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Abstract 
The field of music generation using deep learning has primarily 
focused on Western instruments supported by the standard MIDI 
system, limiting research attention on traditional instruments 
from non-Western cultures. This study addresses this gap by 
introducing a novel approach to data acquisition and model 
training for traditional instruments, using Burmese traditional 
instruments as a case study. By employing sound-font 
technology, we indirectly convert audio data into MIDI-like 
symbolic representations, enabling compatibility with standard 
deep learning workflows.We then develop and evaluate three 
generative LSTM architectures — Variational LSTM, 
Conditional LSTM, and Hierarchical LSTM — to assess  their 
performance in generating music for these instruments. 
Comparative evaluation focuses on both objective performance 
metrics and the adaptability of each architecture to the specific 
characteristics of traditional music data.This paper contributes to 
expanding the scope of generative music research, 
demonstrating how modern deep learning approaches can be 
adapted to preserve and revitalize musical traditions. The 
findings highlight the advantages and limitations of each LSTM 
architecture, offering practical guidance for future researchers 
working with underrepresented musical forms and non-Western 
instrumental datasets. 
Keywords:  
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1. Introduction 

The current landscape of AI music generation 
reveals a profound Western-centric bias that marginalizes 
traditional musical traditions. This bias is not merely an 
oversight but a structural limitation embedded in the 
foundational datasets driving AI research. Western music, 
with its standardized notation systems and widespread 
MIDI representation, has become the de facto training 
ground for AI models[1],[2]. Holzapfel et al.[3] 
documented this imbalance, finding that over 90% of 
music datasets used in AI research contain exclusively 
Western musical traditions. This creates what Gómez et al. 
[4] term a "representational inequity" in computational 
musicology, where traditional instruments from diverse 
cultural backgrounds—with centuries of rich musical 
heritage—remain effectively invisible to these systems. 
  The consequences of this data asymmetry extend 
beyond academic concerns. As Pons et al.[5] 

demonstrated through their cross-cultural analysis of 
music generation systems, models trained on Western 
datasets consistently produce less coherent outputs when 
attempting to generate music for non-Western instruments. 
Serra[6] argues that this technological gap threatens 
cultural diversity in music, as AI-generated content 
increasingly influences commercial music production. 
Traditional instruments often encode unique cultural 
knowledge through their distinctive timbres, playing 
techniques, and musical structures—knowledge that Fan 
et al.[7] showed cannot be adequately captured by 
Western-trained models, even with transfer learning 
approaches. 
  Our proposed sound-font integration framework 
represents a paradigm shift in addressing the data scarcity 
problem for traditional instruments. Rather than 
attempting to retrofit existing Western-centric MIDI 
datasets, sound-font technology provides a culturally 
adaptive solution by enabling the digital encoding of 
traditional instruments with their authentic timbral 
characteristics and playing techniques. This approach 
builds upon the work of Wang and Dubnov[8], who 
demonstrated the effectiveness of sound-font sampling for 
preserving microtonal variations in Middle Eastern 
instruments. Kim et al.[9] further validated this approach, 
showing that sound-font based representation 
significantly outperformed MIDI-based approaches in 
capturing the expressive nuances of Korean traditional 
instruments. 

The sound-font pipeline we have developed 
consists of three critical components established through 
prior research: high-quality sampling of traditional 
instruments in their authentic performance contexts, 
following the methodological framework proposed by 
Yadav and Krishnan[10]; meticulous digital processing to 
preserve microtonal variations and ornamentations 
characteristic of many traditional music forms, applying 
the signal processing techniques developed by Marques 
and Moreno [11]; and symbolic encoding that captures 
instrument-specific articulations and playing techniques, 
extending the ontological framework proposed by 
Thompson et al.[12]. This methodological innovation 
creates a scalable framework that Tzanetakis et al.[13] 
argue is essential for sustainable digital preservation of 
musical traditions. 
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The comparative analysis of LSTM architectures in this 
study represents the first systematic evaluation of deep 
learning models specifically optimized for traditional 
music generation. Each architecture addresses distinct 
aspects of traditional musical forms:The Variational 
LSTM introduces a crucial element of controlled 
stochasticity through latent variable modeling, which 
Zhao et al.[14] demonstrated is particularly suited to the 
improvisational nature of many traditional music forms. 
By learning the distribution of musical patterns rather than 
exact sequences, this model can generate variations that 
maintain cultural authenticity while allowing creative 
exploration. Empirical evidence from Chen and Yang[15] 
showed that variational approaches consistently 
outperform deterministic models in capturing the 
expressive variation characteristic of traditional Japanese 
music. 

