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Abstract 
The development of cloud computing has significantly altered how services are built, 
deployed, and made accessible to users outside of the organization. In actuality, the pay-as-
you-go model of dispersed IT supported by the cloud computing paradigm calls for the 
outsourcing of software services and applications. In this situation, the capacity to ensure 
effective cloud performance management and to facilitate automated scalability become 
fundamental prerequisites. Users of the cloud are becoming more and more interested in a 
transparent and coherent image of the cloud, where performance is guaranteed in a variety 
of situations and under a variety of loads. In this essay, We examine the advantages of an 
integrated scalability approach at various cloud stack layers, concentrating on the database 
and compute infrastructure layers. In order to achieve this, we offer various performance 
measurements and a set of rules based on them to assess the cloud stack's condition and 
scale it as needed to maintain stable performance. Then, using a proof-of-concept 
architecture, we empirically investigate three scaling scenarios for cloud performance: 
database only, computing infrastructure solely, and the scenario where computing 
infrastructure and database compete for resources. 
Keywords: 
scalability, cloud, stack. 

 
1. Introduction 
 

The preferred method for providing IT services is moving toward the 
cloud [1]. The cloud paradigm offers its users (i.e., end users and service 

providers) a number of benefits, including the ability to outsource a portion 
of their operations to the cloud (for which strong IT skills are required), a 
decrease in the cost of owning, operating, and maintaining computational 
infrastructures, an increase in flexibility, and access to a scalable 
infrastructure. The spread of cloud technologies and solutions, on the other 
hand, leads to the deployment of numerous heterogeneous multi-layer 
cloud stacks [2]. New methods for performance monitoring and automatic 
scaling that are independent of cloud configuration and operate at many 
layers are becoming more and more in demand in this context. 

 
In order to analyze the performance of several technologies 

offering functionality for a given cloud layer, existing performance 
evaluation and automatic scalability methodologies typically focus on 
a single cloud layer at a time [3], [4]. As an illustration, various NoSQL 
databases are contrasted to assess their functionality and support for 
scalability in various scenarios [3], [5], [6]; The same holds true when 
comparing various cloud infrastructures (IaaS) [4]. In this way, even 
when multiple layers of the cloud stack compete for the same 
physical resources, inter-layer synergy and interference effects are 
not taken into account. Additionally, many current solutions presuppose 
an endless supply of resources that scale up on demand without any 
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constraints (e.g., [4], [7]). But as mentioned in [8], This is not always 
the case, particularly in situations where there are limited IT resources 
(as in a private cloud) or financial resources (as in a hybrid/public 
cloud). This situation prevents us from treating each layer of the cloud 
stack as an independent building block; instead, it forces us to prioritize 
which layer to grow first when resources are scarce and many levels 
(such the database and computing infrastructure layers) need to scale. 

 

In this article, we address the aforementioned issue and propose 
an integrated approach to cloud scalability that centers on a scenario in 
which the database and computational infrastructure layers are in 
competition for resources. Our contention is that blind scaling is 
inapplicable to the cloud settings of today, necessitating the definition 
of scalability solutions that take into account the possibility that the 
demands of the entire cloud stack cannot be met by the resources at 
hand. First, our method defines a set of indicators that can be assessed 
and quantified using commercial and open source software, as well as 
a set of guidelines for automatic scaling and performance monitoring 
that apply to both the database and computing infrastructure levels. 
Then, it is applied to three scalability scenarios: database only, 
computing infrastructure solely, and a mix of the two where database 
and computing infrastructure fight for resources. A private cloud 
architecture is used to experimentally examine the three scenarios. The 
rest of this essay is structured as follows. Section II provides examples 
of our reference architecture and motivating scenario. The metrics and 
guidelines for automatic scalability are presented in Section III. Section 
IV details the results of our experiment. The relevant study is 
summarized in Section V, and our conclusions are presented in Section 
VI. 

 
 
 

 

II- MOTIVATING SCENARIO AND REFERENCE 
ARCHITECTURE 

Our inspiring scenario and reference structure are presented in this section. 
 
