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Abstract 
Predicting the Mechanism of Action (MoA) of drugs is a crucial 
step in drug discovery, influencing both the efficacy and safety of 
therapeutic interventions. This study undertakes a comparative 
analysis of four machine learning algorithms—K-Nearest 
Neighbors (KNN), Support Vector Machines (SVM), Decision 
Trees (DT), and Random Forest (RF)—to identify the most 
effective method for MoA prediction. Employing Classifier 
Chains and Binary Relevance techniques, we explore the impact 
of feature selection and data balancing strategies on the 
performance of these algorithms. Results demonstrate that SVM 
and RF generally provide the best performance, especially in 
handling complex, feature-rich datasets. The study highlights the 
importance of tailored data preprocessing and balancing to 
optimize algorithmic predictions in pharmacological applications. 
Our findings offer significant insights into machine learning 
implementations in drug discovery, providing a foundation for 
further research into advanced predictive models. 
Keywords: 
Drug Mechanism of Action, MoA, Machine Learning, Multi-Label 
Classification, Feature Selection, Data Balancing Techniques.  

1. Introduction 

Understanding the Mechanism of Action (MoA) 
of drugs is pivotal in pharmacology, guiding the 
development of new therapeutic agents and enhancing 
the efficacy and safety of existing treatments. The 
MoA describes how a drug interacts at the molecular 
level within the body to exert its effects, typically 
involving interactions with specific biomolecules such 
as receptors or enzymes. Accurately predicting the 
MoA can significantly streamline drug discovery 
processes, reducing the time and cost associated with 
experimental assays [1].  

Despite its importance, predicting the MoA of 
drugs remains a complex challenge due to the intricate 
nature of biological systems and the vast diversity of 
drug structures [2]. Traditional methods rely heavily 
on biochemical experiments that are time-consuming, 
costly, and limited in their throughput. With the arrival 
of big data in biomedicine, machine learning 
algorithms have emerged as powerful tools capable of 

uncovering patterns from large datasets that are not 
immediately apparent to human researchers [3]. 

This study addresses the need for advanced 
computational approaches to predict the MoA of drugs 
more efficiently. We focus on applying and comparing 
several classification algorithms, including K-Nearest 
Neighbors (KNN), Support Vector Machines (SVM), 
and Decision Trees, to determine the most effective 
methods for this task. Each algorithm has been chosen 
for its unique ability to handle different aspects of the 
complex data typically involved in MoA studies, such 
as gene expression profiles and cellular viability 
metrics. The primary objectives of this paper are: 
 To evaluate the accuracy of various classification 

algorithms in predicting the MoA of drugs from 
pharmacological data. 

 To determine the impact of different feature 
selection techniques on the performance of these 
algorithms. 

 To identify the algorithm that provides the best 
balance between prediction accuracy and 
computational efficiency. 

Our approach is novel in its comprehensive 
comparison of multiple machine-learning techniques 
tailored specifically for MoA prediction. Additionally, 
this study innovates in applying feature selection 
methods that enhance model performance by 
identifying the most informative biological markers 
relevant to drug action mechanisms. 

This paper is structured as follows: The next 
section reviews relevant literature on MoA prediction 
and the application of machine learning in drug 
discovery. We then detail our methodology, including 
data collection, preprocessing, and model building. 
The results section presents our findings on the 
performance of each algorithm, followed by a 
discussion that interprets these results within the 
broader context of pharmacological research. Finally, 
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we conclude with the implications of our study for 
future drug discovery efforts and potential areas for 
further research. 

By establishing a robust computational 
framework for MoA prediction, this work aims to 
contribute significantly to computational biology and 
pharmacology, providing insights that may accelerate 
the discovery and development of new drugs..  

2. Related Work 

Advances in machine learning techniques have 
significantly improved our understanding of drug 
MoA, particularly in handling the complex biological 
datasets generated in drug discovery. Previous studies 
have leveraged various non-deep learning algorithms 
to predict MoA [3], focusing on classification and 
feature selection methods that accommodate the high-
dimensional nature of biological data. 