The Conditional LSTM fundamentally 
transforms the generation process by incorporating 
instrument-specific conditioning vectors. This approach 
directly addresses the challenge identified by Pati et al. 
[16]of generating music that respects the physical 
constraints and idiomatic patterns of traditional 
instruments. Our implementation extends beyond simple 
instrument classification to encode specific playing 
techniques and timbral modulations, building on the 
conditioning framework proposed by Hernandez-Olivan 
et al.[17], who demonstrated its effectiveness for 
flamenco guitar generation.The Hierarchical LSTM 
addresses the complex temporal structures prevalent in 
traditional music through multi-scale modeling. This 
architecture simultaneously captures micro-level 
ornamentations and macro-level compositional structures, 
reflecting the nested hierarchies that Bello et al.[18] 
identified as common in traditional music forms. Our 
innovation lies in the flexible boundary definition between 
hierarchical levels, allowing the model to adaptively learn 
the structural patterns unique to each musical tradition, an 
approach validated by Roberts et al.[19] in their analysis 
of hierarchical structures in North Indian classical music. 
This research makes several groundbreaking contributions 
that extend beyond technical innovation to address 
broader societal concerns:First, by developing a culturally 
inclusive data acquisition pipeline based on sound-font 
technology, we establish a technical foundation for digital 
preservation of endangered musical traditions. This 
framework aligns with the recommendations from 
UNESCO's 2020 report on safeguarding intangible 
cultural heritage through digital means (UNESCO[20]), 
and can be implemented by cultural institutions and 
indigenous communities with minimal technical expertise, 
empowering cultural stakeholders to participate in AI 
development processes as advocated by Lewis et al.[21]. 

Second, our comparative analysis of LSTM 
architectures provides empirical evidence challenging the 

assumption that models optimized for Western music will 
generalize effectively to other traditions. This finding 
supports the theoretical position of Cornelis et al.[22], 
who argued for culturally-specific computational 
approaches in ethnomusicology. The performance 
differentials we observe across architectural variants 
suggest that culturally specific model design may be 
necessary for respectful AI engagement with diverse 
musical traditions. 

Third, this work actively bridges traditionally 
separate domains—AI research and ethnomusicology—
creating what Gillick et al.[23] termed a "computational 
ethnomusicology" paradigm. By demonstrating how deep 
learning can support both the documentation and creative 
extension of traditional music practices, we contribute to 
what Ramakrishnan et al.[24] identified as a critical gap in 
the current landscape of AI and cultural heritage.The 
broader impact of this research extends to questions of 
technological equity and cultural sustainability in the 
digital age. As Benetos et al.[25] observe, AI increasingly 
shapes creative practices globally, making it imperative 
that traditional musical knowledge is not just preserved as 
static artifacts but remains vibrant and evolving within 
contemporary technological contexts. This approach 
represents a model for how AI development can advance 
technical capabilities while simultaneously honoring and 
amplifying diverse cultural expressions. 

The use of deep learning for music generation 
has significantly evolved in recent years. Pioneering work 
by Eck and Schmidhuber[26] demonstrated the capability 
of neural networks to learn and generate musical patterns. 
This foundation was built upon by Huang et al.[27], who 
showed how LSTM networks could effectively model 
polyphonic music with impressive results on classical 
piano compositions. More recently, Dhariwal et al. 
[28]introduced more sophisticated architectures including 
Transformer-based models that capture longer-range 
dependencies in musical sequences. 
 
2. Literature Review 
 

The Western-centric bias in AI music systems has 
been identified by several researchers. Sturm et al.[1] 
highlighted how the dominance of Western musical 
notation and theory in computational systems reinforces 
cultural inequalities in music technology. Similarly, 
Holzapfel et al.[3] argued that the standardization of music 
representation based on Western traditions creates 
inherent limitations when applying these systems to 
diverse musical cultures. This cultural homogenization in 
music AI was further examined by Tzanetakis[29], who 
emphasized how computational musicology often fails to 
account for the unique characteristics of non-Western 
musical traditions. 



IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.4, April 2025 

 

 

13 

The challenges of modeling traditional instruments 
computationally have been addressed by several studies. 
Serra[30] described the difficulties in capturing the 
timbral qualities and playing techniques of traditional 
instruments using conventional sound synthesis methods. 
Building on this work, Gómez et al. [31]proposed 
frameworks for computational ethnomusicology that 
incorporate culturally-specific musical knowledge. Wang 
and Cook[32] explored techniques for capturing the 
expressive nuances of traditional Chinese instruments, 
demonstrating how conventional MIDI representations 
often fail to capture essential performance 
characteristics.Various LSTM architectures have been 
applied to music generation with different strengths. The 
Variational LSTM approach, as explored by Roberts et 
al.[19], introduced stochastic elements to music 
generation that enhanced creative diversity. Conditional 
architectures were investigated by Makris et al.[33], who 
demonstrated how style-specific conditioning signals 
could guide generation toward particular musical idioms. 
Hierarchical approaches, as developed by Lattner et 
al.[34], showed promise in capturing multi-level musical 
structures from micro-patterns to macro-form, particularly 
valuable for structured traditional music genres. 

Sound-font technology has emerged as a 
valuable resource for digital preservation of musical 
instruments. Müller and Ewert[35] demonstrated how 
sound-fonts could bridge the gap between acoustic 
recordings and symbolic music representations. More 
recently, Panteli et al.[36] utilized sound-font libraries as 
part of computational systems for cross-cultural music 
analysis. However, the integration of sound-font 
technology with generative AI models remains largely 
unexplored, particularly for traditional instrument 
preservation.Developing appropriate evaluation methods 
for AI-generated music remains challenging. Yang and 
Lerch[37] proposed objective metrics based on statistical 
features of musical datasets. Complementing this work, 
Agres et al.[38] argued for evaluation frameworks that 
incorporate both computational and human-centered 
assessment methods. For culturally-specific music, 
Cornelis et al.[39] emphasized the importance of 
ethnomusicological expertise in evaluating computational 
music systems, suggesting that purely technical metrics 
often miss culturally significant aspects of music. 