A) Motivating Scenario 

 
Leading European telecommunications provider Telecom Italia 

offers its customers a range of mobile and cloud services. The Telecom 
Italia cloud computing offering known as Nuvola Italiana, or the "Italian 
Cloud," consists of a variety of services that assist businesses in the 
distribution of their applications and the implementation of their 
business processes. One of the most demanding needs in this situation is 
the ability to offer an autonomous scalability solution that targets the 
cloud stack at various stages. . Since applications typically need 
resources for service execution and delivery as well as resources for 
database operations (such as the conventional NoSQL map- reduce 
operations), many of the provisioned services, in particular, require 
scalability at least of the computing infrastructure and database [9]. 

 

Here, we focus on data-intensive applications (such as data-
intensive websites developed in Ruby and deployed on the cloud1), 
which demand on two distinct pools of virtual machines because 
business logic and data layers are separated (VMs). First, we specifically 
concentrate on conventional cases where the business logic (i.e., 
computational infrastructure) and the data (i.e., database) layers are 
scaled independently depending on the loads of requests. Then, we 
concentrate on a scenario where the two levels compete with one another 
for resources. The research presented in this paper tries to address the 
following scalability requirements. 
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Elasticity scaling. The pay-as-you-go paradigm must be taken into 
consideration when discussing cloud scalability, and elastic approaches 
that scale up, out, and down based on the real load must also be 
supported. 

Reactivity vs Proactivity. Scalability must accommodate both 
proactive and reactive strategies. By using appropriate metrics (such as 
CPU and memory use), a reactive method to scalability assesses the 
status and configuration of the cloud and scales as necessary in 
accordance with rules concerning those metrics. In order to decrease the 
likelihood of situations when the stack is overloaded or underloaded and 
a reactive approach is required, a proactive method monitors the status 
and configuration of the cloud and preemptively scales. 

 
Multi-layer. Clouds are inherently multi-layered and diverse. A cloud 
scalability strategy must address the heterogeneity of the cloud and 
support various methods that enable scaling at various layers of the cloud 
architecture. 

Resource limitations. A scalable infrastructure with boundless 
resources that are accessible on demand is frequently how the cloud is 
viewed. This isn't always the case, though [8], and as a result, a 
scalability strategy that optimally assigns/revokes resources when and 
when needed is required. 

B) Typical Architecture 
 

The layers in our reference architecture's cloud stack are as 
follows: the management of infrastructure resources (such as compute, 
network, and storage) through the deployment of components providing 
IaaS functionalities; the management of application lifecycle and scaling 
rules through the deployment of components providing PaaS 

functionalities; and the implementation and management of databases 
through the provision of database infrastructure. Our approach is based 
on Telecom Italia's cloud offering, which covers the following group of 
products. 

• OpenStack. IaaS open source software that enables management and 
monitoring of infrastructure resources It establishes infrastructure 
templates for VM provisioning, controls network and storage operations, 
and provides a number of APIs that expose monitored data to the 
architecture's higher layers. 

• Cloudify. a PaaS system that is open source and allows management 
of the application lifetime. In order to offer scalability at the 
infrastructure layer, it implements a collection of recipes that are mapped 
on OpenStack templates. It offers a list of supported application 
architectures, supports metrics definition, and scaling rules (i.e., Apache, 
Tomcat, and MongoDB in our scenario). 

• MongoDB. a document-oriented, NoSQL database with no schema. It 
is made up of three basic parts: a router service that receives and 
distributes requests to shards; shard servers that store data; configuration 
servers that store database configurations. 

• KVM. It is the hypervisor that OpenStack uses to operate within the 
computing node. 

 
We observe that OpenStack has been set up in a multi-node 

configuration, with three virtual machines serving as the controller, 
network, and computing nodes, respectively. We should also mention 
that VMWare ESXi 5.5 is the hypervisor used to deploy the entire system. 
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III- PERFORMANCE METRICS AND SCALABILITY RULES 

 
A strategy for automated scaling must first define a set of metrics 

tracking the condition of various cloud stack levels (Section III-A). 
Following that, a set of rules that can support automatic scaling at 
various layers can be implemented using these metrics (Section III-B). 
Database layers and computer infrastructure are the main topics of this 
section. 