Traditional supervised machine learning methods 
like Support Vector Machines (SVM) [3,4], Decision 
Trees [6], and Ensemble Methods [7] have been 
widely employed in MoA prediction. For instance, 
SVMs have demonstrated effectiveness in binary 
classification tasks involved in determining whether a 
compound is active or inactive based on bioactivity 
data [2,4]. Decision Trees and Random Forests have 
been particularly noted for their interpretability and 
robustness in handling biological datasets, which 
often contain irrelevant and redundant features [7,8]. 
Moreover, unsupervised machine learning methods, 
such as KNearest neighbor (KNN) [9], were also 
employed in the drug discovery realm.  

Recent reviews, e.g. [2,3], have highlighted the 
importance of integrating different types of biological 
data, such as genomics, proteomics, and metabolomics, 
to enhance the prediction accuracy of MoA models. 
This integration helps in capturing the comprehensive 
biological interactions of compounds, aiding in more 
accurate MoA predictions. Furthermore, methods like 
feature selection and dimensionality reduction are 
crucial in managing the vast datasets typically 
involved in MoA studies, as they help focus the 
learning algorithms on the most informative features 
[8,10]. 

In addressing data imbalance, which is a common 
issue in MoA prediction due to the varied frequency 
of MoA classes, techniques such as Synthetic 

 
1 https://www.kaggle.com/competitions/lish-moa 

Minority Over-sampling Technique (SMOTE) and 
adaptive sampling have been useful [11]. These 
methods help in creating balanced training sets, which 
are vital for improving the performance of machine 
learning models. 

In conclusion, while deep learning methods are 
increasingly popular in bioinformatics, traditional 
machine learning approaches remain invaluable in 
MoA predictions due to their effectiveness in smaller 
datasets, interpretability, and fewer computational 
requirements. Future research could focus on hybrid 
models that integrate both deep learning and 
traditional machine learning techniques to leverage 
their respective strengths in handling complex and 
large-scale biological data. 

In light of these advancements, our study aims to 
address gaps by comparing multiple ML techniques 
and exploring the impact of feature selection in MoA 
prediction. By focusing on these elements, we 
contribute to refining the predictive capabilities of ML 
models in pharmacological applications, potentially 
leading to more targeted and effective therapeutic 
interventions. 

Our approach is particularly novel in its extensive 
comparison of ML algorithms, tailored for MoA 
prediction, along with a deep dive into feature 
selection techniques that enhance model performance. 
This work not only builds on but also significantly 
extends the methodologies discussed in existing 
literature. 

3. MoA Dataset 

The dataset utilized in this study is sourced from 
the Kaggle, specifically designed for MoA prediction 
challenges1 . It comprises various drug profiles that 
include gene expression data and cell viability metrics. 
The dataset features approximately 876 variables, 
including gene expression levels (g-0 to g-772), cell 
viability scores (c-0 to c-99), and treatment conditions 
(cp_type, cp_time, cp_dose). The cp_type variable 
indicates whether the samples were treated with a 
compound (trt_cp) or a control perturbation 
(ctl_vehicle). 

The dataset includes 207 target labels, such as 
inhibitors, activators, agonists, etc. The majority of 
target labels fall into three categories: inhibitors, 
agonists, or antagonists. Figure 1 illustrates the 
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distribution of these feature types. Inhibitors 
constitute most of the target variables, while the 
numbers of agonists and antagonists are not equivalent.  

These target features are used to discover 23.8k 
drug samples in the dataset. Each drug may be 
associated with multiple MoA target labels; however, 
almost half of the samples have only one MoA target 
label, and around 38% are not associated with any 
labels.  Figure 2 lists the 50 most frequent labels in the 

target dataset. The nfkb_inhibitor appears at the top of 
the list, indicating it has the highest occurrence.  

 

4. Methodology 

4.1 Data Processing and Feature Engineering 

1) Reducing the target set: The presence of a large 
number of labels can complicate the modeling process. 
To streamline this, all target MoA labels are 
categorized into one of seven groups: receptor 
antagonists, receptor agonists, receptors, agonists, 
antagonists, activators, and inhibitors. Figure 3 
demonstrates the distribution of these categories 
within the target MoAs. As a result, these categories 
have been adopted as the primary target labels for our 
analysis. Finally, an OR Boolean operation was 
performed across all target MoA labels of the same 
category, enabling each sample to be labeled under the 
newly defined target set. 