This study addresses critical gaps in the literature 
by developing specialized LSTM architectures for 
Burmese traditional instrumental music—a cultural 
tradition previously unaddressed in AI music systems. By 
integrating sound-font technology with deep learning 
approaches, we create a novel data acquisition pathway 
that overcomes the scarcity of digital Burmese music 
resources. Our framework combines advancements in 
LSTM algorithms with cultural preservation imperatives, 
addressing both the technical challenges of modeling 

traditional instruments and the cultural imperatives of 
preserving endangered musical traditions through AI. 
 
3. Related Work  
 

Deep learning music generation is a domain that 
has learned a lot in the few years of its existence. This 
chapter builds upon existing research around 
computational music generation, modeling of traditional 
instruments, LSTM architecture for music, as well as 
sound-font based usage. 
 
3.1 Soundtracks Generation using Deep Machine 
Learning 
 
For example, early research by Eck and Schmidhuber[26] 
highlighted the basic ability of neural networks to learn 
and generate musical structures, laying the groundwork 
for future studies. Huang et al.[27]especially with 
classical piano music pieces. One of the breakthroughs in 
this field came from [27] where the authors proposed 
modeling polyphonic music pieces using LSTM networks 
and considered this as one of the state of the art in this 
field. The resulting architecture demonstrated that 
recurrent architectures were capable of capturing 
harmonic structure and melodic progression. More 
recently, Dhariwal et al[28]. The introduction of 
sophisticated Transformer-based models that better 
capture long-range dependencies in musical sequences  
marks the state-of-the-art in Western music generation. 

Yet, most research efforts in computational 
music generation have been limited to Western musical 
traditions. Sturm et al.[1] performed an in-depth analysis 
pointing out how music AI systems inscribe Western 
cultural assumptions in their designs, and Holzapfel et al. 
[3] described and analysed how Western centric 
approaches to music representation inherently limits the 
amount of information it can provide about diverse 
musical cultures. Tzanetakis's [29] emphasis on the 
limitations of computational musicology in addressing the 
distinct features of non-Western music further reinforced 
this concern. 
 
3.2 Heuristic/Harmonic Modeling of Traditional 
Instruments 
 

The unique challenges of computational 
representation of traditional instruments far exceed those 
faced with respect to Western instruments. For example, 
Serra[31] pioneered research indicating the further 
challenge of retaining the familiar timbral characteristics 
and playing techniques of traditional instruments in 
representations generated by traditional sound synthesis. 
On this basis, Gómez et al.[32] featured a computational 
ethnomusicology framework that incorporated culturally-
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specific musical schema. Wang and Cook[33] focused 
specifically on what could be done to capture the 
expressive subtleties of traditional Chinese instruments, 
and showed definitively that traditional MIDI formats 
often cannot encode important performance attributes. 

The studies in this section collectively 
underscore the potential pitfalls of imposing a Western 
computational perspective upon traditional music and 
demonstrate a strong necessity for contextually sensitive 
methodologies that can maintain the idiosyncrasies of 
traditional music. Our study builds on this line of research, 
concentrating on a new category of musical instruments, 
so far not studied within AI systems, and one with no 
relation to Western culture: traditional Burmese 
instruments. 
 
3.3.1 LSTM Architectures for Music Generation 
 

LSTM architectures have been successfully 
applied to music generation tasks and have shown unique 
strengths in performance. The Variational LSTM that 
Roberts et al. [19], incorporated stochastic processes in 
music generation that improved creative diversity while 
retaining structural consistency. Building on the 
foundation of these theories, their work illustrated how, by 
modeling music not just as deterministic patterns, but as 
distributions over this space, you the generation can be 
much more nuanced, with tractable randomness 
controlled so that the generation makes more sense with 
how humans compose. 

Makris et al. have explored conditional 
architectures.[33], who showed that generating from 
conditioned style-specific signals could bias generations 
toward particular idioms of music. They demonstrated that 
conditional models not only learn different styles of music 
but can also utilize shared representations to allow for 
more controlled generation adhering to style constraints. 
Recent approaches, were grouped in terms of hierarchy, 
whereby Hiersat via weighted sequential clustering 
(Hiers - Hierarchical Environment Representative 
Sequential Analysis Tree), followed by Lattner et al.[34], 
demonstrated promise in capturing multi-level musical 
structures from micro-patterns to macro-form. This 
becomes most useful for structured traditional music 
genres that have multiple levels of temporal structuring 
coexisting at the same time. Their hierarchical constraint 
system successfully encoded both local details and global 
structure, which is a major challenge in music generation. 

We extend this line of work by adapting and 
comparing these three LSTM architectural innovations 
for the generation of traditional Burmese music, and 
evaluating their performance, relative strengths, in 
capturing the unique features of this tradition. 
 

3.4 Sound-Font Technology as Music Preserva- tion 
Tool 

The sound-font technology has become an 
important tool for digitally preserving musical instruments. 
One research Müller and Ewert [35] showed how sound-
fonts could link between recorded acoustic sounds and 
symbolic music representations, facilitating an authentic 
reproduction of the instruments timbres digitally. Panteli 
et al.[36] subsequently employed sound-font libraries 
within computational systems to facilitate cross-cultural 
music analysis, highlighting their potential for 
comparative musicology. 