A. Performance indicators 
 

Performance metrics are numerical indicators of a certain cloud 
stack's health and can be tracked to inform various scalability strategies 
according to the scenario under consideration. We make a distinction 
between reactive and aggressive scaling. First, metrics for reactive 
scalability provide a quick snapshot of the current state of a particular 
computing infrastructure and/or database, enabling prompt responses to 
situations where an event may have an impact on the performance and 
availability of a certain configuration. We take into account the 
subsequent indicators for reactive scalability: 

• CPU Load (CL): It gauges the actual CPU usage of a group of virtual 
machines that are assigned to a system. For instance, high levels of CL 
can indicate that a system is having trouble addressing a certain set of 
requests. 

Memory Occupancy (MO) is a measurement of how much memory 
a pool of virtual machines given to a system actually uses. For instance, 
high values of MO can indicate that a system is having trouble handling 
situations when applications need to manage large amounts of data. 

• Network Utilization (NU): This metric assesses how well network 
bandwidth is being used. High NU values, for instance, may indicate 

situations where the distribution of data in a database is not ideal, 
necessitating numerous data exchanges (such as for map-reduce 
processes), or they may indicate the need to reallocate resources from 
outside the system to handle a spike in demand. 

• Host Availability (HA): This measure determines how many VMs are 
available and reachable via the network. 

• Response Time (RT): the period of time between the dispatch of a 
request and the client's receipt of the appropriate response. 

• Execution Time (ET): This metric gauges how long it takes for a 
service to respond to a request after receiving it. 

• Request Ratio (RR): This metric compares the proportion of requests 
that are directed at various cloud stack layers. 

Metrics for proactive scalability must also be established. These 
metrics analyze the performance trend and system evolution over a 
predetermined time window with a size of t seconds in order to predict 
and deduce potential demands for extra resources. Preemptive scaling 
minimizes potential service performance degradations and enables long-
term maintenance of a constant performance level. If recurring patterns 
of computing infrastructure/database usage are present, these metrics are 
more useful. For proactive scalability, we take the following metrics into 
account: 

• Request Rate (ReqR): This metric counts how many requests have 
come in within the specified time period. It can be used to recognize a 
specific pattern and subsequently estimate future resource scalability 
needs. 

• Request Faults (RF): This metric evaluates the proportion of requests 
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that were not fulfilled within a given time frame, allowing for the 
detection of systemic issues. 

• Request Type (ReqT): It calculates the frequency of each type of 
request over a specified time period. As an illustration, we can keep track 
of the rate of MongoDB queries per type (such as read, insert, and update) 
and respond appropriately. The measure Value can also be affected by 
the complexity of incoming requests, which can be assessed using the 
service description [10] or professional recommendations. 

• CPU Load Pattern (CLT): It tracks the trend of CPU usage throughout 
the selected time period. It can be used to monitor the system's evolution 
and respond appropriately. 

Similar to CLT, but for memory occupancy, is the Memory Occupancy 
Trend (MOT). 

 

• Network Utilization Trend (NUT): similar to CLT but for network 
usage 

 
The state of the database layer and the computing infrastructure can 

both be assessed using the aforementioned metrics. Additionally, they 
can be combined to provide more in-depth information, such as the 
current CPU Load with a rising or falling trend. 

B) Scalability rules 
 

To track the performance of cloud-based systems and choose the 
best strategy for automated scaling, we created an architecture based on 
the metrics in Section III-A. When specific events are detected that may 
have an impact on the system's performance and availability, our 
monitoring infrastructure will set off one or more scaling rules. These 
rules simulate situations in which a single metric (or a combination of 

them) surpasses predetermined thresholds and causes the execution of 
specified scalability actions. To extract data from the underlying system 
and calculate performance metrics, our monitoring infrastructure I builds 
on specific APIs, in this case those provided by OpenStack and 
MongoDB through JMX, and ii) is based on Cloudify. Scalability rules 
are implemented as Cloudify recipes, which manage the scale out and 
scale down of the application. 

We should point out that scaling up is not an option here because it 
is less successful than a scale out strategy [8]. 