2) Selecting discriminative features: The features 
used in training significantly impact the achievable 
outcomes, as models trained with unnecessary features 
can suffer from decreased accuracy due to reliance on 
irrelevant data. Feature selection offers multiple 
advantages, including improved accuracy, reduced 
overfitting, and shorter training times. In this project, 
selecting the most important features was based on 
analyzing the correlation between features, beginning 
by categorizing features into types marked with 
prefixes -g and -c, then combining columns and 

selecting random features. An iterative process tested 

 
Figure 1: Distribution of the target types in the MoA dataset. The 
y-axis represents the frequency of the type in the dataset. 

 

Figure 2: The 50 most frequent labels in the target dataset. 

Figure 3: Distribution of MoA categories within the dataset.  
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each pair for correlation to identify features with 
minimal correlation, aiming to select distinct features 
since a strong correlation between two features 
suggests redundancy—where one can effectively 
replace the other, thus optimizing memory use and 
reducing training time. A feature was chosen if its 
correlation was less than an absolute value of 
0.0003—a threshold determined to be optimal through 
various experiments, ensuring that the selected 
features are almost unique, with only weak similarities 
to others. From a total of 875 features, 461 were 
selected based on these criteria. 

3) Overcoming class imbalance: An imbalanced 
dataset can significantly impact algorithm 
performance by leading to the neglect of the minority 
class, which is not adequately trained. Two common 
resampling techniques address this: oversampling and 
undersampling, each with its own set of benefits and 
drawbacks. Resampling helps balance the dataset 
either by adding cases to the minority class or 
removing cases from the majority class, thus 
facilitating the development of more effective 
machine learning models. Oversampling increases the 
representation of the minority class by duplicating 
samples, as was done with the 'cp\_type' column using 
Random Oversampling. While helpful in balancing 
classes, this method can lead to overfitting due to the 
duplication of records and increased dataset size, 
which may slow down the training process. 
Conversely, a simple undersampling approach 
involves randomly removing records from the 
majority class, which can reduce training time and 
memory usage but risks losing important information. 
Hence, RandomOverSampler and 
RandomUnderSampler are used to achieve balance. 
Initially, there were 21,948 instances in Class 1 and 
1,866 in Class 0. Post-balancing with 
RandomOverSampler, each class had 17,576 
instances, as shown in Figure 28. 
RandomUnderSampler reduced both classes to 1,475 
instances each. 

4.2 Classification Algorithms 

1) K-Nearest Neighbor (KNN): KNN is based on 
the principle that similar items are located near each 
other. It is a robust supervised classification method 
that predicts the target label by storing all available 
data and classifying new cases based on similarity 
measures such as Manhattan, Euclidean, Minkowski, 

and Hamming distances. KNN's simplicity and non-
parametric nature make it well-suited as a baseline 
model for complex datasets, particularly useful in 
biological contexts where relationships can be non-
linear. In MoA prediction, KNN leverages localized 
data characteristics effectively, especially in scenarios 
involving multi-class classification, by identifying 
patterns from the nearest neighbors in a feature space 
defined by drug properties and cellular responses. 

2) Support Vector Machine (SVM): SVM is a 
robust supervised learning algorithm used for 
classification and regression tasks. It excels in high-
dimensional spaces, such as those typical in drug MoA 
prediction, involving complex and large datasets. 
SVM operates by identifying the optimal hyper-plane 
that separates different classes with the maximum 
margin, utilizing support vectors that are the nearest 
data points to the hyper-plane. For multi-label 
classification challenges, such as predicting drug 
classes, SVM can be enhanced with techniques like 
classifier chains and binary relevance. These methods, 
coupled with SVM's ability to adapt its decision 
boundaries through various kernel functions, allow for 
precise and nuanced discrimination between classes. 
SVM's kernel trick, which enables data handling in 
high-dimensional spaces, makes it particularly 
valuable in genomic or high-throughput screening 
data analysis, where subtle distinctions between 
MoAs are crucial for accurate classification. 

3) Decision Tree (DT): DT is a classification 
algorithm that constructs a tree-like structure, enabling 
the selection among various outcomes. It builds a 
regression model by progressively splitting data into 
smaller branches, culminating in a decision node. This 
intuitive approach creates a visual map of decisions 
and their potential consequences, making it 
straightforward to understand and interpret. However, 
decision trees can be susceptible to overfitting, 
particularly as the complexity of the tree increases. 