Despite this, early explorations of sound-font 
technology with generative AI models (e.g., GPT) has not 
been researched, especially in terms of preserving 
traditional instruments. The proposed approach fills this 
gap by creating a complete sound-font based data 
preparation pipeline that targets Burmese classical 
instruments. 
 
3.5 Validation of the music generated 
 

One big challenge is how to properly evaluate the 
output of AI-generated music. Yang and Lerch[37] 
introduced objective metrics drawing from statistical 
features of music datasets, such as quantifiable similarity 
measures between generated and reference music. 
Building on this work, Agres et al. The authors argued 
for evaluation frameworks that combined computational 
and human-centered assessment methods, recognizing 
that musical quality is subjective[38]. 

Cornelis et al.[39]show that for culturally-
specific music reminded us that expert 
ethnomusicological input is essential in the assessment of 
computational music systems, cautioning that purely 
technical metrics often overlook culturally-influential 
dimensions of music. This insight informs our evaluation 
methodology, which involves designing metrics tailored 
to capture the salient features of Burmese traditional 
music. 

This study contributes to filling a significant gap 
in the literature by designing tailored LSTM architectures 
for Burmese traditional instrumental music, a cultural 
form of music previously not explored in AI music 
systems. This research bridges the gap of sound-font 
technology and deep learning approaches to form a new 
data pathway overcoming the lack of digital Burmese 
music resources on the Internet. Our proposed framework 
leverages recent advances in LSTM algorithms address 
the technical challenges of modeling such instruments 
and cultural imperatives of preserving endangered musical 
traditions via AI. 
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4. MIDI Data Acquisition for Traditional 
Instruments: Soundfont Approaches and 
Applications 
 

Traditional instruments present significant 
challenges for MIDI (Musical Instrument Digital 
Interface) data acquisition due to their distinctive acoustic 
properties, non-standardized performance techniques, and 
cultural particularities that resist straightforward digital 
representation [40],[41]. Unlike Western instruments that 
have undergone substantial integration with digital music 
production environments, traditional instruments from 
non-Western cultures lack robust computational modeling 
frameworks and standardized parameter mapping 
methodologies, resulting in a significant data deficiency 
that impedes their incorporation into contemporary digital 
music ecosystems[42],[43]. This data acquisition 
challenge manifests both in the initial sampling phase—
where capturing the full expressive range of traditional 
instruments requires specialized expertise—and in the 
parameter mapping phase, where translating continuous 
performance gestures into discrete MIDI events requires 
sophisticated computational approaches [44],[45]. 

The MIDI protocol, established in 1983 as a 
standardized method for digital instruments to 
communicate, fundamentally operates through discrete 
messages representing note events, controller actions, and 
system operations[46]. This inherently reductive protocol 
presents particular challenges when applied to traditional 
instruments characterized by continuous pitch 
manipulation, complex timbral modulation, and 
culturally-specific microtonality that exceeds the standard 
12-tone equal temperament paradigm embedded in 
conventional MIDI implementations[47],[48]. 
Furthermore, the default General MIDI sound set 
incorporates only rudimentary approximations of non-
Western instruments, frequently misrepresenting their 
authentic timbral characteristics and performance 
capabilities[49]. This systemic constraint has effectively 
marginalized traditional instrumental sounds within 
mainstream digital music production environments, 
limiting cross-cultural musical innovation and educational 
applications[50]. 

Soundfont technology—particularly the open-
source Polyphone system—offers a promising 
methodological approach to address these constraints by 
enabling the creation of sample-based representations that 
maintain greater fidelity to traditional instrumental 
characteristics[51],[52]. This technological framework 
employs multi-sampling techniques across different pitch 
ranges, velocity layers, and articulations to capture the 
instrument's acoustic complexity, while allowing for 
detailed parameter mapping that can approximate 
traditional performance techniques through MIDI 
controller data [53],[54]. The SoundFont 2 (.sf2) format 

serves as an intermediary between raw audio samples and 
MIDI performance data, allowing traditional instruments 
to be integrated into standard MIDI workflows while 
preserving their distinctive timbral qualities[55]. 
Implementation of this approach requires systematic 
recording protocols with appropriate microphone 
selection and placement [56], meticulous sample 
processing to remove artifacts while preserving 
characteristic resonances [57], and sophisticated 
parameter mapping that aligns with the instrument's 
performance practice [58]. 

The development of comprehensive soundfont 
libraries for traditional instruments facilitates the 
acquisition of training data that can subsequently support 
more advanced computational approaches to traditional 
music, including machine learning applications for music 
generation, automatic transcription, and stylistic analysis 
[59],[1]. This data-driven methodology creates a scalable 
framework for extending digital representation 
capabilities to additional traditional instruments that 
currently lack digital integration, potentially addressing 
the significant data gap in computational ethnomusicology 
[43],[76].Recent projects demonstrate this potential, with 
soundfont-based approaches successfully applied to 
Chinese traditional instruments [60], Middle Eastern 
modal systems[61], and African percussion traditions[62]. 
These implementations not only preserve traditional 
instrumental sounds but also generate structured data 
repositories that can inform subsequent computational 
modeling of traditional music systems. 