Table I shows a set of rules that, when certain high/low thresholds 
are crossed, initiate scaling actions at the infrastructure and database 
layers by monitoring and evaluating performance metrics. Expert users 
can define thresholds based on prior tests and the domain under 
consideration. Table I lists the metrics to be combined for each rule 
(Formula) and describes the scalability steps (Action). We observe that 
a single metric's value is normalized from 0 to 1 using either the highest 
value it is capable of reaching or the highest value already recorded. 

Details are provided in Table I(a), where metrics are used to assess 
the state of resources that are either assigned to the database layer (poolI) 
or the computing infrastructure layer (poolI) (poolDB). When the system 
encounters a major change in infrastructure performance, or, to put it 
another way, when pertinent formulas assume values above/below the 
high/low thresholds, an infrastructure-level rule is activated. Similar to 
this, when pertinent formulas indicate the requirement for scaling 
database resources, a database- level rule is activated for the database 
layer. Table I(b), instead, presents composite rules that monitor metrics 
referred to both poolI and poolDB. The table's scalability rules can then 
be applied as Cloudify recipes (see for example the excerpt in Figure 1). 
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There is a complexity to take into account when many recipes apply, request more 
resources, and must be processed simultaneously. These recipes may insist on 
various cloud layers. As was mentioned in Section II, there may be situations in 
which all triggered rules are competing for the same set of resources and cannot 
be implemented simultaneously owing to resource and/or financial limits. In this 
case, we suggest augmenting our scalability solution with a priority-based 
strategy that gives each rule a priority. If further rules demanding a scale out 
activity are present, they are applied in accordance with the priority until no more 
resources are available or all rules have been applied. It is significant to highlight 
that Cloudify's monitoring infrastructure must be expanded to handle this situation 
because the existing implementation does not provide the selective execution of 
distinct recipes based on priority. We experimentally evaluated a situation in 
Section IV-D where Rule 1 and Rule 2 are both triggered and require an 
additional VM to be assigned to poolI and poolDB, but there is only one VM 

that is accessible. This analysis was done to demonstrate the possibilities of our 
technique. Our tests demonstrate which option provides the greatest performance 
advantages to establish Rule 1's precedence over Rule 2. 

 
Finally, Figure 1 depicts a Cloudify recipe that implements Rule 1 from Table 

I. CLI is first assessed using script statistics. a CLInfr that calculates the value of 
relevant data after retrieval. If the ratio surpasses the high threshold, the system 
then adds one VM outfitted with a Tomcat instance to poolI (instancesIncrease) 
(0.75). Conversely, if the ratio falls below the low threshold, it removes one 
instance (decreaseInstance) (0.25). Every 20 seconds, CLI is assessed 
(movingTimeRangeInSeconds 

 
 

Table I SCALABILITY RULES 
 

Rule Formula Action 
1 CLI Status of poolI in terms of CLI . High (Low) values suggest to increase 

(decrease) 
poolI . 

2 CLDB Status of poolDB in terms of CLDB. High (Low) values suggest to increase 
(decrease) poolDB 

3 CLI *ET Status of poolI in terms of CL and ET . High values indicate an 
increasing of execution times 
due to critical infrastructure operations, suggesting to increase poolI . 

4 CLDB*ET Status of poolDB in terms of CL and ET . High values indicate an 
increasing of execution times 
due to critical database computation, suggesting to increase poolDB. 

5 HAI /[HAI +(CLI *ReqR)] Status of poolI in terms of no. of available VMs w.r.t. the status of the 
system and the actual request trend. 
Low values indicate that the system needs an increase in resources of poolI . 

6 HADB/[HADB+(CLDB*R 
eqR)] 

Status of poolDB in terms of no. of available VMs w.r.t. the status of the 
system and the actual request trend. 
Low values indicate that the system needs an increase in resources of 
poolDB. 

IV- EXPERIMENTAL EVALUATION 

To test the viability of our strategy, we created the following proof-
of-concept private cloud architecture, focusing solely on reactive scalability. 

First, we studied a case in which the database (Section IV-C) or computational 
infrastructure (Section IV-B) requires greater resources. Then, we looked at a 
variety of the prior scenarios in which the database and computational 
infrastructure both had to scale up and compete for scarce resources (Section 
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IV-D). We made the assumption that data-intensive apps would use separate 
pools of virtual machines for infrastructure and databases. 