4) Random Forest (RF): RF is an ensemble 
learning technique ideal for classification and 
regression, which works by building numerous 
decision trees on random data subsets and averaging 
their predictions to enhance accuracy and control 
overfitting. Especially effective in drug discovery for 
MoA prediction, it handles high-dimensional 
biological data adeptly, managing the complexities of 
genomic data or high-throughput screening. Random 
Forest's ability to capture non-linear relationships and 
provide interpretable results—identifying key features 
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influencing predictions—makes it particularly 
valuable in biomedical research, where understanding 
biological pathways is crucial. It is evaluated using 
accuracy, precision, recall, and F1-score, ensuring 
robust performance assessment in multi-label 
classification scenarios. 

4.3 Multi-label Classification Techniques 

In the study of multi-label classification, 
commonly applied in fields such as drug discovery 
and bioinformatics, methodologies are categorized 
mainly into problem transformation methods and 
algorithm adaptation methods. Problem 
transformation methods simplify multi-label problems 
into several single-label problems, enabling the 
application of traditional algorithms that are not 
originally equipped to handle multiple labels 
simultaneously. In contrast, algorithm adaptation 
methods modify existing algorithms to directly 
accommodate multi-label data, thus inherently 
managing the complexities and dependencies between 
multiple labels.  

Our focus was on problem transformation 
techniques, specifically employing Binary Relevance 
and Classifier Chains. Binary Relevance treats each 
label as a distinct binary classification task, effectively 
ignoring label dependencies. Classifier Chains 
enhance this approach by considering the 
interdependencies among labels, where each classifier 
in the chain uses the predictions of previous classifiers 
as additional features, thereby improving the 
prediction accuracy for subsequent labels. These 
methods transform complex multi-label tasks into 
more tractable binary problems, suitable for 
conventional machine learning algorithms. 

In this study, we focused on problem 
transformation techniques: 

1) Binary Relevance: This method treats each label 
as a separate single binary classification problem. It 
involves decomposing the multi-label task into 
multiple binary tasks, where each task predicts the 
presence or absence of a specific label. Despite its 
simplicity, binary relevance is effective but does not 
account for label correlations, treating each label 
independently. 

2) Classifier Chains: To capture label 
interdependencies, we utilized Classifier Chains, 
which build upon the concept of binary relevance. In 
this method, the multi-label problem is converted into 

a chain of binary classification problems. Each 
classifier in the chain predicts a label, incorporating 
the outputs of previous classifiers in the chain as 
additional features. This sequential approach allows 
each classifier to leverage the label associations 
learned by its predecessors, enhancing the predictive 
performance by considering the relationships between 
labels. 

These techniques were chosen for their ability to 
adapt conventional binary classifiers to the multi-label 
setting effectively. By employing these methods, we 
could transform complex multi-label tasks into 
simpler binary problems that are more tractable for 
traditional machine learning algorithms. Our 
implementation details and the effectiveness of these 
approaches are further explored in the results section. 

4.4 Evaluation Metrics 

To assess the performance of the classification 
algorithms employed in this study, we utilized a 
comprehensive set of evaluation metrics as defined in 
[12]. These metrics are crucial for determining the 
effectiveness of our models across various dimensions 
of accuracy and error measurement. 

Accuracy: Defined as the proportion of correctly 
predicted labels to the total number of labels (both 
predicted and actual) for each instance, with the 
overall accuracy being the average across all instances. 

Precision: Also known as the positive predictive 
value, precision is the ratio of correctly predicted 
positive labels to the total number of actual positive 
labels, averaged over all instances. 

Recall: It measures the proportion of actual 
positive labels that are correctly predicted as such, 
averaged over all cases. 

F1 Score: Also known as balanced F-score, is the 
harmonic mean of precision and recall, offering a 
single metric that balances both. It is particularly 
useful in the context of uneven class distributions, 
where one class may dominate over others. 

Hamming Loss: This metric represents the fraction 
of the wrong labels to the total number of labels, 
indicating the overall error rate in the label prediction. 