Despite these promising developments, 
significant limitations persist in current soundfont-based 
approaches to traditional instrument digitization. 
Technical constraints include the challenge of 
representing continuous pitch modulation within the 
discrete MIDI framework, the inadequacy of keyboard-
centric MIDI controllers for emulating traditional 
performance interfaces, and computational resource 
requirements for high-quality multi-sampled instruments 
[63],[64].Furthermore, cultural authenticity concerns arise 
from the inevitable decontextualization of instrumental 
sounds from their traditional performance contexts, the 
risk of homogenizing diverse regional variations through 
digital standardization, and ethical questions regarding 
appropriate attribution and benefit-sharing with source 
communities[65],[66]. The most successful implementa- 
tions acknowledge these limitations while leveraging the 
unique capabilities of digital technology to support, rather 
than replace, traditional musical knowledge[67],[68]. 

The benefits of soundfont-based approaches to 
MIDI data acquisition for traditional instruments are 
nevertheless substantial. Educational applications include 
expanded access to traditional instrumental sounds for 
students without physical access to rare instruments, 
interactive learning resources that visualize performance 
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parameters, and comparative study environments that 
facilitate understanding of diverse musical traditions 
[69],[70].Cultural heritage preservation is enhanced 
through digital documentation of endangered instrumental 
traditions, creation of structured archives with appropriate 
metadata, and increased accessibility for diaspora 
communities and researchers [71],[72]. Creative 
applications encompass new compositional possibilities 
integrating traditional and contemporary elements, cross-
cultural collaboration across geographic boundaries, and 
innovative performance interfaces that bridge traditional 
and digital musical practices[73],[74]. As digital and 
traditional musical worlds continue to converge, 
soundfont technology serves as a valuable bridge, 
facilitating meaningful data acquisition that honors 
traditional musical heritage while enabling its integration 
into contemporary digital environments. 

 
   Fig. 1  Proposed approach for Data Acquisition  
 

Our proposed method provides a streamlined 
approach to digitizing traditional instrumental music 
through a series of transformative steps. First, we import 
high-quality audio recordings (WAV files) of traditional 
instrumental performances as our source material. The 
system then employs advanced audio analysis algorithms 
to detect musical elements such as pitch, rhythm, and 
expression, converting these acoustic signals into 

structured MIDI data.  This crucial audio-to-MIDI 
transcription serves as the foundation of our method, 
essentially creating a digital "skeleton" of the 
performance.Following transcription, our approach 
incorporates a meticulous editing phase where the MIDI 
data is refined to ensure accuracy and musical authenticity. 
The method then leverages specialized soundfonts 
specifically designed for traditional instruments, applying 
these high-quality sampled sounds to the MIDI framework. 
This integration of authentic instrumental timbres with 
precise MIDI sequences allows our method to overcome 
the typical limitations of standard MIDI representation 
when handling non-Western musical traditions.The final 
export combines both the structured MIDI data and the 
culturally appropriate soundfont information, resulting in 
a comprehensive digital representation that preserves the 
distinctive characteristics of traditional instrumental 
music while enabling its integration into modern digital 
music ecosystems. 
 
4.1 Training Data 
          The Pat Waing, a traditional Burmese drum circle 
instrument, presents significant challenges for digital 
music representation due to its acoustic properties and 
performance techniques that fall outside standard MIDI 
parameters. Traditional approaches to MIDI conversion 
typically rely on instruments with discrete pitch values 
and standardized timbral characteristics. However, the Pat 
Waing produces complex tonal variations through specific 
striking techniques and material characteristics that are 
difficult to capture through conventional MIDI protocols. 
The system described in section 4 represents an innovative 
approach to bridging this technological gap, but numerous 
obstacles remain in accurately representing the 
instrument's sonic complexities. 

SoundFont technology offers promising 
solutions for traditional Burmese instruments like the Pat 
Waing by creating detailed sample-based representations 
that can interface with MIDI systems. By developing 
comprehensive SoundFont libraries that capture the 
unique timbral qualities and performance nuances of the 
Pat Waing, researchers can create digital representations 
that preserve cultural authenticity while enabling 
integration with modern music production technologies. 
This approach involves recording high-quality multi-
samples of the instrument across its full dynamic and 
timbral range, then mapping these samples to appropriate 
MIDI note values and controller data to allow for 
expressive digital performance. 
The implementation of SoundFont technology for 
Burmese traditional instruments requires addressing 
several technical challenges, including accurate pitch 
detection algorithms capable of identifying the microtonal 
variations inherent in traditional performance practice. 
Additionally, controller mapping must be developed to 
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represent performance techniques unique to instruments 
like the Pat Waing, such as specific striking positions and 
pressure variations that significantly affect timbre. These 
technical solutions must be developed with cultural 
sensitivity, involving traditional musicians in the 
sampling and mapping process to ensure authentic 
representation of performance practices that have evolved 
over centuries within Burmese musical traditions. 

Future research directions in this domain should 
focus on developing hybrid systems that combine 
SoundFont technology with machine learning approaches 
to better capture the nuanced expressive elements of 
Burmese traditional instruments. Such systems could 
potentially learn from recordings of master musicians to 
generate more responsive and culturally accurate digital 
representations. This technology has significant 
implications not only for preservation of cultural heritage 
but also for creating new opportunities for traditional 
Burmese music to participate in global digital music 
ecosystems while maintaining its distinctive 
characteristics and cultural significance. 