A) Experimental setting 
 

Two physical servers were used in a cluster for testing. The first server 
(Server 1) is a Dell Precision T1650 with an Intel Xeon Quad Core 2.6 GHz 
processor, 32 GB of RAM, a 1 TB hard drive spinning at 7200 RPM, and two 
1 Gb/s Ethernet NICs. The second server (Server 2) is an Acer Veriton 
M6620G with an Intel Core- i7 3770 3.40 GHz processor, 16 GB of RAM, a 
1 TB hard drive spinning at 7200 R On two different pools of virtual machines, 
one for the database and the other for the computing infrastructure, the 
components of our reference architecture (see Section II-B) have been 
installed and set up as follows. 

Regarding the computing infrastructure, OpenStack has been set up and 
tested using three virtual machines (VMs): two of the machines house the 
control and network nodes and are deployed on Server 2, while the third 
computer houses the compute node and is installed on Server 1. The compute 
node controls a collection of virtual machines (VMs), each of which has a 
Tomcat instance and 1 vCPU and 1GB of RAM. Regarding the database, we 
considered MongoDB (in a multi-shard configuration) made up of three 
component types (i.e., shard servers, configuration servers, and router servers), 
each of which was installed on a virtual machine (VM) located on Server 1 
and furnished with a single virtual CPU and one gigabyte of RAM. 

These hybrid MongoDB configurations are typical of Ruby-based data-
intensive services and websites. We installed Cloudify and connected its shell 
to OpenStack for IaaS administration to finish our proof-of- concept cloud 
stack. Then, using Cloudify, we made a virtual machine (VM) for managing 
OpenStack and one for every Tomcat server and MongoDB shard. 

Then, we recreated a real-world scenario with multiple clients making 
requests simultaneously (i.e., threads). Using Apache JMeter, an open source 
functional testing solution for services, the demand on the computing 
infrastructure has been generated and supplied to two different web apps, 

deployed on the Tomcat server. The first program is a straightforward hello 
world (hw). Following the Gregory-Leibniz series, the second application (hw) 
expands hw to calculate the value with a precision of 70,000 digits; hw allows 
us to primarily stress the CPU of our physical infrastructure. Using the Yahoo! 
Cloud Serving Benchmark (YCSB)  

(https://github.com/brianfrankcooper/YCSB/wiki/), a framework and a 
set of workloads frequently used for evaluating and benchmarking the 
performance of various NoSQL databases, the load on the database has been 
generated and sent to the MongoDB cluster connected to our applications. In 
each experiment, the average Transactions Per Second were measured (TPS). 

 

B)    Computing infrastructure scaling 
 

We evaluated our strategy under various load fluctuations to determine 
whether performance would increase as the computing infrastructure scaled 
out (i.e., a single VM is added to poolI ). We used the recipe implementing 
Rule 1 (Figure 1) to manage infrastructure scalability when either hw or hw is 
taken into account in order to keep things simple without sacrificing generality. 
Each test case: I took into account 20 active clients (threads) sending requests; 
ii) simulated different loads, varying the request per second (rps) in 500rps, 
1000rps, 1500rps, 2000rps, 2500rps, 3000rps, 3500rps, 4000rps (3500rps and 
4000rps for hw only), and iii) produced a total number of 100,000 requests. 

Figure 2 illustrates the changes in TPS depending on whether hw or hw 
is taken into account. In both cases, we started with a fundamental 
architecture—a single system running Tomcat—and scaled it up to four 
virtual machines. Figure 2(a) demonstrates that when 4 VMs are deployed 
with application hardware, the system can handle a maximum load of 1896 
TPS for 4000rps. With compared to configurations with 1 VM, 2 VMs, and 3 
VMs, respectively, we saw improvements of 39.5%, 28.7%, and 7.1% in this 
case. However, a configuration with 1 or 2 VMs yields the best performance 
for situations with 1500, 2000, and 2500 RPS. 
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.      This is mostly caused by the complexity added by managing several 
VMs and by the properties of hardware that responds after very little 
computation. Figure 2(b) demonstrates that when 4 VMs are deployed with 
application hardware, the system can handle a maximum load of 1650 TPS for 
2000rps. With compared to configurations with 1 VM, 2 VMs, and 3 VMs, 
respectively, we were able to boost performance in this case by 53.6%, 27.2%, 
and 12.2%, respectively, following a similar pattern to the one seen for the 
hardware. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Performance evaluation (TPS) 