Beyond these instance-based metrics, we also 
employed label-based measures that evaluate the 
performance for each label separately before 
averaging them: 

Macro Averaging: This approach calculates 
metrics independently for each class and then takes the 
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average, treating all classes equally regardless of their 
frequency. This method is beneficial for ensuring that 
minority classes are considered fairly in the evaluation 
process. 

Micro Averaging: In contrast, micro averaging 
aggregates the contributions of all classes to compute 
the average metrics. This method calculates the total 
counts of false positives, false negatives, and true 
positives across all classes, then derives metrics like 
recall, precision, and F1-score. 

For this study, we particularly focused on macro 
averaging due to its effectiveness in handling class 
imbalances by assigning equal importance to each 
category. This choice reflects our aim to develop a 
model that performs consistently well across all 
classes, including those that are less represented in the 
dataset. Through these metrics, we aim to 
comprehensively understand the strengths and 
weaknesses of our models, ensuring they are robust 
and effective across diverse multi-label classification 
scenarios. 

5. Experimental Design 

The experimental setup for this study was carefully 
designed to ensure robust evaluation and 
reproducibility of results.  All experiments were 
implemented in Python, utilizing the widely 
recognized scikit-learn library [13], which provided a 
comprehensive framework for machine learning tasks. 
To guarantee an unbiased assessment and 
generalizability of the outcomes, we employed 
stratified 10-fold cross-validation across all models. 
This method preserves the proportion of each class 
within each fold, thereby maintaining the distribution 
integrity of the original dataset. 

Hyperparameter tuning was systematically 
conducted using a grid search approach, allowing us 
to explore a range of possible configurations and 
identify the optimal settings for each model. 

In total, eight models were developed for each 
classification algorithm to thoroughly assess 
performance across various scenarios: 
 The first and second models utilized all available 

features (807 in total). The first model applied the 
classifier chain method targeting the 7-category 
MoA labels, while the second used binary 
relevance under the same conditions. 

 The third and fourth models were trained using a 
reduced feature set (461 features), following the 
same methodology as the first and second models, 
respectively, to evaluate the impact of feature 
reduction on model performance. 

 The remaining models incorporated strategies to 
balance the dataset, with six additional models 
created to address potential biases introduced by 
class imbalances. 
o Models five and six replicated the first and 

second models but utilized undersampling to 
balance the dataset. 

o Models seven and eight mirrored the third and 
fourth models but used undersampling on the 
reduced feature set.  

o Models nine and ten applied oversampling to 
the full feature set using classifier chain and 
binary relevance, respectively.  

o Models eleven and twelve used oversampling 
with the reduced feature set following the 
same respective methodologies. 

This systematic approach to experimental design, 
spanning multiple models and configurations, was 
chosen to comprehensively evaluate the effectiveness 
of each classification strategy under varying data 
conditions. The results of these experiments are 
intended to provide insightful conclusions about the 
scalability and adaptability of the proposed methods in 
the context of multi-label classification for drug MoA 
prediction. 

6. Results 

The results of this study provide a comprehensive 
evaluation of four machine learning algorithms— 
KNN, SVM, DT, and RF —across various 
experimental setups designed to understand their 
efficacy in multi-label classification for predicting 
drug MoA. Each model was tested using two primary 
techniques: Classifier Chains and Binary Relevance, 
and each technique was evaluated under different 
conditions of feature selection and dataset balancing 
methods. The performance metrics used for evaluation 
included precision, recall, F1-score, Hamming Loss, 
and overall accuracy, as detailed in Tables I to III. 
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Applying Classifier Chains and Binary Relevance Table I: Result of the multi-label MoA classification using unbalanced data with two techniques (Classifier Chains and Binary Relevance).