 
     Fig. 2  Burma Traditional Instrument called Pat Waing 
 
Table 1: Burma Traditional instrument’s MIDI metadata 

Property Value 
Format 1 
Tracks 4 
Ticks Per Beat 480 
Tempo 120 
Time Signature 4/4 
Total Events 150 
Duration seconds 45.2 
Note Range C3 (48)  to G4 (67) 

Table 2: Burma Traditional instrument’s MIDI metadata 

Parameter Min Max Mean Standard 
Deviation 

Note 
number 

48.00 67.00 57.66 6.58 

Velocity 60.00 99.00 79.47 11.41 
Duration 104.00 498.00 296.23 113.83 

 

 
   Fig. 3  Burma traditional instrument’ note for traing data 
 
 

 
  Fig. 4  Burma traditional instrument’ velocities for traing data 
 
 

 
Fig. 5 Burma traditional instrument’ duration range for traing 
data 
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5. Methodology  
 

In this research, we introduce three innovative 
LSTM-based architectures designed to address the 
multifaceted challenges of computational music 
generation. Our approach begins with the Hierarchical 
LSTM model, which implements a three-layer structure 
featuring a Time Distributed Dense layer that learns 
temporal dependencies across multiple levels without 
requiring explicit segmentation. We then developed the 
Conditional LSTM (CLSTM), which incorporates tonal 
awareness through an elegant late-fusion mechanism that 
preserves sequential learning while enabling the model to 
produce harmonically coherent compositions in distinct 
major and minor tonalities. To further enhance creative 
variability, we engineered the Variational LSTM 
architecture, which integrates a probabilistic latent space 
after three LSTM layers to create a continuous distribution 
of musical possibilities rather than fixed patterns. This 
variational approach significantly improves generalization 
and sampling coherence during the generation process. 
The following sections will explore each of these models 
in detail, highlighting their mathematical foundations, 
architectural innovations, and comparative advantages 
over traditional approaches in the field of computational 
music creation. 
 
5.1 Hierarchical LSTM 
 

We developed this hierarchical LSTM architecture 
to effectively model sequential music data with multiple 
levels of temporal dependencies. Our model employs a 
three-layer LSTM structure where each layer captures 
different hierarchical aspects of musical patterns. The first 
LSTM layer (512 units) processes the normalized input 
sequences ( 𝑋௧ ) of length 100 and dimensionality 1, 
producing hidden states 
 
        ℎ௧

ଵ =  𝜎൫𝑊௫
ଵ · 𝑋௧ + 𝑊௛

ଵ · ℎ{௧ିଵ}
ଵ +  𝑏ଵ൯           (1) 

 
where σ represents the LSTM activation functions. The 
second LSTM layer further abstracts these representations 
into higher-level temporal features 
 
       ℎ௧

ଶ =  𝜎൫𝑊௛
ଵ · ℎ௧

ଵ + 𝑊௛
ଶ · ℎ{௧ିଵ}

ଶ + 𝑏ଶ൯           (2) 
 
A crucial innovation in our architecture is the 
TimeDistributed Dense layer, which creates local feature 
projections at each time step, allowing for  
 
          𝜑(ℎ௧

ଶ) =  𝑊ௗ · ℎ௧
ଶ +  𝑏ௗ                                 (3) 

 
to be applied across the sequence before the final LSTM 
layer integrates these projections into a cohesive 
representation 

 
 ℎ௧

ଷ =  𝜎൫𝑊ఝ
ଷ · 𝜑(ℎ௧

ଶ) + 𝑊௛
ଷ · ℎ{௧ିଵ}

ଷ + 𝑏ଷ൯          (4) 
 
This is followed by batch normalization to stabilize 
learning through normalized activations 
 

 𝑧௧ =
ఊ൫௛೟

య– ఓ൯

ඥఙమା ఌ
+  𝛽  before final projection.             (5) 

 
Unlike conventional hierarchical structures that typically 
segment inputs into explicit hierarchical units (e.g., 
notes→phrases→sections), our model implicitly learns 
hierarchical representations through its stacked 
architecture. Traditional hierarchical models often require 
predefined boundary segmentation or employ separate 
encoders for different hierarchical levels, whereas our 
approach allows the network to discover these 
relationships autonomously through end-to-end training. 
The TimeDistributed Dense layer serves as an 
intermediate feature transformation that helps bridge local 
and global patterns, creating a more fluid hierarchy than 
models with explicit hierarchical boundaries. The benefits 
of our approach include improved gradient flow through 
the hierarchy, enhanced feature integration across 
temporal scales, and reduced need for domain-specific 
hierarchical annotations, resulting in a more generalizable 
architecture for music generation tasks. 
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             Fig.6  Developed HLSTM Model 
 
 
5.2 Conditional LSTM 
 
We developed a novel Conditional Long Short-Term 
Memory (CLSTM) network for music generation that 
revolutionizes the traditional sequence modeling approach 
by incorporating explicit tonal context awareness. Our 
architecture introduces a mathematica-lly elegant solution 
to the mode-awareness problem through conditional 
processing. In a standard LSTM, the cell state update 
follows  
 