A) Database scaling 
 

We examined our strategy under various loads to evaluate 
performance gains as the database layer scales out. We used a single recipe 
(implementing Rule 2 in Table I), which adds a VM to poolDB when a decline 
in performance is noticed, same to infrastructure scaling. Each test case 
generated 100,000 requests while simulating various loads with rps of 50, 100, 
200, and 400. Three scenarios with different database request types were 
examined for each load: 5% read, 95% update; 95% read, 50% update; 
and 50% read, 50% update (RU0595). In each case, we expanded up to 4 
shards from the initial basic MongoDB configuration with 1 shard (i.e., 1 VM) 
(i.e., 4 VMs) [26] .  

Figure 3 depicts the changes in TPS that occur when poolDB scales out 
in situations I through iii). First, we should point out that poolDB can support 
more TPS the more VMs are provided for it. The database was able to handle 

a load of 50 rps in all cases, we then note. Additionally, in scenario I as shown 
in Figure 3(a), the system could handle a load of no more than 90 TPS when 
configured with just two VMs, and this number increased to 131 TPS when 
four VMs were used. In case ii), as depicted in Figure 3, (b), In the 
configuration with two VMs, the system could handle a maximum load of 212 
TPS; this number rose to 399 TPS with four VMs. In this instance, when 400 
rps are put into the database, MongoDB is able to handle all the queries thanks 
to 4 VMs. The outcomes of cases I and ii) demonstrate MongoDB's capacity 
to significantly boost performance when read operations outnumber update 
operations. In scenario iii), where we pressured the DB infrastructure sending 
primarily update queries, this point is made more obvious. MongoDB could 
handle a maximum of 79 TPS with just 2 VMs and 121 TPS with 4 VMs, as 
shown in Figure 3(c). In conclusion, we observed increases of 46% in scenario 
I, 88% in scenario II, and 53% in scenario III when we increased our poolDB 
from 2 VMs to 4 VMs [26] 
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B)   Competitive Scaling 
 

We took into account a situation where poolI and poolDB needed to grow 
out simultaneously but had a finite amount of resources. To do this, the 
following three web applications were deployed: I) the hardware used in earlier 
experiments; II) an extension of the hardware called hw,r that makes it 
possible to send read requests to MongoDB for each request received; and III) 
an extension of the hardware called hw,u that makes it possible to send update 
requests to MongoDB for each request received. 

Then, under various rates of rps generated as follows, we evaluated the 
performance benefits when the extra VM is either assigned to poolI or poolDB. 
A rate rd=•ri of rps is generated and sent to hw,r (95%) and hw,u (5%), given 
a rate ri of rps delivered to hw. In particular, we first altered rd in 100rps 
and 400rps while fixing ri to 1000rps. Then, we varied ri between 1500, 2000, 
and 2500 rps while fixing rd to 200 rps. 

Figure 4 illustrates the rise in TPS that results from adding a single VM 
to poolI or poolDB after choosing the appropriate ri, rd, and corresponding. 
The graph takes into account the combined TPS of the three services and 
exhibits a noticeable performance improvement in both scalability scenarios, 
with a greater improvement when the VM is added to poolI. Particularly, 
the system demonstrated good responsiveness and a consistent upward trend 
as demands on the computing infrastructure rose. Generally speaking, these 
experiments can be utilized to create a best practice strategy for a competitive 
situation with limited resources, allowing scaling in an ideal manner based on 
the environment under consideration (see Section IV-E for more details). 