 Classifier Chains Binary Relevance 

Models 
All features 

precision recall f1-
score 

Hamming 
Loss accuracy precision recall f1-score 

Hamming 
Loss 

accuracy 

KNN 0.42 0.11 0.16 0.15 0.53 0.42 0.11 0.16 0.15 0.53 
SVM 0.51 0.085 0.13 0.15 0.56 0.50 0.083 0.132 0.15 0.55 
DT 0.45 0.05 0.09 0.15 0.51 0.45 0.05 0.09 0.15 0.51 
RF 0.48 0.08 0.12 0.14 0.56 0.48 0.08 0.12 0.14 0.55 

 Best features 

Models precision recall f1-
score 

Hamming 
Loss accuracy precision recall f1-score 

Hamming 
Loss 

accuracy 

KNN 0.42 0.11 0.16 0.15 0.55 0.42 0.11 0.16 0.15 0.54 
SVM 0.47 0.086 0.13 0.14 0.57 0.50 0.083 0.14 0.15 0.56 
DT 0.35 0.06 0.10 0.16 0.51 0.35 0.06 0.10 0.16 0.51 
RF 0.62 0.08 0.12 0.14 0.55 0.48 0.48 0.8 0.13 0.55 

 

Table II: Result of the multi-label MoA classification using undersampled data with two techniques (Classifier Chains and Binary 
Relevance). 

 RandomUnderSampler - Classifier Chains RandomUnderSampler - Binary Relevance 

Models 
All features 

precision recall f1-
score 

Hamming 
Loss accuracy precision recall f1-score 

Hamming 
Loss 

accuracy 

KNN 0.16 0.06 0.06 0.16 0.47 0.16 0.05 0.06 0.16 0.47 
SVM 0.092 0.03 0.092 0.16 0.48 0.1 0.27 0.03 0.16 0.48 
DT 0.05 0.00 0.00 0.16 0.45 0.05 0.00 0.00 0.163 0.45 
RF 0.09 0.01 0.01 0.17 0.45 0.05 0.00 0.00 0.163 0.45 

 Best features 

Models precision recall 
f1-

score 
Hamming 

Loss 
accuracy precision recall f1-score 

Hamming 
Loss 

accuracy 

KNN 0.59 0.08 0.12 0.15 0.53 0.59 0.08 0.12 0.15 0.53 
SVM 0.12 0.023 0.12 0.15 0.56 0.10 0.04 0.12 0.15 0.55 
DT 0.12 0.02 0.03 0.15 0.48 0.12 0.02 0.03 0.15 0.48 
RF 0.12 0.04 0.05 0.15 0.51 0.12 0.04 0.05 0.15 0.51 

 

Table III: Result of the multi-label MoA classification using oversampled data with two techniques (Classifier Chains and Binary 
Relevance). 

 RandomOverSampler - Classifier Chains RandomOverSampler - Binary Relevance 

Models 
All features 

precision recall f1-
score 

Hamming 
Loss accuracy precision recall 

f1-
score 

Hamming 
Loss 

accuracy 

KNN 0.19 0.06 0.07 0.16 0.45 0.19 0.06 0.07 0.16 0.45 

SVM 0.094 0.033 0.094 0.16 0.49 0.098 0.027 0.043 0.16 0.48 

DT 0.6 0.00 0.00 0.16 0.45 0.06 0.00 0.00 0.16 0.45 

RF 0.09 0.01 0.02 0.017 0.44 0.06 0.00 0.00 0.16 0.45 

 Best features 

Models precision recall 
f1-

score 
Hamming 

Loss 
accuracy precision recall 

f1-
score 

Hamming 
Loss 

accuracy 

KNN 0.38 0.09 0.14 0.15 0.53 0.38 0.09 0.14 0.15 0.53 

SVM 0.10 0.027 0.14 0.15 0.48 0.10 0.27 0.13 0.15 0.48 

DT 0.37 0.03 0.06 0.15 0.46 0.00 0.00 0.00 0.166 0.44 

RF 0.37 0.04 0.07 0.17 0.45 0.11 0.02 0.03 0.17 0.45 
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techniques yielded diverse outcomes, demonstrating 
the complex dynamics of model performance in multi-
label settings. 

Using the Classifier Chains technique, where 
models are designed to consider label dependencies, 
we observed varied results across the models (Table I 
to III). When employing all features, SVM and RF 
performed slightly better in terms of accuracy (0.56) 
compared to KNN and DT. Notably, Random Forest 
showed a balanced performance with respect to 
precision and F1-score when best features were 
utilized, achieving an accuracy of 0.55 and the highest 
precision among all models at 0.62, albeit with a low 
recall (Table I). This suggests that while RF can 
accurately predict the correct labels, it is conservative 
in labeling, missing several true labels. 