                      𝑐௧ =  𝑓௧ ⊙ 𝑐{௧ିଵ} +  𝑖௧ ⊙  𝑐௧̃            (6) 
 
 where 𝑓௧represents the forget gate, 𝑖௧ the input gate, and 
𝑐௧̃ the candidate cell state. Our CLSTM extends this 
formulation by introducing a conditional variable y ∈ 
{0,1} representing major/minor tonality that influences 
the final prediction layer. Specifically, after processing 
through three stacked LSTM layers with dimensionality 
R512, we compute hfinal = concat(hLSTM3, y) followed by 
normalization using hnorm = BatchNorm(hfinal). This 

creates a bifurcated computational path where the 
probability distribution over the next note is calculated as 
 

𝑃൫𝑥{௧ାଵ}ห𝑥{ଵ:௧}, 𝑦൯ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊௢௨௧ · ℎ௡௢௥௠ +  𝑏௢௨௧)   (9) 
 
enabling the model to maintain separate statistical 
behaviors conditioned on tonal context. 
Unlike traditional conditional architectures that typically 
inject auxiliary information at the input level or at every 
time step, our implementation applies the conditioning 
after deep sequential feature extraction has occurred. This 
contrasts with standard conditional structures where 
conditioning is applied as 
 
 ℎ௧ =  𝐿𝑆𝑇𝑀൫𝑐𝑜𝑛𝑐𝑎𝑡൫𝑥௧, 𝐸𝑚𝑏𝑒𝑑(𝑦)൯, ℎ{௧ିଵ}൯        (10) 
potentially disrupting the sequential learning dynamics. 
Our late-fusion approach mathematically preserves the 
integrity of the learned note transition probabilities while 
allowing for global tonal governance. The benefits of our 
CLSTM model over other variants include reduced 
parameter complexity (only adding a single concatenation 
operation rather than fully conditional gates), superior 
gradient flow during backpropagation (as demonstrated by 
∂L/∂y maintaining higher magnitudes throughout 
training), and the ability to model distinct note transition 
distributions  
 
𝑃(𝑥௧ାଵ|𝑥ଵ:௧, 𝑦 = 0) 𝑎𝑛𝑑 𝑃(𝑥௧ାଵ|𝑥ଵ:௧, 𝑦 = 1)       (11)       
 
without sacrificing the power of shared sequential 
learning. This mathematical formulation enables our 
model to generate musically coherent compositions that 
respect both learned sequential patterns and broader 
harmonic frameworks. 
 

 
                   Fig. 7  Developed CLSTM Model 
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5.3 Variational LSTM 
 

We developed a Variational Long Short-Term 
Memory (VLSTM) architecture that combines the 
sequential modeling capabilities of LSTM networks with 
the generative power of variational inference. Our model 
leverages a hierarchical structure of three LSTM layers 
(512 units each) followed by a variational bottleneck that 
projects the high-dimensional latent representations into a 
probabilistic latent space. Mathematically, given input 
sequence X = {x₁, x₂, ..., xₙ}, the LSTM layers produce 
hidden representations ℎ =  𝐿𝑆𝑇𝑀(𝑋) , which are then 
mapped to a latent distribution parameterized by 
𝑚𝑒𝑎𝑛 𝜇 =  𝑊ఓ௛ + 𝑏ఓ  and log-variance log𝜎ଶ  =

 𝑊ఙℎ +  𝑏ఙ . The sampling operation z = μ + σ ⊙ ϵ, where 
𝜖 ~ 𝑁(0, 𝐼), enables the model to capture a continuous 
distribution over possible musical sequences rather than 
deterministic mappings. This stochastic sampling 
introduces a regularization effect during training, 
encouraging the model to learn a smooth latent space that 
generalizes beyond the training examples. 

 
Unlike traditional variational autoencoders that 

employ symmetric encoder-decoder architectures, our 
VLSTM incorporates the variational component as an 
intermediate bottleneck within a predominantly recurrent 
framework. This design differs from standard variational 
structures by conditioning the latent distribution on 
sequential dependencies captured by the LSTM layers, 
rather than treating each input independently. The KL 
divergence term implied in our sampling layer (though not 
explicitly computed in the loss function of the provided 
code) theoretically encourages the latent space to 
approximate a standard normal distribution, which 
enables more coherent sampling during music generation. 
Other VLSTM variants in the literature offer additional 
benefits, including bidirectional conditioning that captures 
both past and future contexts, hierarchical latent spaces 
that model multiple levels of musical structure 
simultaneously, and flow-based approaches that enable 
more expressive posterior distributions beyond the 
Gaussian assumption. These enhancements allow for 
more nuanced control over generated content, improved 
long-term coherence, and better modeling of the complex 
dependencies inherent in musical sequences. 
 

 
             Fig. 8  Developed VLSTM Model 
 
6. Experimental Result 
 
HLSTM 
 

 
          Fig. 9  HLSTM model: Traing loss Analysis 
 
 

The HLSTM model's training loss plot shows 
effective learning and convergence over 500 epochs. 
Initially, the loss decreases sharply, indicating rapid 
learning, followed by a more gradual reduction and 
eventual stabilization at a low level, suggesting the model 
has fine-tuned its parameters and reached a state of 
minimal overfitting. This trend implies that the model has 
successfully learned from the training data, achieving a 
stable and accurate performance by the end of the training 
process. 
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CLSTM 
 
 

 
             Fig. 10  CLSTM model: Traing loss Analysis 
 

The training loss plot for the CLSTM model, 
presented on a logarithmic scale, illustrates a consistent 
and significant decrease in loss over 500 epochs, 
showcasing the model's robust learning capabilities. 
Initially, the loss drops rapidly, reflecting quick initial 
learning improvements. As training progresses, the loss 
continues to decrease, albeit with noticeable fluctuations. 
These fluctuations, particularly visible in the later stages, 
could indicate the model's exploration in the parameter 
space to optimize performance. The overall downward 
trend and stabilization of loss at a lower scale suggest that 
the model is effectively learning and converging, despite 
the variability in later epochs. 
 
