as a convex hull generated by multiple 
ensemble partitions. Since any inner point of the convex 
hull can be uniquely represented by a probability simplex 
vector, the dynamic semi-supervised clustering problem 
can be reduced to the problem of learning a low-
dimensional vector. Given a set of sequentially received 
pairwise constraints, we devised an updating scheme to 
update the data partition in an extremely efficient manner. 
Our empirical studies conducted on several real-world 
datasets confirmed both the effectiveness and efficiency of 
the proposed algorithm. 
 

In recent work on semi-supervised clustering with 
pairwise constraints, [8] used gradient descent Pairwise 
Constrained Competitive Agglomeration (PCCA) 
combined with a in the context of SSPC clustering. [2] 
Proposed a Dynamic Semi-Supervised Clustering (DSSC) 
algorithm that uses must-link constraints to learn a Pairwise 
distance. [24] Utilized both must link and cannot link 
constraints to formulate a convex optimization problem 
which is local-minima-free. [5, 6] proposed a method based 
on Semi-supervised Pairwise Gaussian Process Classifier 
(SPGP) which learns a metric during clustering to minimize 
an objective function which incorporates the constraints. 
This is equivalent to the minimization of the posterior 
energy of the DSCC. 
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