When RandomUnderSampler was applied in 
conjunction with the Classifier Chain technique, all 
models suffered a decrease in performance (Table II). 
This was particularly evident in terms of precision and 
recall, indicating difficulty in managing the reduced 
sample size while maintaining the ability to predict 
correct labels across multiple categories. 

The Binary Relevance technique, which treats each 
label as an independent binary classification, revealed 
similar trends (Table I to III). Here, SVM consistently 
showed moderate performance improvements over 
other models, particularly with all features, where it 
achieved an accuracy of 0.55 and a precision of 0.50. 
Interestingly, when best features were used, RF’s 
recall dramatically increased to 0.48 with an F1-score 
of 0.80 (Table I), indicating a significant improvement 
in identifying true positives across the labels. 

Under conditions of RandomOverSampler using 
Binary Relevance, the performance generally declined 
(Table III). This was evident from the increased 
Hamming Loss and decreased accuracy across all 
models. It suggests that while oversampling increases 
the dataset size by replicating labels, it does not 
necessarily contribute to learning new information, 
which might lead to overfitting and decreased model 
generalizability. 

The impact of using all features versus best 
features was notable across both techniques. Models 
generally performed better with best features, 
particularly KNN and RF, which improved precision 
and recall (Tables I to III). This highlights the 
importance of feature selection in improving model 
accuracy and handling class imbalances effectively. 

 

Models trained under RandomUnderSampler 
conditions generally showed poorer performance than 
those under natural class distributions, particularly in 
terms of F1-score and recall, suggesting that 
significant data reduction may lead to the loss of 
critical information necessary for accurate 
classification (Tables II). 

Conversely, RandomOverSampler often led to 
higher Hamming Loss and lower overall accuracy 
(Tables III), indicating potential overfitting issues as 
models were likely learning from repeated instances 
rather than from new information. 

These experiments demonstrate the complexities 
and challenges of applying machine learning 
algorithms to multi-label classification tasks in drug 
discovery. Each model's performance varied 
significantly based on the classification technique, 
feature selection, and data balancing approach used, 
underscoring the need for careful consideration of 
these factors in model deployment. 

7. Discussion 

The results underscore several key insights into the 
application of machine learning techniques in multi-
label drug MoA prediction. Firstly, the interplay 
between Classifier Chains and Binary Relevance 
techniques with different algorithms suggests no one-
size-fits-all solution; the choice of technique must be 
aligned with the specific characteristics of the dataset 
and the computational constraints. 

Secondly, the impact of feature selection and 
balancing techniques on model performance 
highlights the critical role of data preprocessing in 
machine learning workflows. While feature 
optimization generally leads to performance gains, the 
method of balancing class distribution requires careful 
consideration to avoid undermining the model's ability 
to generalize from the training data. 

Lastly, the varying performance across algorithms 
under different experimental setups calls for a nuanced 
approach to selecting and tuning machine learning 
models for drug discovery applications. Future 
research should focus on developing more 
sophisticated methods for handling imbalanced data 
without compromising the quality of the model's 
predictions. 

This comprehensive evaluation provides a 
foundation for further exploration into the best 
practices for deploying machine learning algorithms 
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in the complex field of pharmacology, ensuring that 
the benefits of these computational tools can be fully 
realized in practical applications. 

8. Conclusion 

This study conducted a comprehensive 
comparative analysis of four machine learning 
algorithms —KNN, SVM, DT, and RF— within a 
multi-label classification framework for predicting 
drug Mechanisms of Action (MoA). By utilizing 
Classifier Chains and Binary Relevance techniques 
and examining various feature sets and data balancing 
approaches, the research highlighted the nuanced 
performances of these algorithms in pharmacology. 

The findings indicate that SVM and Random 
Forest generally provided the most robust 
performance, particularly with accuracy and handling 
complex datasets. Feature selection was crucial, 
consistently enhancing model performance, while data 
balancing techniques like RandomUnderSampler and 
RandomOverSampler often negatively impacted 
outcomes. 

Future research should explore advanced ensemble 
methods and innovative data balancing techniques to 
leverage strengths across algorithms and address class 
imbalances effectively. This study underscores the 
potential of machine learning in drug discovery, 
emphasizing the need for tailored algorithm selection 
and preprocessing strategies to maximize predictive 
accuracy and efficiency in real-world applications. 
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