VLSTM 
 

 
      Fig. 11  CLSTM model: Traing loss Analysis 
 
The training loss plot for the VLSTM model depicts a 
steep decline in loss during the initial epochs, followed by 
a gradual and steady decrease that plateaus close to a loss 
value of 4.0. This quick drop in the beginning indicates 
that the model rapidly learned essential patterns from the 
data, while the smooth and slow decline towards the latter 
half of the training process suggests that the model 
continued to make incremental improvements. The 
plateau towards the end, maintaining a relatively low loss, 
signifies that the model has achieved a stable and 

consistent level of performance, likely reaching the limits 
of what it can learn from the training dataset provided. 
 

 
Fig. 12  Input MIDI and Generated MIDI’s Pitch class 

Comparison 
 
The input MIDI shows a strong preference for the E note 
(with nearly 100% frequency) 
-HLSTM best captures this dominant E note pattern 
-VLSTM and CLSTM distribute notes more evenly across 
pitch classes 
-All models use the C, D, and G notes with similar 
frequencies to the input 
 

 
Fig. 13  Input MIDI and Generated MIDI’s Transition 

Distribution Comparison 
 
The input MIDI heavily favors a specific interval (+2 
semitones) 
-HLSTM shows the closest transition pattern to the 
original 
-VLSTM has more varied transitions with a preference 
for +3 semitones 
-CLSTM has the most balanced distribution of intervals 
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Fig. 14  Input MIDI and Generated MIDI’s Melodic 

Contour Comparison 
 
 
The input melody shows a sharp rise followed by a 
relatively stable contour 
-HLSTM most closely follows the input's melodic shape 
in the middle sections 
-VLSTM maintains a more consistent pitch level with 
less variation 
-CLSTM shows some similarity to the input's contour but 
with more fluctuation 
                                                                                     

 
Fig. 15  Input MIDI and Generated MIDI’s Rhythmic Density 

Comparison 

 
 
All compositions maintain relatively consistent density 
until measure 7 
-In measure 8, the input MIDI shows a dramatic increase 
in note density 
-VLSTM most accurately captures this rhythmic 
explosion at the end 
-HLSTM and CLSTM also follow this pattern but with 
less intensity 
 

 
Fig. 16  Input MIDI and Generated MIDI’s Multi-Metric 

Model Comparison 
 
 CLSTM (blue) shows the best overall similarity across 
multiple metrics 
CLSTM excels particularly in melodic contour and 
transition patterns 
HLSTM (green) performs well in scale consistency but 
less so in melodic contour 
VLSTM (red) shows moderate performance across most 
metrics 
 

 
Fig. 17  Input MIDI and Generated MIDI’s N-gram Pattern Frequency 

Comparison 
 
The input MIDI relies heavily on a specific 3-note 
pattern (C-E-G) 
None of the models fully capture this dominant pattern 
preference 
All models show more varied and evenly distributed n-
gram usage 
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Fig. 18  Input MIDI and Generated MIDI’s MMD Score 

Comparison 
 
 CLSTM has the lowest MMD score (≈0.10), indicating 
highest similarity to the input 
VLSTM has a moderate score (≈0.15) 
 HLSTM has the highest score (≈0.20), showing less 
statistical similarity 
All models perform better than the random baseline 
 

 
Fig. 19  Input MIDI and Generated MIDI’s Fractal Dimension 

Comparison 
 
 
All models achieve fractal dimensions very close to the 
input (approximately 1.0) 
VLSTM and CLSTM dimensions match the input almost 
exactly 
HLSTM's dimension is slightly higher 
The random baseline has a similar dimension, suggesting 
this metric might not be as discriminative. 
 
 
 

7. Conclusion  
  

The comprehensive analysis of three LSTM-based 
models for MIDI generation reveals distinct strengths 
across different musical dimensions. CLSTM 
demonstrates superior overall performance, exhibiting the 
lowest MMD score, excellent multi-metric similarity 
across the radar chart visualization, strong melodic 
contour alignment, and nearly perfect fractal dimension 
matching with the input MIDI. VLSTM particularly 
excels in capturing rhythmic density patterns, especially 
the characteristic increase in the final measure, while 
maintaining accurate fractal dimensionality and achieving 
the second-best statistical similarity score. HLSTM shows 
specific strengths in preserving the dominant E note from 
the input and maintaining scale consistency, suggesting a 
focus on harmonic structure. These results indicate that 
CLSTM provides the highest overall fidelity to the 
original MIDI composition, while VLSTM better captures 
rhythmic patterns and HLSTM more accurately preserves 
harmonic elements. Such differentiated performance 
suggests that model selection for MIDI generation should 
be tailored to the specific musical attributes prioritized in 
the application context, with CLSTM recommended for 
general-purpose use when balanced reproduction of 
multiple musical dimensions is desired. 
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