 

C) Discussion 
 

The first outcome of our tests is one that would seem to be obvious: the 
more resources devoted to a single layer, the better the performance. This 
incremental behavior is noticeable at both the infrastructure and database 
layers, where the best TPS performance is frequently attained by deploying 
4 virtual machines, each of which installs a Tomcat server or a MongoDB 

shard, as appropriate. The database scalability test results also demonstrate 
MongoDB's capacity to perform better when read operations predominate over 
update operations. Operations outnumber updates in terms of importance. 
Additionally, based on the earlier findings, it can be assumed that situations 
in which the infrastructure and database layers both demand on the same 
pool of resources will result in the same performance improvement. Here, we 
suppose that as the design scales out, a single VM will be added to the pool 
of resources, containing the resources of one VM with a Tomcat server and 
one VM with a MongoDB shard. Furthermore, we note that the best 
performance boost is seen when a competitive scaling is involved. higher 
priority should be given to the relevant rules when the VM is added to pool I. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Competitive scaling performance 
 

 
To sum up, we first note that neither our solution's primary goal was to 

increase the architecture's overall performance nor was it designed to offer yet 
another performance assessment in a cloud environment. Instead, we wanted 
to research how scalability affected different cloud stack levels in a 
competitive environment with limited resources. Our findings may therefore 
be viewed as a practice run that will enable the development of a performance 
lookup table that will direct the operations of a probe that implements a 
scalability manager. The probe can then employ an ideal scaling method that 
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takes into account the unique characteristics of each user's environment (e.g., 
application types(. 

This is based on how the user's applications are distributed in relation 
to the request load. The probe can also boost the transparency of the cloud by 
enabling the cloud provider to define precise and efficient scalability 
techniques while also providing a clear picture of how a scalability process is 
controlled by the cloud provider and tailored to the needs of the user. 

 

V. RELATED WORK 

 
Different layers can be established for scalability approaches for 

distributed systems and environments, which often rely on metric-based 
regulations [11], [12] . Traditional methods of scalability and elasticity compare 
the performance of various technologies that provide functionality for each 
cloud layer, taking into account only one cloud layer and one scenario at a 
time [3], [4], [13]. For instance, several strategies have concentrated on the 
scalability of IaaS, PaaS, and SaaS. Salah and Boutaba [15] offer a model for 
evaluating elastic cloud applications by predicting service response time, 
whereas Iosup et al. [14] analyze the performance of cloud computing services 
for scientific computing workloads. Espadas et al[16] .'s strategy based on 
resource allocation for SaaS to establish a cost- effective scalable environment 
offers a systematic measurement for under and over provisioning of cloud 

resources. Other works have analyzed the process of adaptive 
resource expansion and contraction, provided strategies for their 
performance evaluation, and controlled the flexibility of NoSQL 
databases and storage [3, [5], [6], [17], [18]. ]. Copil et al. [19] 
provide a multi-layer solution for the management of elasticity and 
scalability on the cloud, which is very similar to the work in this 
paper. While we focus on the issue of competing requests for 
resources, they define a mechanism for managing conflicting 
elasticity requirements. 

Finally, numerous concerns have been discussed in literature in 
relation to cloud performance optimization. The issue of resource 
and data allocation has been the focus of some methodologies 
[20], [21]. Yi et al[21] 
.'s alternative perspective on the SaaS scalability issue includes a 
heuristic that, given a fixed number of nodes, distributes tenants 
so as to maximize the sum of their numbers. DejaVu is a 
framework presented by Vasic et al. [20] that enhances and 
accelerates resource allocation in virtualized environments and 
can adjust to changing workloads. The capacity of a cloud 
framework to adapt to various circumstances has also been 
intensively studied in the literature, with measurements and 
benchmarks defined [22]–[24]. Additionally, Ali-Eldin et al. [25] 
describe an adaptive controller for cloud infrastructures allowing 
horizontal elasticity that is both proactive and reactive. 

 

VI. CONCLUSIONS 

 
One significant possibility provided by cloud platforms is 

integrated, multi-layer scalability. In this article, we discussed a method for 
automatic scaling in a multi-layer scenario where various cloud stack levels 
compete for resources that are inherently scarce. In particular, the suggested 
solution takes into account scalability at the database and computing 
infrastructure layers and is based on performance indicators and scalability 
criteria. In a data-intensive environment where the database and 
computational infrastructure layers each have a separate pool of virtual 
machines (VMs) and may compete for a finite number of resources, we also 
experimentally examined scalability criteria. 
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